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Abstract

We present a new caching scheme and new cache management strat-
egy that have been implemented in the last release of our compilation-based
model counter, D4. The caching scheme consists in storing for each entry
(a CNF formula forming a connected component given a current variable as-
signment, together with its model count) the corresponding set of variables
and the corresponding set of clauses, except those clauses of the CNF for-
mula that are satisfied or not shortened when conditioned by the assignment.
The cache management strategy includes a cache cleaning strategy, based
not only on the ages of the entries but also on the proportion of entries of
the same size that led to positive hits. It also includes a cache insertion strat-
egy, that aims to memory saving by avoiding to store in the cache every CNF
formula that is encountered during search.

1 Introduction

Caching turns out to be a key ingredient of propositional model counters and com-
pilers targeting the Decision-DNNF language for knowledge compilation.

A caching scheme simply is a mapping making precise how each CNF for-
mula ¢ considered during search is represented. The quality of a caching scheme
can be measured as its ability to determine efficiently whether a given CNF for-
mula ¢ has an equivalent representation already in the cache (the time efficiency),
without missing it if this is the case, while ensuring that the cache remains of a
reasonable size (the space efficiency). The two aspects (time and space) are clearly
linked and have a direct impact on the (time and space) complexity of the model
counter/compiler into which the caching scheme is exploited.

Since the size of the cache can become huge (especially in knowledge com-
pilation scenarios, i.e., when Decision-DNNF' representations are stored), it is of
the utmost importance from the practical side to limit the memory consumption
through the use of a cache cleaning strategy so as to avoid out-of-memory er-
rors. Cache management strategies aim to find out entries that should be removed



from the cache because they are of large size and/or are seldom activated (trade-
offs are looked for). They also aim to avoid storing in the cache entries that will
not be hit during the rest of the computation. Because caching leads to enhance
the performance of model counters and compilers, a cache manager is imple-
mented in many state-of-the-art #SAT solvers, including Cachet! [SBB*04] and
sharpSAT2 [Thu06], and top-down compilers, including c2D? [Dar01, Dar04],
Dsharp? [MMBHI2], and D4° [LM17].

In this abstract, we present the caching scheme that has been implemented in
the last release of D4. In this scheme, the clauses of the current CNF formula ¢ are
represented explicitly as in the standard scheme used by Cachet [SBB104], thus
avoiding to recognize some entries that are missed by the hybrid scheme consid-
ered in sharpSAT [Thu06]. Furthermore, the size of the cache is minimized by
storing for each entry the corresponding set of variables and a restricted set of resid-
ual clauses. In this restricted set, not only the satisfied clauses of X are omitted,
but also the binary clauses of 3 considered at start (as in sharpSAT) and, more
generally, every input clause which has not been shortened by the current variable
assignment. We also present a new cache management strategy that refines the one
used in sharpSAT, and takes account for the ages of the entries, with dynamic re-
sets to reflect their activities, and but also for the proportion of entries of the same
size that led to positive hits (so as to try and keep in the cache the most promising
entries). To save memory, only entries bearing on a number of variables that do not
exceed a preset bound are stored, and this bound is dynamically updated. Finally,
the results of an empirical evaluation are reported, showing the caching scheme
and the management strategy implemented in the last release of D4 as valuable.

2 An Improved Caching Scheme

Formally, a caching scheme c is a mapping associating with any p € S(3) = {¢§' C
d | 0 € X} for some CNF formula ¥ a representation 7.(¢) of ¢ (this representation
can be any data structure). A cache for ¥ given a caching scheme c is a mapping
associating with representations 7.(¢) of CNF formulae ¢ € S(X) their number
of models ||| (or Decision-DNNF representations of those ). Any ¢1 € S(X)
encountered during the search is considered not to be stored in the cache whenever
one can find in the cache an entry r.(p2) such that r.(p1) = r.(p2) holds. A
correct caching scheme c is a caching scheme such that for any CNF formula X2,
01,2 € S(X),if re(p1) = re(p2) then p1 = s. Stated otherwise, when the rep-
resentations of (7 and 9 coincide, then the two CNF formulae ¢; and @9 must be
equivalent. Of course, the converse implication is not expected (otherwise, either
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the cache size or the look-up operation would be prohibitive).

Because of the syntactic nature of the approximate equivalence test, the perfor-
mance of a caching scheme depends only on two key factors: the cumulated sizes of
the entries and the quality of the approximation of equivalence that is achieved. In
the standard caching scheme s°), every CNF formula ¢ encountered during search
is represented as a string gathering the identifiers (integers) of the literals of the
clauses in it, separating the clauses by zeroes. The identifier of a positive literal
x; 18 its index ¢ in the enumeration 1 < 22 < ... < z,_1 < T, and the iden-
tifier of a negative literal —x; is —¢. In the hybrid caching scheme h considered
in sharpSAT, the clauses of the input CNF formula X are indexed in an arbitrary
way (the index of the first clause of X is 1, the index of the second clause of ¥ is
2, etc.). Every CNF formula ¢ encountered during search is represented as a pair
consisting of the set of indexes of the variables occurring in ¢ (again, the identifier
of x; is 7) in ascending order, and the set of indexes of the clauses of X that are
“still alive” (non satisfied) and containing at least two unassigned literals), in as-
cending order. A variant of h, called o, consists in omitting in the set of indexes of
the clauses of ¢ every index of a binary clause. Indeed, as shown in [Thu06], this
set is redundant since it can be reconstructed knowing the indexes of the literals
occurring in it. This leads to smaller sizes of the codes, hence to a more efficient
cache management. For the sake of code conciseness, indexes are typically com-
pressed, i.e., represented using as few bits as possible (and not using a fixed format
for integers). The o scheme with such a code compression is referred to as the p
scheme in [Thu06] (’p” stands for “packing”).

Clearly enough, representing clauses by their indexes in X (as with the h
scheme, the o scheme or the p scheme) is more efficient in term of encoding sizes
than representing them explicitly (as with the s scheme). However, explicitly rep-
resenting the clauses leads to a finer equivalence relation between the clause sets.

Let us present the new caching scheme 7, which has been implemented in the
last release of D4. In order to describe it in a smooth way, we start with a basic
caching scheme b, which is such that for any CNF formula ¥ and any ¢ € S(X),
rp(p) = (V,C) where V is the set of indexes of variables of Var(y) ordered in
ascending way and C' is the set of residual clauses of ¢ given 3 (the clauses which
are not satisfied by the assignment corresponding to ¢). With b, C is sorted by
increasing clause size first, and within each cluster of clause representations having
the same size, the indexes of the literals of each clause are listed in increasing order
w.r.t. the lexicographic ordering induced by the literal ordering r1 < —x1 < 2 <
2o < ... < Tp—y < Tp—1 < Ty < O, When the variable ordering is such
that 71 < 22 < ... < zp—1 < x,. Multi-occurrent clauses are removed (only
one occurrence per clause is kept). When the basic caching scheme b is used, the
residual clauses are represented in an explicit way, as in the s scheme and not using
indexes (unlike the schemes h, o, p presented above), but they are ordered in such a
way that two sets of residual clauses that differ only as to the ordering of the clauses

6According to [Thu06], it is the one used in Cachet ([SBB'04] do not make it precise).



and/or as to the ordering of literals within clauses will have the same representation
C (this ordering is maintained dynamically). The indexes used for representing
clauses in C' also use as few bits as possible, as in the p scheme. A variant of
b, noted 2, is obtained by avoiding to store the binary clauses as with 0. What
makes ¢ different of b also is the notion of residual clause under consideration.
With the 7 caching scheme, not only the binary clauses of 3 are not stored, but
every clause of ¢ that is not shortened by the corresponding variable assignment
is not represented as well. Finally, with the variant ¢’ of i, one considers the same
set of residual clauses as in ¢, but represents those clauses using indexes as in the h
scheme. Interestingly, refraining from storing the clauses of X that have not been
shortened does not question the correctness of the approach, whatever clauses are
represented explicitly (by the literals in them) or implicitly (by their indexes): the
caching schemes ¢ and 4’ are correct.

3 An Improved Cache Management Strategy

A cache management strategy must make precise the entries that have to be stored
in the cache (i.e., a cache insertion policy), and those that must be removed from the
cache and an agenda for the operations (especially, the cleaning operations can be
achieved periodically, or be triggered by some events like the number of entries or
the fact that the quantity of memory that is available falls down a preset threshold).

In Cachet [SBBT04] and in sharpSAT [Thu06], every CNF formula en-
countered during the search is a candidate for being inserted into the cache (thus,
the cache insertion policy is in some sense trivial). Observing that the utility of
the cached components typically declines dramatically with age, in Cachet each
cached component is given a sequence number and those components that are too
old are removed from the cache (the age limit is considered as an input parameter).
For efficiency reasons, age checking is not done frequently; when a new com-
ponent is cached, age checking is achieved on the chain that contains the newly
cached component. The cache is cleared whenever the number of entries exceeds
221 % 10 and only 25% of the entries are kept whenever a cleaning operation takes
place. In sharpSAT, the entries to be cleaned up do not depend only on their ages
(i.e., the first time they are encountered), but also on their activity levels and on
their sizes. A score score(e) is associated with each entry e. At start, score(e) is
given by the age of the entry but it is reset during the search each time a positive
hit corresponding to the entry is obtained. All scores are divided periodically so as
to penalize the oldest entries. The cache is cleared only if its size exceeds a fixed
fraction of the maximal allowed size (another input parameter). Entries are consid-
ered by increasing scores and removed from the cache until a sufficient amount of
space (e.g., half of the maximal allowed size) has been recovered.

In the cache management strategy that has been implemented in the last release
of D4, it is not always the case that every CNF formula ¢ encountered during the
search is inserted into the cache (when it is not already in). To the goal of memory



saving, only those ¢ such that | Var(¢)| < ¢, where ¢ is a given threshold, are put
into the cache. ¢ is first set to an initial value ¢;,;;, and the value of ¢ is dynamically
updated on a regular basis. Basically, for every n € [t], the number of positive hits
for any  such that | Var(¢)| = n is stored in a table T". Periodically, the largest
m € [t] such that T'[m] # 0 is computed and ¢ is replaced by p x m, where p is a
fixed value. Depending on m, this update operation leads to increase or to decrease
the value of ¢. An aging mechanism is implemented (each value in 7" is divided by
2 once the value of ¢ has been updated).

With each entry e in the cache we also associate an integer value score(e) as
in sharpSAT, together with a Boolean value flag(e) that is set to true once the
entry hits positively. Each time a cache hit occurs on an entry e, score(e) is reset
and flag(e) is set to true. Moreover, we store information about how many entries
nbTotal[s] of any given size s the cache data structure contains, as well as how
many entries nbHit[s| of size s have their flag variable set to true. The size of an
entry is measured as the number of variables in it.

Each time tc new entries have been added to the cache (where tc is a parameter
of the strategy), some cleaning is performed. All the entries of the cache are visited
in order to decide the ones that must be removed. Contrary to sharpSAT, our
cleaning strategy does not remove half of the entries in a systematic way, and the
cleaning operations are not triggered by how filled the cache is. For each entry e,

the ratio
nbHit[| Var(e)]

rle) = nbTotal[| Var(e)|]

is computed. For each entry size, during the search, this ratio evaluates the pro-
portion of entries of this size having led to a positive hit. In our cache cleaning
strategy, entries with a high ratio r(e) are promoted. Indeed, we have observed
empirically that along the search, entries e with a high ratio r(e) are often the most
promising ones, i.e., when entries of the same size led to many positive hits, it is
likely that e will also lead to some positive hits (this observation can be explained
by the presence of variables playing symmetric roles in the instances). Thus, as
a rule of thumb, it makes sense to give a bonus to such entries. Accordingly, in
our cache cleaning strategy, every entry e that has a ratio r(e) less that some fixed
threshold rm (another parameter), with a score(e) equals to zero and a flag(e) set
to false is flushed. The other entries e are kept and their score(e) are divided by
two. Whenever score(e) falls to zero, flag(e) is set to false.

4 Some Empirical Results

In order to evaluate the performance of the caching schemes and of the cache
management strategies, we performed a number of experiments. We have con-
sidered 400 CNF instances, which are precisely the benchmarks used for eval-
uating the performances of the (possibly weighted) model counters during the
First International Competition on Model Counting that was held in 2020 (see



https://mccompetition.org/). Those instances are those used for Track 1 of the com-
petition (model counting - 200 instances) plus those used for Track 2 (weighted
model counting - 200 instances).

Name EN All | Notb | Nots

n - - - -

b E v

2 E v

i E v
h I v

P 1 v

i’ I v

Table 1: Seven caching schemes considered in the paper.

In our experiments, D4 has been used in the model counter mode: when in-
voked with option -mc, D4 explores the same search space as the one considered
when it is used as a Decision-DNNF compiler, but stores in its cache model counts
instead of Decision-DNNF representations [LM17]. The branching heuristic that
has been exploited is the one based on dynamic decomposition (DECOMP) used
by default in D4.

We have considered the caching schemes n, b, 2, 4, as well as 1, the variant of h
where indexes are compressed, p, and ¢’. The features characterizing those schemes
are summarized in Table 1. “E(xplicit)/I(mplicit)” makes precise whether residual
clauses are represented explicitly (by their literals) in the scheme, or implicitly (by
their indexes). When “All (residual clauses)” is activated, every residual clause is
stored. When “Not b(inary)” is activated, the binary clauses of > are not stored.
Finally, when “Not s(hortened)” is activated, the binary clauses of 3 and the clauses
of X that have not been shortened are not stored. The hash function used in the
implementation of the cache was MurMurHash?2 (see https://en.wikipedia.org/
wiki/MurmurHash).

We have also considered several cache management strategies: no cache clean-
ing, the strategy used by Cachet, the one used by sharpSAT, and our own
cleaning strategy, together with two cache insertion modes (all: every CNF for-
mula ¢ encountered during the search is inserted into the cache, and some: only
those CNF formulae ¢ encountered during the search and such that | Var(p)| < t
are considered as candidates for being put into the cache). The parameters used in
the strategy implemented in Cachet and the ones used by sharpSAT were set to
their default values. ¢;,;; was set to 500 and the value of ¢ was updated every 10°
recursive calls. p was set to % teto 10° and rm to 0.3.

All the experiments have been conducted on a cluster equipped with quadcore
bi-processors Intel XEON E5-5637 v4 (3.5 GHz) and 128 GiB of memory. The
kernel used was CentOS 7, Linux version 3.10.0-514.16.1.e17.x86_64. The com-
piler used was gcc version 5.3.1. A time-out (TO) of 1h and a memory-out (MO)
of 7.6 GiB has been considered for each instance.
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For each combination caching scheme/cache management strategy and each
benchmark, the performance of D4 has been assessed by measuring the model
counting time, and the memory consumed by D4. To get a baseline, we have also
run D4 on the whole dataset while disabling the cache. In this case, only 160
instances have been solved in due time, showing the significance of the caching
ingredient for solving instances from the dataset under consideration.

Table 2 makes precise for each combination caching scheme / cache manage-
ment strategy, some empirical data of the form z(y) where = is the number of
instances solved (out of 400) and y the number of MOs that occurred. “E/I”, “All”,
‘Not b”, “Not s” characterize the caching scheme used and have precisely the same
meaning as in Table 1. “Cleaning” indicates the cleaning strategy used (the one of
Cachet, the one of sharpSAT, or our own one - “ours”). Finally, “Insert” gives
the cache insertion mode (all or some).

E/l | Cleaning Insert | All Not b Not s

E | none all | 244(155) 251(148) 276(119)
E | none some | 258(132) 264(125) 281(107)
E | Cachet |all | 243(156) 261(133) 288(101)
E | Cachet |some | 258(132) 274(110) 293(89)
E | sharpSAT |all | 262(134) 266(127) 285(87)
E | sharpSAT | some | 277(107) 275(108) 291(76)
E | ours all | 280(77)  283(69)  299(23)
E | ours some | 294(54) 296(47) 305(12)
T | none all | 254(145) 261(138) 271(122)
I none some | 263(124) 269(118) 273(110)
I | Cachet |all | 256(143) 271(109) 282(90)
I |cachet |some |265(122) 279(89) 285(78)
I | sharpSAT |all | 273(106) 274(102) 280(35)
I | sharpSAT | some | 278(86) 282(85)  282(72)
T | ours all | 279(48) 283(35)  290(23)
I | ours some | 288(26) 292(16) 292(10)

Table 2: Number of instances solved by D4 (# MO reached) for several combinations of
caching scheme / cache management strategy.

In Table 2, the largest numbers of instances solved for each caching scheme
when the cache management strategy (made precise by the values of “Cleaning”
and “Insert”) varies are boldfaced, and the largest numbers of instances solved for
each cache management strategy when the caching scheme (made precise by the
flags “E/1”, “All”, ‘Not b”, “Not s” ) are reported in lilac cells. One can observe
that, on the one hand, the caching scheme 7 (characterized by “E” and “Not s”) per-
forms better than any other scheme whatever the cache management strategy used;
on the other hand, that the new cache management strategy proposed in the paper
and characterized by “ours” and “some” performs better than any of the three other
cache management strategies that have been considered. The underlying principle
(trying to learn what are the most promising entries) looks quite useful here. Espe-



cially, it can be observed that the cache cleaning strategy “ours” performs not bad
in term of the numbers of MOs that are obtained (in particular when it is coupled
to 7 or ¢’). This is somewhat surprising given that the amount of available mem-
ory is not exploited in this strategy, while cleaning operations are triggered by the
number of entries / amount of available memory in Cachet / sharpSAT. Finally,
the cache insertion strategy “some” where all the CNF formulae encountered dur-
ing the search are not systematically added to the cache, also appears as the best
insertion strategy since it leads to more instances solved than its challenger “all”
whatever the caching scheme and the cache cleaning strategy that are used.

Empirically, with 305 instances solved, the best combination turns out to be
1, together with the new cleaning strategy (‘“ours”) and the new insertion strategy
(“some™). It leads to solve a significant amount (more than 10%) of additional
instances compared to the current version of D4 (which is based on 7 as well, but
does not take advantage of any cache management strategy, i.e., it corresponds to
the combination “none” for Cleaning and “all” for Insert).
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