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CNN-based Prediction of Partition Path for VVC
Fast Inter Partitioning Using Motion Fields

Yiqun Liu, Student Member, IEEE, Marc Riviere, Fellow, IEEE, Thomas Guionnet, Fellow, IEEE, Aline
Roumy, Fellow, IEEE, and Christine Guillemot, Fellow, IEEE

Abstract—The Versatile Video Coding (VVC) standard has
been recently finalized by the Joint Video Exploration Team
(JVET). Compared to the High Efficiency Video Coding (HEVC)
standard, VVC offers about 50% compression efficiency gain,
in terms of Bjontegaard Delta-Rate (BD-rate), at the cost of
a 10-fold increase in encoding complexity. In this paper, we
propose a method based on Convolutional Neural Network (CNN)
to speed up the inter partitioning process in VVC. Firstly, a
novel representation for the quadtree with nested multi-type tree
(QTMT) partition is introduced, derived from the partition path.
Secondly, we develop a U-Net-based CNN taking a multi-scale
motion vector field as input at the Coding Tree Unit (CTU)
level. The purpose of CNN inference is to predict the optimal
partition path during the Rate-Distortion Optimization (RDO)
process. To achieve this, we divide CTU into grids and predict
the Quaternary Tree (QT) depth and Multi-type Tree (MT) split
decisions for each cell of the grid. Thirdly, an efficient partition
pruning algorithm is introduced to employ the CNN predictions
at each partitioning level to skip RDO evaluations of unnec-
essary partition paths. Finally, an adaptive threshold selection
scheme is designed, making the trade-off between complexity
and efficiency scalable. Experiments show that the proposed
method can achieve acceleration ranging from 16.5% to 60.2%
under the RandomAccess Group Of Picture 32 (RAGOP32)
configuration with a reasonable efficiency drop ranging from
0.44% to 4.59% in terms of BD-rate, which surpasses other
state-of-the-art solutions. Additionally, our method stands out
as one of the lightest approaches in the field, which ensures its
applicability to other encoders.

Index Terms—VVC, multi-scale motion vector field, VTM,
QTMT, inter partitioning acceleration, U-Net, multi-branch
CNN, multi-class classification.

I. INTRODUCTION

ACCORDING to [1], global internet traffic has increased
substantially, primarily due to the growing video usage,

which now accounts for 65% of internet traffic. In addition, the
rapid development of Ultra-High Definition (UHD) and Virtual
Reality (VR) makes it critical to design more efficient video
compression codecs. For this purpose, the latest video coding
standard VVC has been finalized in 2020. In comparison to its
predecessor, HEVC, its efficiency of inter coding is boosted by
about 50% in terms of BD-rate at the cost of 10 times higher
complexity [2]. The substantial complexity of VVC impedes
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its direct implementation in real-time applications such as TV
broadcasting. Apart from multiple newly added inter coding
tools [3]–[5], a novel partition structure introduced in VVC,
called QTMT [6], is the main contributor to this complexity
surge. In particular, it has been observed in [7] that the VVC
Test Model (VTM) encoder, which is an implementation of the
VVC codec, dedicates 97% of its encoding time to searching
for the optimal partition. Consequently, fast partitioning meth-
ods emerge as the most promising approaches to speed up the
whole VVC encoding process.

A. Partitioning Acceleration for VVC

1) Fast Intra Partitioning Methods

Numerous works achieve an important acceleration of intra-
frame partitioning in the All-Intra (AI) encoding configuration.
These approaches fall primarily into two categories: heuristic-
based methods and machine learning-based methods.

Some heuristic-based methods are built upon pixel-wise
statistics, such as gradients [8]–[10] and variances [8, 10]. To
simplify the partitioning process, other heuristic methods reuse
some data generated during the encoding process, such as
Rate-Distortion cost (RD-cost) of Coding Unit (CU) encoding
[11], coding tool decisions [12], best split type, and the intra
mode of sub-CUs [13].

Machine learning-based methods utilize CNN or Decision
Tree (DT) models to expedite intra partitioning. In [14]–[16],
a CNN model is trained to predict the split boundaries inside
CTU partitions. In [17], Feng et al. propose a fast partitioning
method by predicting a QT depth map, multiple MT depth
maps, and multiple MT direction maps with CNN. Regarding
the DT-based approach, various Light Gradient Boosting Ma-
chine (LGBM) classifiers are separately trained for different
CU sizes to predict the possible splits, as demonstrated in [18].

2) Fast Inter Partitioning Methods

Fewer contributions of fast inter partitioning methods have
been proposed for VVC. Due to the fact that the inter coding
consists of predicting pixels of current frame depending on
previously encoded reference frames, encoding errors resulting
from the use of fast coding methods are propagated and
accumulated between frames. Therefore, the acceleration of
inter partitioning is a more challenging task compared to that
of intra partitioning. Nevertheless, the acceleration of inter-
frame coding is key to speeding up the overall encoding
process, especially in RandomAccess (RA) and Low-Delay
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(LD) configurations. These configurations are employed more
widely than the AI configuration in scenarios such as broad-
casting and streaming.

Generally, fast partitioning approaches aim to reduce the
search space of potential partitions. Therefore, accurately pre-
dicting the subset of partitions is of crucial importance. Heuris-
tic methods proposed for fast intra partitioning of VVC [8, 13]
heavily depend on handcrafted features to determine whether
to check a partition. These methods are fast and simple to
implement but lack accuracy for two reasons. Firstly, the
features are computed locally on the CU and/or sub-CUs,
which fails to provide a synthesized view of the entire CTU.
Secondly, these features, including variances, gradients, and
coding information, are low dimensional and do not adequately
capture the complexity of CTU.

One approach to improve the accuracy of partition pre-
diction involves increasing the dimension of the extracted
features. This is the case with the methods based on Random
Forest (RF) [19] or DT [20], which use over 20 features from
a given CU and its sub-CUs. As a result, decisions made by
these methods remain confined to the local context of CU,
without considering the entirety of CTU. Rather than relying
on local information, a more effective selection of subsets of
partitions should be based on global features computed on the
entire CTU. This can be accomplished through the utilization
of CNN-based methods.

Several approaches [21]–[23] use CNN to partially ac-
celerate the partition search process. For instance, in [21],
Pan et al. propose a multi-branch CNN to perform a binary
classification of the “Partition” or “Non-partition” at the CU
level. In [22], the split type at the CTU level is predicted,
whereas the partitions of its sub-CUs are not determined. Liu
et al. in [23] employ a CNN to estimate an 8x8 grid map
of QT depth, which is used to discard a portion of the MT
splits. These methods cover only a part of the partition search
space, while the partition search is conducted exhaustively
on the remainder. These methods could be referred as partial
partitioning acceleration methods by CNN.

A complete partitioning acceleration of inter coding by
CNN is proposed in [15]. A vector containing probabilities of
the existence of split boundaries in the partition is predicted
similarly to [24]. This method is fast in the sense that a single
vector is computed for each CTU. Nevertheless, it is observed
in [24], that the predictions are more accurate at higher levels
of the partitioning tree. Hence, they propose improving the
decisions by adding 16 trained DTs to process the CNN output,
introducing additional complexity to the method.

B. Proposed Method

In the MT partitioning, both binary and ternary (with sub-
CUs of two different sizes) splits are available. Consequently,
CUs at a specific depth in the tree do not correspond to the
same size and shape, introducing dependence between the MT
splits along the partition path. This dependence partly explains
the decrease in partition prediction accuracy as the depth of
the partitioning tree increases, as observed in recent studies
[15, 24] presented in the previous section.

More precisely, since the size and shape of a CU depend
not only on its depth in the tree but also on consecutive
MT splits, depth alone is insufficient for defining a partition.
Therefore, we propose making decisions on MT partitioning
in a hierarchical manner, considering their dependence on the
partition path. We also introduce a one-shot approach for QT
partitioning which precedes MT partitioning, since there is a
one-to-one correspondence between the QT depth and the CU
size at that particular depth.

Hence, our overall proposition involves predicting the par-
tition path, which includes a one-shot prediction for the QT
partitioning, followed by a hierarchical prediction for the MT
partitioning. Additionally, to further improve the accuracy of
partition prediction, we suggest basing the partition decision
not only on pixel values and residual values but also on motion
vector fields, as these fields exhibit a strong correlation with
partitioning [19].

Our two main contributions are as follows:
• We propose a novel partition-path-based representation

of the QTMT partition at the CTU level as a map of QT
depth plus three maps of MT split well adapted to the
sophisticated partitioning scheme in VVC.

• We design a U-Net-based CNN model taking multi-scale
fields of motion vectors as input to effectively predict
QT depth map as well as split decisions at different MT
levels.

We also have other contributions such as:
• We build MVF-Inter1, a large scale dataset for inter

QTMT partition of VVC, which could facilitate the
research in this field.

• We propose a fine tuned loss function for this complex
multi-branch multi-class classification problem.

• We develop a fast partition scheme effectively exploiting
the prediction of a CNN model in a way that the most
possible splits are determined at each partition level.

• We design a specific threshold-based selection approach
to match with the partition scheme, which allows us to
realize a large range of trade-offs between complexity
and compression efficiency.

The remainder of this paper is organized as follows. In
Section II, we provide an overview of QTMT partitioning
scheme in VVC, including the concept of the partition path.
The motivation and detailed description for our proposed
representation of the QTMT partition are presented in Section
III. In Section IV, the structure of the proposed CNN model is
illustrated. We give a detailed description of the partitioning
acceleration algorithm in Section V. The loss function of CNN
and the dataset generation process are described in Section VI.
In section VII, the evaluation of the prediction accuracy of

1Our dataset MVF-Inter is available at https://1drv.ms/f/s!
Aoi4nbmFu71Hgx9FJphdskXfgIVo?e=fXrs0o

https://1drv.ms/f/s!Aoi4nbmFu71Hgx9FJphdskXfgIVo?e=fXrs0o 
https://1drv.ms/f/s!Aoi4nbmFu71Hgx9FJphdskXfgIVo?e=fXrs0o 
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our CNN model is carried out. Furthermore, we compare our
result with the state-of-the-art of RF-based methods and CNN-
based methods, respectively. The complexity analysis of our
method is also included in this section. Finally Section VIII
concludes the paper. Our source code is available at https:
//github.com/Simon123123/MSMVF VVC TIP2023.git.

II. OVERVIEW OF PARTITIONING STRUCTURE IN VVC
A. QTMT Partitioning

The partitioning of VVC is done in a top-to-bottom manner.
Starting from CTU, the encoder applies possible split types
recursively on CU at each level of the partitioning tree, in order
to find the partition which best exploits spatial and temporal
redundancy. The QTMT partitioning scheme in VVC consists
in splitting the CU using either a QT split or a MT split. For
the MT split, four split types are introduced: Horizontal Binary
Tree (HBT) split, Vertical Binary Tree (VBT) split, Horizontal
Ternary Tree (HTT) split and Vertical Ternary Tree (VTT) as
illustrated in Figure 1.

Non-Split VBT Split QT SplitHBT Split VTT Split HTT Split

Fig. 1: Different split types in VVC.

Based on the QTMT partitioning scheme, dimensions of
the final encoded CU could range from 128×128 to 4×4 [6]
including squared and rectangular CUs of 32 different sizes in
the RA configuration with the CTU size of 128x128. Figure
2, QTMT can achieve fine partitioning adapted to the local
frame texture.

Fig. 2: Example of a partitioned frame in VVC. [8]

A worth-noting characteristic of QTMT partitioning is that
the available split types depend on CU sizes. Figure 3 presents
the number of available split types including No Split (NS) per
CU size for luma samples. The number of split options varies
from 1 to 6 for different sizes of CU, making the partition
acceleration at the CU level more complicated. Except for the
CU size restrictions on available split types, VVC implements
various shortcuts [25], including speed-up rules based on
content gradients and QT search restrictions estimated on
neighboring CUs, etc.

The partitioning is executed at CTU level with dual tree
allowing separated partitioning tree for luma and chroma. Our

algorithm only accelerates the luma partitioning search using
luma samples, and the resulting luma partitioning tree is then
applied to the chroma components.

Fig. 3: Number of split types per CU in VVC for Luma.

B. Partition Path

In this work, we introduce the concept of partition path
to depict the partition of a CU. The partition path refers to
the sequence of splits applied to obtain a CU during the
partitioning. In the RDO process of partitioning, numerous
partition paths included in the partition search space are
checked and the optimal one leading to the final partition is
selected. Figure 4 illustrates a simplified tree representation
showing all possible partition paths checked for a CTU. The
red arrows indicate the selected partition path with the lowest
RD-cost [26], while the blue arrows represent other paths that
have been tested by RDO, but were not selected.

Specifically, within the QTMT partition, it is important to
note that QT splits are prohibited for the child nodes of a MT
split. Consequently, the search for optimal partition path in
VVC can be conceptualized as a sequential two-step decision-
making process, comprising a sequence of QT splits followed
by a series of MT splits.

Fig. 4: Example of partition paths.

III. NOVEL REPRESENTATION OF QTMT PARTITION

Based on the QTMT partitioning structure and the partition
path of VVC presented in the previous section, we introduce

https://github.com/Simon123123/MSMVF_VVC_TIP2023.git
https://github.com/Simon123123/MSMVF_VVC_TIP2023.git
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in this section a novel representation of QTMT partition by
partition path. In III-A, we explain the motivation for this new
representation. The partition path representation is illustrated
in III-B.

A. Motivation

Previous partition representations at CTU level have typ-
ically used binary vectors to depict split boundaries. In
[14, 15, 24], the authors intend to predict the split boundary
of each 4x4 sub-block in CTU. Lately, Wu et al. improve this
representation in [16] by proposing hierarchical boundaries.
This adaptation is designed to better align with the QTMT par-
tition pattern. In this work, binary labels for split boundaries
of varying lengths are predicted. Collectively, these methods
provide a geometric representation of the partition.

The limitations of the geometric representation mainly lie
in two aspects. Firstly, it is an implicit representation of
the partitioning process, requiring conversions from boundary
vectors to split decisions. In the case of [14], conversions
are carried out by computing the average probability at the
location of the specific split. [15] and [24] convert boundary
vectors to split decisions by DT models separately trained for
different CU sizes. Secondly, different partition paths could be
deduced from a particular partition presented in a geometric
way. For example, as demonstrated in Figure 5, the partition
defined by the split boundaries can lead to three distinct
partition paths. These partition paths correspond to different
coding performances and are individually tested in the RDO
process. This multiplicity of partition paths of the geometric
representation limits the acceleration potential of the method.

Fig. 5: Possible partition paths for a final partition given by split
boundaries

To address the above limitations, we introduced a novel
representation based on the partition path. Our representation
comprises the QT depth map and the MT split maps. Firstly,
the split decisions at each depth can be directly deduced from
either the QT depth map or the split map. This eliminates
the need for decision trees, reducing method overhead, and
simplifying implementation. Secondly, it corresponds to a
unique partition path, maximizing the potential for complexity
reduction.

B. QT Depth Map and MT Split Maps

Considering that the maximum number of QT splits and MT
splits is typically set to 4 and 3 in VTM, any partition can be
effectively described by a QT depth map (i.e. QTdepthMap)
along with three MT split maps (i.e. MTsplitMap) in se-
quence. Each element within QTdepthMap and MTsplitMap

corresponds to an 8x8 and 4x4 area, which aligns with the
dimensions of the smallest sub-CUs for the QT split and the
MT split in VTM.

A detailed example of our partition representation is shown
in Figure 6. To keep it simple and without loss of generality,
we represent this example for a CTU size of 64×64. In this
figure, (a) shows an instance of QTMT partition with its
corresponding tree representation shown in (b). (c)-(f) illus-
trate the QTdepthMap and MTsplitMaps generated from this
partition. Given that the CTU size in this example is 64x64,
the sizes of QTdepthMap and MTsplitMap are 8x8 and 16x16,
respectively. The QTdepthMap in (c) consists of QT depth
values ranging from 0 to 4, while each element in MTsplitMap
in (d)-(f) represents the split decision among five options:
NS, HBT, VBT, HTT and VTT. This representation depicts
a distinct partition path for every CU within the partition. To
provide an example, consider the CU highlighted in the green
circle in Figure 6. Its partition path can be expressed as three
QT splits (QT depth 3), followed by a HBT split and two NS
decisions.

IV. CNN-BASED PREDICTION OF PARTITION PATH

Predicting the optimal partition is equivalent to predicting
the optimal partition path. In VTM, the size of CTU is set to
128x128 by default, consequently yielding QTdepthMap and
MTsplitMap dimensions of 16x16 and 32x32, respectively.
The representation of partition path can be predicted by a
multi-branch CNN, where one branch infers the QTdepthMap
of regression values with dimension 16x16x1, while the other
three branches produce the MTsplitMap. Each element of MT-
splitMap is classified into one of five classes, corresponding to
five split types, resulting in three MT outputs with dimensions
of 32x32x5. We have handled the classification of MT splits
as an image segmentation problem based on 4x4 sub-blocks.
Accordingly, we adopted the classical U-Net structure [27] to
design our CNN model to address this segmentation-like task.

In this section, the U-Net structure is briefly introduced.
Then we present the structure of the proposed CNN in Section
IV-B. Afterwards, we list its input features and explain the
reasons for choosing them in Section IV-C.

A. U-Net

The U-Net structure is derived from Fully Convolutional
Network (FCN) [28]. It consists of an encoder part which is
composed of a sequence of convolutional layers plus max-
pooling layers. Then this part is followed by a decoder part
in which the maxpooling layers are replaced by upsampling
layers. In addition, skip connections concatenate feature maps
from the encoder and decoder with the same dimension. The
U-Net and its variations have been widely applied to image
segmentation tasks.

B. MS-MVF-CNN Structure

The CNN structure proposed in this paper, named Multi-
Scale Motion Vector Field CNN (MS-MVF-CNN), is depicted
in Figure 7. The proposed CNN has 7 inputs and 4 outputs.
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Fig. 6: Example of QTMT partition, tree representation, QTdepthMap and MTsplitMaps of CTU size of 64x64

After two convolutional layers with stride, the tensor of Input 1
is downsampled to dimension 32x32x8 and then concatenated
with the Input 2. The merged input is then fed to the U-
Net feature extractor demonstrated in Figure 8. Regarding
the design of this module, we are referring to the classical
structure of U-Net depicted in [27]. Specifically, we con-
catenate the upsampled feature map in the decoder part of
U-Net, the feature map copied from the encoder part with
the motion vector field of the same scale. At the decoding
part, the feature map is gradually expanded and merged with
normalized motion field of 2x2x6, 4x4x6, 8x8x6, 16x16x6 and
32x32x6. As a result, the U-Net feature extractor outputs a
feature map of dimension 32x32x8, combining pixels features
with motion estimation features.

Since the split at each level depends on previous splits,
we employ a hierarchical multi-branch prediction mechanism.
QTdepthMap is predicted after shrinking the features extracted
from U-Net by four convolutional layers. For MT branches,
we designed the MT branch module presented in Figure 8.
Two inputs of this module are the extracted features of U-
Net and outputs from previous partition levels. We utilize the
asymmetric kernel structure to process the extracted features.
This structure is originally proposed by [29] in HEVC to
pay attention to near-horizontal and near-vertical textures for
predicting split decision of intra coding by CNN. We adopt
this structure to exploit the horizontal and vertical information
contained in Multi-Scale Motion Vector Field (MS-MVF). The
MT branch module contains branches of kernel size MxN,
LxL, and NxM. The values of (M, N, L) are set as (5, 7,
9) for branch MT0, (3, 5, 7) for branch MT1, and (1, 3, 3)
for branch MT2. On deeper MT levels, splits are made on
smaller CUs. Thus, smaller kernel sizes are applied to extract
finer features. After the asymmetric kernels, the feature map
is then concatenated with outputs from previous levels. In the

end, the merged feature maps are given to two residual blocks
[30] before yielding classification results of MT branches. No
activation is applied to the fully connected output layer of the
QT depth branch. The output layer of the MT branch is with
softmax activation.

C. Input Features

This network structure takes three different types of input.
The involved inputs are presented below:

1) Original and Residual CTU

In Figure 7, Input 1, with dimensions of 128x128x2, is created
by merging the original CTU with the residual CTU. The
original luma pixels carry the texture details of the CTU, while
the residual CTU is generated through motion compensation
of the original CTU based on the nearest frame.

Several studies [21, 22, 31] have adopted a method in which
both the original CTU values and the residual of CTU are
fed to a CNN. Combining the original and residual values
as input allows CNN to assess the similarity between current
CTU and reference CTU. This combined input offers features
that reflect the temporal correlation between frames which is
a crucial factor in inter partition prediction.

2) QP and Temporal ID

The Input 2, as illustrated in Figure 7, has dimensions of
32×32×2, consisting of two separate 32x32 matrices. These
matrices are assigned specific values: one holds the Quan-
tization Parameter (QP) value, while the other contains the
temporal identifier. This temporal identifier in VVC, similar
to its usage in HEVC, signifies a picture’s position within a
hierarchical temporal prediction structure, controlling temporal
scalability [32].
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Fig. 7: Multi-Scale Motion Vector Field CNN. The vector above Resblock and Conv2D represents (kernel size, number of filters, stride).

Fig. 8: U-Net feature extractor and MT branch module

We specifically utilize the QP value and temporal identifier
as input features since inter partitioning depends on them. In
essence, a higher temporal layer identifier or a lower QP value
tends to result in finer partitions, as outlined in [22]. Instead
of developing separate models for each parameter instance,
our approach focuses on training a model with adaptability to
varying values of QP and temporal identifier.

3) Multi-Scale Motion Vector Field

In this paper, we have introduced a CNN model based on
a novel input feature called MS-MVF. Our MS-MVF at five

scales is presented as Input 3-7 in Figure 8. To compute MS-
MVF, we divide the 128x128 CTU into multiple scale sub-
blocks ranging from 4x4 pixels to 64x64 pixels, and perform
motion estimation on these sub-blocks. Each motion vector of
sub-block comprises a vertical and horizontal motion value,
along with the associated Sum of Absolute Differences (SAD)
cost value as the third element. By concatenating elements
pointing to reference frame of L0 with those of L1, each sub-
block corresponds to 6 elements in the motion vector field.
For example, the motion vector field input for 8x8-pixel scale
has dimensions of 16x16x6.

A significant challenge in inter partition prediction is the
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large motion search space, which spans up to 6 regions
of 384x384 pixels across different reference frames in the
RAGOP32 configuration. State-of-the-art methods typically
employ motion fields or pixels from reference frames as
input features for machine learning models. Notably, in [19]
and [21], a crucial feature used is the motion field, which
comprises motion vectors calculated for each 4x4 sub-block
referring to the nearest frame. As mentioned in [19], this
motion field is strongly correlated with the optimal partition.
In a different approach, Tissier et al. in [15] opt to utilize two
reference CTUs in the nearest frames.

The choice of using MS-MVF as the CNN input, instead
of motion fields and reference pixels, is based on the fol-
lowing reasons. First, the MS-MVF contains crucial motion
information for the current CTU, which is essential for both
inter prediction and inter partitioning. This information can be
interpreted more effectively by the CNN model compared to
using reference pixels as CNN input. Second, the multi-scale
nature of MS-MVF aligns well with the multi-level structure of
U-Net and can leverage this structure effectively. Essentially,
MS-MVF represents motion features at various resolutions,
allowing for the combination with features extracted from
CTU pixels at the same resolution scale.

To demonstrate the effectiveness of our MS-MVF input,
we conducted an experiment involving the training of two
CNN models. The only distinction between these models
is their input: the first model, PIX-CNN, takes the pixels
of two reference CTUs as input, while the second model,
MVF-CNN, utilizes our proposed MS-MVF as input. Both
models share the same architecture as in Figure 7. The training
dataset comprises 250k samples randomly selected from the
RAGOP32 encoding of 200 sequences with a resolution of
540p from [33]. Performance evaluations in Figure 9 are based
on Class C sequences of Common Test Condition (CTC). The
results consistently show that MVF-CNN outperforms PIX-
CNN at all four data points, which justifies the advantages of
using the MS-MVF input over pixel input.
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Fig. 9: Comparison of performances between PIX-CNN and MVF-
CNN.

Based on our evaluation conducted on the first 64 frames
of all CTC sequences using the RAGOP32 configuration, the
computation of MS-MVF for each CTU consumes, on average,
a mere 0.52% of the encoding time in VTM10. Importantly,
the generation of MS-MVF introduces only minimal encoding
overhead, making it a task that can be readily preprocessed or
parallelized.

V. PROPOSED CNN-BASED ACCELERATION METHOD

After the prediction by our trained CNN model, we obtain
one QTdepthMap and three MTsplitMaps per CTU. The
predicted QTdepthMap is composed of floating-point values.
The predicted MTsplitMaps comprise probabilities of five split
types for each 4x4 sub-block within the CTU. In this section,
we elucidate the post-processing of the CNN prediction, with
the aim of achieving a wide range of acceleration-loss trade-
off.

Algorithm 1 MT splits early skipping
Input:
QTdepthMap; MTsplitMap; Thm; QTdepthcur,
CU; SizeCU; PosCU

Output:
SkipMT: Boolean to decide whether to skip MT split
types or not.
CandSplit: Candidate list of splits for RDO check

1: Compute the average QTdepthpred based on SizeCU, PosCU
and QTdepthMap

2: if round(QTdepthpred) > QTdepthcur and
QT is possible for current CU then

3: SkipMT = True
4: CandSplit = {NS, QT}
5: else
6: SkipMT = False
7: CandSplit = {NS}
8: for sp in {BTH, BTV, TTH, TTV} do
9: Compute average Probasp based on SizeCU, PosCU

and MTsplitMap
10: if Probasp > Thm then
11: CandSplit append split sp
12: end if
13: end for
14: end if

Decision errors at low partitioning depth can result in
large loss of BD-rate. Based on the predictions of our CNN,
selecting the best single partition path, equivalent to choosing
the best split at each MT level, will not be optimal or scalable.
Our approach involves generating candidate lists at each level,
which means that multiple partition paths are chosen for the
RDO test. This approach of creating candidate lists at various
levels is designed to achieve satisfying trade-off between
acceleration and coding loss while assuring the scalabilty of
method.

The acceleration algorithm is precisely described in Algo-
rithm 1 and Figure 10. We introduce two parameters Thm and
QTskip to regulate the acceleration-loss trade-off. Specifically,
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Thm is the threshold for the split probability. QTskip represents
whether we should accelerate RDO of QT splits or not.
Increasing the Thm value and setting QTskip to true will lead
to greater acceleration at the cost of increased coding loss.

Regarding the algorithm applied at the CU level, Algorithm.
1 is first executed. This algorithm produces two outputs:
the SkipMT variable and the CandSplit list, both of which
are subsequently utilized in the flowchart in Figure 10. To
start with, the mean QTdepthpred of current CU is calculated
based on the corresponding area in Quad Tree depth map
(QTdepthMap). If the rounded QTdepthpred is larger than the
QT depth of the CU and QT split is feasible, the current
CU should be split by QT. Consequently, all MT splits are
excluded from the CandSplit list and SkipMT is set to true.
Otherwise, the mean probability of each available split is
computed on the corresponding MTsplitMap in a similar way
to that of the QTdepth. Then CandSplit is filled by splits with
Probasp larger than the threshold Thm. In this case, the value
assigned to SkipMT is False.

In the flowchart of Figure 10, if the SkipMT is true after
the execution of Algorithm 1, we directly check the CandSplit.
In this scenario, the encoder conducts RDO of CU and splits
CU with QT because CandSplit contains only NS and QT. If
SkipMT is false, then we will verify if NS is the only choice
in CandList. If this is the case, we will add the MT split
with the highest probability to the list. Next, if QT split is
not allowed for CU due to CU shape or shortcuts, we go
directly to the check of CandSplit. If the QT split is feasible,
we refer to QTskip to determine whether to add QT to the
CandList or not. Setting the QTskip to true signifies that we
will always check QT if possible. This is for rectifying the
potential error of predicting a QTdepthpred value smaller than
the actual ground truth value. However, it comes at the expense
of sacrificing some acceleration. Finally, we execute RDO on
CU and partition it by split types in the CandSplit list. The
partition search then repeats for the next CU, and the algorithm
described above is applied anew.

Our inter partitioning acceleration method is designed on
top of the partitioning algorithm of VTM which performs a
nearly exhaustive search on possible partition paths of a CTU,
except that it incorporates a handful of handcrafted conditional
shortcuts as mentioned in Section II. Therefore, this work can
be considered as a CNN-based shortcut to reduce the search
space of partition paths.

VI. TRAINING OF MS-MVF-CNN

To effectively train our CNN model, we have designed a
hybrid loss function and created a large-scale dataset named
MVF-Inter1. First, we will explain how this loss function is
determined in Section VI-A. Then Section VI-B describes
training details and the generation of dataset.

A. Loss Function

The outputs of MS-MVF-CNN contain one regression out-
put as well as three classification outputs. Therefore, a hybrid
loss function is developed in our case. We choose the category

Fig. 10: Flowchart of acceleration algorithm

cross-entropy for classification loss and mean square error for
regression loss as follows:

L = a
1

nq

nq∑
i=1

(di−d̂i)
2−(1−a)(

nb∑
b=1

nm∑
i=1

ns∑
s=1

wb,syb,i,s log(ŷb,i,s))

(1)
Here, we have nq = 256, nb = 3, nm = 1024 and ns

= 5, representing the number of elements in QTdepthMap,
the number of MT branches, the number of elements in
MTsplitMap, and the number of split types, respectively. In
this equation, di denotes the ground-truth QT depth value,
while d̂i represents the predicted QT depth value. Additionally,
ŷb,i,s is used to denote the predicted probability of split type s
for the i-th element of the MT decision map at the b-th MT
branch. Similarly, yb,i,s signifies the ground-truth label for the
same case. Notably, we introduce a parameter a, which falls
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within the range [0, 1], in Equation 1 to fine-tune the relative
weights of the regression loss and classification loss.

The split types are distributed unbalancedly at different MT
depths as illustrated in Figure 11. To counteract this imbalance,
we introduce class weights for split type s on MT branch b,
denoted as wb,s. The definition of these weights is as follows:

wb,s =
λspb,s=ns

pb,s
(2)

where pb,s represents the percentage of split type s within
MT branch b. For each branch b,

pb,s=ns
pb,s

can be interpreted
as the inverse percentage of the split type s normalized by
the inverse percentage of the NS split. In [6], a series of tests
were performed to evaluate the coding gain and increase of
complexity associated with the Binary Tree (BT) and Ternary-
type Tree (TT) splits individually as demonstrated in Table I.

TABLE I: Settings of split type in VTM9 under RA [6]

BT split TT split BD-rate Encoding Time
Anchor Setting X X - -

Setting 1 D X -8.26% 337%
Setting 2 X D -10.22% 732%

When comparing Setting 1 and Setting 2 to the anchor
configuration, it’s observed that Setting 1 and Setting 2 exhibit
similar BD-rate gains, but the encoding time in Setting 2
is twice that of Setting 1. These tests suggest that BT split
performs better in terms of the trade-off between complexity
and coding gain compared to TT split. Thus, placing greater
importance on the prediction of the BT split can result in
a better acceleration-loss trade-off. To achieve this, the ratio
between the proportion of NS and proportion of split s is
computed for MT branch b. The class weight wb,s in Equation
2 is formulated as the product of this ratio and λs which is
another weight added to prioritize the split type s.

After fine-tuning the model, we find that the best perfor-
mance is achieved with a value of 0.8 for a and λs set to 2
for BT splits and 1 for TT splits and NS.

Fig. 11: Distribution of split types for MT0, MT1, MT2

B. Dataset Generation and Training Details

Constructing a large scale inter partition dataset is more
challenging than that of intra partition because the former
needs to encode a substantial number of video sequences,
while the latter could be done by encoding images. To the

best of our knowledge, there exists no prior work focused on
developing an inter partition dataset.

Our MVF-Inter1 dataset involved the encoding of 800
sequences from [33] and an additional 28 sequences of 600
frames in 720p resolution extracted from [34]. Sequences
of [33] cover resolutions of 240p, 540p, 1080p, and 4k,
with 200 videos of 64 frames for each resolution. We have
encoded all these videos with the VTM10 [35] encoder in
the RAGOP32 configuration with QP 22, 27, 32, and 37.
We randomly selected a total of 820k CTU partition samples,
equally distributed per resolution and QP, with 120k samples
reserved as a validation set.

Each sample of our dataset contains the following compo-
nents of each CTU: pixel values, residual values, motion vector
fields at five scales, QP value, temporal ID value, QTdepthMap
with depths ranging from 0 to 4, and MTsplitMaps for MT0,
MT1, and MT2. MTsplitMap labels are encoded as VTT (0),
VBT (1), NS (2), HBT (3), and HTT (4).

In terms of training details, we employed the Adam opti-
mizer [36] to train the model. The initial learning rate was
set to 1e−3 and was exponentially decreased by 3% every 5
epochs. The batch size set for training is 400.

VII. EXPERIMENTAL RESULTS AND ANALYSES

In this section, we present the results of our experiments
and provide an in-depth analysis of the results. To begin, in
Section VII-A, we assess the precision of the prediction of
our CNN model. Subsequently, comparisons with the RF and
CNN based approaches are made in Section VII-B. Finally,
the complexity analysis of our framework is carried out in
Section VII-C.

A. Prediction Accuracy Evaluation

At the CU level, our algorithm can be broken down into
two decisions: the decision of SkipMT and the decision of
CandSplit list. To evaluate the precision of decisions based on
our model’s output, we have performed the encoding where
both the ground truth partitioning and the CNN output were
collected. The analysis is done on the first 64 frames of all
CTC sequences excluding class D with QP 22, 27, 32, 37.
The accuracy of these decisions presented in Table II and
Figure 12 are calculated by averaging four QPs and various
test sequences.

There is no need to make a SkipMT decision on QT depth
4 since the partitioning is forced to proceed to MT splits with
the maximum of QT depth reached. The accuracy of SkipMT
decision is independently measured on QT depth from 0 to 3.
If the current CU requires further splitting of QT and SkipMT
is equal to False, then this decision of SkipMT is classified
as False Negative (FN). The proportion of True Positives
(TP), FN, True Negatives (TN), False Positives (FP) and their
corresponding Precision (Prec) and Recall (Rec) are shown
in Table II. Precision, recall, and F1 score are calculated as
follows:

PrecisionQTdepth =
TPQTdepth

TPQTdepth + FPQTdepth
(3)
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RecallQTdepth =
TPQTdepth

TPQTdepth + FNQTdepth
(4)

F1scoreQTdepth = 2
PrecisionQTdepthRecallQTdepth

PrecisionQTdepth +RecallQTdepth
(5)

Generally, our model exhibits strong performance at QT
depths ranging from 0 to 2, as depicted in Table II. Both
precision and F1 score decrease as QT depth increases. At
QT depth 3, the precision and F1 score drop to 25% and 40%,
respectively, suggesting that the SkipMT decision at this level
is less reliable. These observations could be explained by two
reasons:

First of all, the scale of decision-making diminishes as the
QT depth increases. More explicitly, the SkipMT decision at
QT depth 0 is made at the CTU scale by computing the
mean of 256 values from the QTdepthMap. Nevertheless, the
decision at QT depth 3 relies only on 4 values from the
QTdepthMap within the 16x16 CU. Consequently, decisions
at smaller scales are less resilient to incorrectly predicted
QTdepthMap values, resulting in lower overall accuracy at
higher QT depths.

Secondly, decisions at higher QT depths are noticeably more
imbalanced than those at lower QT depths. Positive cases of
ground truth at QT depth 3 represent only 0.02% , while
the proportion of positive cases is 49.65% at QT depth 0.
In conclusion, the model is trained in such a way that it tends
to make negative SkipMT decision at larger QT depths. This
explains the decline in precision as the QT depth increases.

TABLE II: Table of confusion for SkipMt (Unit: %)

TP FN TN FP Prec Rec F1score
QT depth 0 41.84 7.81 45.83 4.52 90.3 84.3 87.2
QT depth 1 19.53 0.58 72.57 7.32 72.7 97.1 83.1
QT depth 2 2.69 0.08 94.67 2.57 51.1 97.1 67.0
QT depth 3 0.02 0 99.92 0.06 25.0 100.0 40.0

In Figure 12, the accuracy of the CandSplit list decision is
determined by whether the list contains the ground truth split
at the MT level. We calculate and draw separate accuracy
curves for MT0, MT1 and MT2 separately by varying the
threshold Thm. As Thm increases, the size of the CandSplit list
decreases, leading to decreasing precision. Once Thm reaches
a certain value, the accuracy stabilizes because CandList is
constant, containing only the MT split type with the highest
probability and NS. It’s worth noting that the minimum
accuracy of the MT increases with the MT depth. This is
mainly due to the fact that NS is more frequent at larger MT
depths, as illustrated in the pie chart in Figure 11. Since our
CandSplit list consistently includes NS, the accuracy tends to
be relatively higher at larger MT depths.

In general, our model achieves a satisfactory F1 score for
QT depths 0, 1 and 2 regarding the SkipMT decision. As
for the CandSplit list decision, our algorithm maintains an
accuracy exceeding 65% while adjusting the value of Thm at
various MT levels. These performance evaluations justifies the
high accuracy of the decisions made by our method during the
partition search process in VVC.

Fig. 12: Curves of accuracy and Thm for MT0, MT1, MT2

B. Comparison with the State of the Art

The proposed method has been implemented in the
VTM10.0 encoder using the Frugally deep library [37] for
CPU-based inference in real time. To showcase the effec-
tiveness of our method in the latest version of VTM, we
conducted experiments using VTM21, as represented by the
black curve in Figure 13. Encodings of CTC sequences are
performed on a Linux machine with Intel Xeon E5-2697 v4 in
a single-threaded manner. These experiments were conducted
on the first 64 frames of CTC sequences with the RAGOP32
configuration on four QPs values of 22, 27, 32, 37.

Two metrics were used to assess the performance: BD-rate
[38] and Time Saving (TS). The formula for computing TS is
provided in Equation 6. Here, TTest denotes the encoding time
of the proposed method, while TVTM represents the encoding
time of the original VTM10 under the same conditions. The
average BD-rate loss and Time Saving (TS) are computed as
the arithmetic mean and geometric mean, respectively, on four
QPs values over CTC sequences as defined in [39]. In addition,
sequences of class D are excluded when computing the overall
average performance.

TS =
1

4

∑
q∈{22,27,32,37}

TV TM (q)− T Test(q)

TV TM (q)
(6)

The acceleration performances obtained from the state-of-
the-art RF-based methods could not be directly compared with
our performance. There are two main reasons for this. First
of all, the results of [19] and [20] are based on VTM5.0 and
VTM8.0, respectively. The differences of encoder complexity
among various VTM versions are not negligible as highlighted
in [40], which makes it less valid to directly compare our
performances with theirs. Secondly, the training dataset was
generated from a subset of CTC sequences, and the results
were not obtained from the entire CTC. This approach results
in possible overfitting and reduces the credibility of their
results. As a result, comparing our results obtained on the
entire CTC with their results is not fair.

[20] is an extended and specialized work for VVC based
on [19]. We have reproduced the result of [20] in VTM10
to perform an unbiased comparison between our method
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and RF-based method in [20]. First of all, we created a
non-CTC dataset for training. Table III presents details on
the composition of sequences for the dataset. For the 720p
resolution, sequences are selected from [34] and sequences
for other resolutions are from [33]. In the end, we generated
a large dataset with 3.7e7 samples for the training of 17
Hor/Ver classifiers as well as 2.5e6 samples for the training of
4 QT/MTT classifiers. After generating the dataset, we trained,
pruned and integrated the RF classifiers in VTM10.0. This was
done in a manner consistent with the original article, including
the implementation of the early termination rule for TT 2.

TABLE III: Breakdown of sequences used to train RFs of [20]

Resolution
Number of

videos
240p 480p 720p 1080p 4k

50 13 10 10 5

We reproduce the result of the medium and fast speed preset
of [20] in VTM10. It should be noted that the maximum
MT depth is limited to 2 for the fast preset. We plot the
curve of BD-rate loss and TS of our method by gradually
adjusting the threshold Thm and QTskip to build six settings.
The curves obtained are shown in Figure 13. For example,
the label (T, 0.125) signifies that in this particular setting,
QTskip and Thm are assigned the values True and 0.125,
respectively. Our method can achieve scalable acceleration
varying from 16.5% to 60.2% with BD-rate loss ranging
from 0.44% to 4.59%. Comparing with the fast preset, the
setting (T, 0.175) produces the same acceleration with a 0.84%
lower BD-rate loss. Similarly, the setting (T, 0) reaches the
same BD-rate loss while providing a 17% higher speed-up
compared to the medium preset. In summary, our method
generally outperforms the state-of-the-art RF-based method. It
is worth mentioning that the results in VTM21 are obtained by
implementing our CNN model, which was originally trained
on VTM10. Consequently, it is expected to exhibit reduced
performance compared to the results in VTM10. Nonetheless,
our method remains applicable and effective in the latest
version of VTM.

Regarding CNN-based approaches, we compared our
method with [21] and [15] in Table IV. The VTM version of
[21] is VTM6. Thus we reimplement our method and integrate
our model trained on VTM10 into VTM6 for a fair comparison
within the same context. In Table IV, the reimplementation
in VTM6 labeled as (T, 0, VTM6) reaches a slightly larger
acceleration with only one-third of BD-rate loss compared to
[21]. For [15], their VTM version is the same as ours, allowing
for direct comparisons. Encoding with Thm = 0.125 yields a
40. 6% reduction in the encoding time, which is similar to the
acceleration achieved by the C2 configuration in [15], but with
only half of its BD-rate loss. Furthermore, our method with
Thm set to 0.2 outperformed their C3 configuration, achieving
a 0.52% lower BD-rate loss at the same level of acceleration.
In conclusion, our method consistently outperforms all state-
of-the-art methods.

2The code and dataset of reproduction is available at https://github.com/
Simon123123/vtm10 fast dt inter partition pcs2021.git
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Fig. 13: Comparison of performances between proposed method and
reproduction of [20].

It is important to note that the level of acceleration can
vary depending on different sequence classes (e.g. resolution),
which is consistent with other CNN-based methods. As dis-
cussed in [6], CTUs that exceed the picture boundary are called
partial CTUs. These partial CTUs require a different partition
search scheme compared to regular CTUs. Consequently, the
encoding of partial CTUs are not accelerated since the CNN-
based approaches are not applicable to them. Generally, the
proportion of the frame region occupied by partial CTUs is
larger for lower resolutions, resulting in less acceleration when
fast partitioning approaches are used on smaller resolutions.
This could partially explain the limited acceleration observed
in class D which was excluded from the overall performance
calculation. More specifically, our method tends to perform
better on higher resolutions (e.g. class A and class B) while
achieving less acceleration than state-of-the-art methods on
lower resolutions (e.g. class C, class D and class E). Investi-
gating and improving this aspect could be a focus of future
work.

C. Complexity Analysis

Machine learning-based fast partitioning methods may not
be suitable for alternative implementations of the same codec.
For example, VVenc [41] is a fast implementation of VVC.
In the All Intra configuration, VTM10.0 is reported to be 27
times more complex compared to VVenc with fast preset,
as mentioned in [42]. The overall complexity of the CNN-
based method presented in [17] accounts for only 2.34% of
the encoding time of the VTM10 encoder. However, when this
method is implemented in VVenc without any adjustments, its
overhead increases to about 67% of the encoding time with
the fast preset, which means that this method is not directly
applicable to VVenc. Consequently, it is crucial to develop a
lightweight method to ensure its applicability across different
implementations. Furthermore, lightweight methods do not

https://github.com/Simon123123/vtm10_fast_dt_inter_partition_pcs2021.git 
https://github.com/Simon123123/vtm10_fast_dt_inter_partition_pcs2021.git 
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TABLE IV: Performance of the proposed method in comparison with reference CNN-based methods (Unit: %)

Class Sequence Pan [21] (VTM6) Tissier [15] (C2) Tissier [15] (C3) Ours (T, 0, VTM6) Ours (T, 0.125, VTM10) Ours (T, 0.2, VTM10)
BD-rate TS BD-rate TS BD-rate TS BD-rate TS BD-rate TS BD-rate TS

A
(4

k)

Tango2 4.03 38.56 - - - - 1.35 32.3 1.84 43.7 3.08 57.5
FoodMarket4 1.74 46.12 - - - - 0.75 29.4 0.85 55.1 1.13 53.6

Campfire 3.17 38.23 - - - - 1.49 40.7 1.83 48.5 3.22 63.2
CatRobot1 6.45 36.84 - - - - 1.31 36.5 1.45 42.6 2.67 57.6

DaylightRoad2 5.63 35.47 - - - - 1.57 39.4 2.00 45.6 3.94 57.9
ParkRunning3 2.10 26.45 - - - - 0.99 42.6 0.98 45.9 1.93 59.8

Average 3.85 36.46 1.84 47.7 3.06 59.7 1.25 37.0 1.49 45.3 2.66 58.4

B
(1

08
0p

)

MarketPlace 4.33 33.64 - - - - 0.99 37.6 1.48 46.3 2.78 57.7
RitualDance 3.55 34.17 - - - - 1.75 39.9 1.91 49.4 3.91 61.8

Cactus 5.72 29.36 - - - - 1.05 37.8 1.30 44.8 2.45 58.3
BasketballDrive 3.30 37.28 - - - - 1.34 39.6 1.95 49.7 3.65 63.4

BQTerrace 1.90 20.21 - - - - 0.99 32.6 1.18 39.8 2.23 52.2
Average 3.76 30.27 2.21 46.5 3.09 58.2 1.22 37.5 1.56 46.1 3.00 58.9

C
(4

80
p)

BasketballDrill 2.29 29.23 - - - - 1.04 26.9 1.08 30.3 2.60 39.7
BQMall 2.69 27.48 - - - - 1.20 29.1 1.18 32.2 2.71 39.7

PartyScene 2.22 20.80 - - - - 0.78 31.5 0.86 33.3 2.25 43.3
RaceHorses 3.02 26.39 - - - - 0.96 32.8 1.09 34.6 2.94 45.6

Average 2.56 25.77 3.20 43.1 3.79 53.8 0.99 30.1 1.05 32.6 2.63 42.1

D
(2

40
p)

BasketballPass 1.85 26.97 - - - - 0.76 19.0 0.85 22.2 1.72 25.1
BQSquare 1.61 14.86 - - - - 0.50 17.6 0.54 19.6 1.38 22.5

BlowingBubbles 3.03 22.15 - - - - 0.33 17.2 0.45 18.9 1.12 23.4
RaceHorses 2.92 24.20 - - - - 1.04 22.8 0.85 24.4 2.11 31.2

Average 2.35 21.53 3.02 36.8 3.26 45.2 0.66 19.2 0.67 21.0 1.58 25.6

E
(7

20
p)

FourPeople 2.31 33.77 - - - - 0.95 29.5 0.90 34.3 1.65 41.2
Johnny 3.53 35.22 - - - - 0.93 22.1 1.13 27.6 2.01 32.8

KristenAndSara 2.58 36.50 - - - - 1.00 24.3 1.11 30.3 1.73 36.4
Average 2.81 35.15 1.45 38.7 2.2 49.6 0.96 25.4 1.04 30.8 1.79 36.9

Total average 3.18 30.63 2.33 43.4 3.12 54.3 1.14 33.8 1.34 40.6 2.60 52.2

require parallel execution, enhancing the cost-effectiveness of
such solutions.

TABLE V: Overhead of our method (Unit: %)

240p 480p 720p 1080p 4k Average
CNN 0.23 0.37 0.99 0.90 0.84 0.60

Preprocess 0.24 0.41 1.15 0.81 0.86 0.62

As a result, we conducted a complexity analysis of our
method to compare it with the state of the art. The overhead
of a machine learning-based method typically consists of three
components: preprocessing time, inference time, and postpro-
cessing time. The post-processing of our method is integrated
into the VVC partitioning process and introduces minimal
overhead to the encoding process. However, preprocessing is
necessary to compute the MS-MVF as model input. Table V
provides the complexity of the preprocessing and the inference
of CNN related to the encoding of the anchor VTM10. The last
column corresponds to the geometric average of complexity
for sequences from class A to E (including class D). Based
on experimental results, the CNN inference time on a CPU
accounts for only 0.60% of the total encoding time. Our
approach consumes only 1.21% of the total encoding time,
underscoring its lightweight nature.

Another important metric for evaluating the complexity of
the model is its floating point operations (FLOPs). Our model
has a FLOPs value of 1.12e6. In comparison, the FLOPs of
the model in [43] is approximately 1.1e9 [16]. [16] employs
a pruned ResNet-18 as the backbone with 9e7 FLOPs, and
[15] utilizes the pretrained MobileNetV2 with 3.14e8 FLOPs.
Our model is hundreds of times lighter than these methods.

The lightweight nature of our proposed approach facilitates its
adaptation to faster encoders.

VIII. CONCLUSION

In this study, we propose a machine learning-based method
to accelerate VVC inter partitioning. Our method leverages a
novel representation of the QTMT partition structure based on
partition path, consisting of QTdepthMap and MTsplitMaps.
Our work is structured as follows. Firstly, we have built a
large scale inter partition dataset. Secondly, a novel Unet-
based model that takes MS-MVF as input is trained to predict
the partition paths of CTU. Thirdly, we develop a scalable
acceleration algorithm based on thresholds to utilize the output
of the model. Finally, we speed up the VTM10 encoder under
RAGOP32 configuration by 16.5%∼60.2% with BD-rate loss
of 0.44%∼4.59%. This performance surpasses state-of-the-
art methods in terms of coding efficiency and complexity
trade-off. Notably, our method is among the most lightweight
methods in the field, making it possible to adapt our approach
to faster codecs.

For future work, we intend to investigate how video reso-
lution influences partitioning acceleration, aiming to boost the
speed-up of our method on lower resolutions. Furthermore,
there is still acceleration potential lying in the selection of
inter coding modes at the CU level, as discussed in [44].
An extension of our approach could be the incorporation of
fast inter coding mode selection algorithm into our method to
further accelerate the inter coding process.
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