Frédéric Cuppens

Nora Boulahia-Cuppens

Parameterizing poisoning attacks in federated learning-based intrusion detection

Keywords: Security and privacy → Intrusion detection systems, • Computing methodologies → Cooperation and coordination, Neural networks, • Networks → Network security adversarial attack, data poisoning, backdoor, federated learning, intrusion detection

Federated learning is a promising research direction in network intrusion detection. It enables collaborative training of machine learning models without revealing sensitive data. However, the lack of transparency in federated learning creates a security threat. Since the server cannot ensure the clients' reliability by analyzing their data, malicious clients have the opportunity to insert a backdoor in the model and activate it to evade detection. To maximize their chances of success, adversaries must fine-tune the attack parameters. Here we evaluate the impact of four attack parameters on the effectiveness, stealthiness, consistency, and timing of data poisoning attacks. Our results show that each parameter is decisive for the success of poisoning attacks, provided they are carefully adjusted to avoid damaging the model's accuracy or the data's consistency. Our findings serve as guidelines for the security evaluation of federated learning systems and insights for defense strategies. Our experiments are carried out on the UNSW-NB15 dataset, and their implementation is available in a public code repository.

INTRODUCTION

Intrusion detection is critical in modern networks, especially with increasing security threats. Machine Learning (ML) algorithms improve the performance of intrusion detection systems, allowing the detection of unknown attacks. Since ML models heavily depend on the quantity and quality of training data, multiple entities would benefit from sharing their data to train a better model. However, the sensitive nature of intrusion detection data prevents their sharing, as it engenders security and privacy issues.

Federated Learning (FL) [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] allows multiple entities to train a model collaboratively without sharing data. Each entity (FL client) trains the same model locally on its data and only sends the model updates to the server. The server aggregates all the updates and returns the new model to the clients. After several FL rounds, the global model converges, and every client benefits from it. In this way, FL solves the problem of insufficient data of individual entities without putting their privacy at risk [START_REF] Agrawal | Federated Learning for intrusion detection system: Concepts, challenges and future directions[END_REF].

However, the lack of transparency in FL allows adversaries to interfere with the training through poisoning attacks [START_REF] Arjun | Analyzing Federated Learning through an Adversarial Lens[END_REF]. Indeed, FL is designed to protect the privacy of clients, which prevents the server from analyzing their local data to detect anomalies. Malicious clients take advantage of FL's privacy to alter the model's training in different ways. They can modify their training data (data poisoning) or the update they send to the model (model poisoning) to influence its predictions. The poisoning can be either random or targeted depending on the adversary's objective. In random poisoning, the malicious client confuses the model to prevent it from converging. This attack has visible effects on the model as it prevents the accuracy from increasing. In targeted poisoning, the malicious client introduces false information in the model to produce an adversarial behavior. This attack is more stealthy because the model acts normally until the trigger is activated. Label flipping [START_REF] Biggio | Poisoning attacks against support vector machines[END_REF] and backdoors [START_REF] Gu | BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain[END_REF] are examples of targeted poisoning.

Backdoor attacks are a particularly lethal type of targeted poisoning attacks. They consist of introducing a certain pattern in the training data (called the trigger) and changing the label of this data to a target label. This forces the model to learn an association between the trigger and the target label. In the case of intrusion detection, attackers can associate a certain attribute value with the benign label, thus evading the detection even if the sample is malicious.

This paper applies targeted data poisoning attacks to the FLbased intrusion detection training process. We study four poisoning parameters: (i) the features involved in the poisoning; (ii) the number of features involved; (iii) the number of clients participating in the training; and (iv) the number of malicious clients among them.

We measure the impact of those parameters on four aspects of the attacks: (i) the effectiveness, measured with the rate of successful attacks; (ii) the stealthiness, measured with the performance degradation caused by the attack; (iii) the consistency, based on the data structure of network traffic; and (iv) the timing, in terms of training rounds.

The detailed contributions of this article are the following:

• We demonstrate the feasibility of targeted data poisoning attacks on FL-based intrusion detection models. We propose a detailed methodology to perform backdoor attacks while optimizing efficiency, stealthiness, consistency, and timing. • We study four poisoning parameters and show that each parameter is decisive for the success of poisoning attacks. The remainder of the paper is structured as follows. In section 3, we describe the methodology of the experiments; we present the dataset, its pre-processing, and its poisoning. In section 4, we report the results of the experiments and highlight the main findings. In section 5, we discuss the importance of the findings and their limits. In section 2, we review several previous works and explain their relationship with ours. We finally conclude in section 6 with insights for future research.

RELATED WORK

Researchers have considered FL an efficient and secure method for training intrusion detection models. Preuveneers et al. [START_REF] Preuveneers | Chained Anomaly Detection Models for Federated Learning: An Intrusion Detection Case Study[END_REF] designed a blockchain-based FL intrusion detection that records the updates transparently through the distributed ledger and makes them available to clients for audit purposes. This approach poses privacy issues, as malicious parties can reconstruct training examples from the updates' records [START_REF] Zhu | Deep Leakage from Gradients[END_REF].

Abdul Rahman et al. [START_REF] Abdul Rahman | Internet of Things Intrusion Detection: Centralized, On-Device, or Federated Learning[END_REF] compared three intrusion detection approaches for Internet of Things (IoT): the centralized approach, where a model is trained on the cloud or in closer fog infrastructure; the on-device or self-learning approach, where the IoT device performs the training and inference locally; and the federated learning approach where devices train a model collaboratively. The authors experimented with three different use cases: the first, in which the malicious traffic is distributed per attack type, so each node only sees a single type of attack; the second, where the attack types are equally distributed among the nodes; and the third, where they are randomly distributed. In all three use cases, FL models outperformed the self-learning models and got closer to the centralized approach in terms of accuracy.

Nguyen et al. [START_REF] Duc Nguyen | Poisoning Attacks on Federated Learning-based IoT Intrusion Detection System[END_REF] evaluate the backdoor and main task accuracy of FL intrusion detection in IoT. They analyze the impact of the Poisoned Data Rate (PDR) and Poisoned Model Rate (PMR) as the main poisoning parameters. Their findings are consistent with ours, notably on the proportion of malicious clients needed for a successful poisoning attack. However, their study is limited to the PDR and PMR; it does not include data properties such as the choice and number of trigger features. We fill that gap by quantifying the impact of every feature on the ASR and ACC and combining multiple features. The authors in [START_REF] Duc Nguyen | Poisoning Attacks on Federated Learning-based IoT Intrusion Detection System[END_REF] used a fixed number of clients (IoT devices) due to the limits of their datasets. We extend the experiments on malicious client rates to a range of 10 to 500 clients. Our results show similar patterns for the same proportion of malicious clients.

The defense against poisoning attacks is an active FL research area. Nguyen et al. [START_REF] Duc Nguyen | FLAME: Taming Backdoors in Federated Learning[END_REF] propose a resilient aggregation framework named FLAME to remove the effect of backdoor attacks. The framework is based on differential privacy-based noising, automated model clustering, and model weight clipping. FLAME is tested on IoT intrusion detection, among other tasks. Zhang et al. [START_REF] Zhang | SecFedNIDS: Robust defense for poisoning attack against federated learning-based network intrusion detection system[END_REF] introduce SecFedNIDS, an FL-based network intrusion detection system that is robust to poisoning attacks. They achieve this robustness by detecting poisoned models with unsupervised online learning on low-dimensional representations. They report a 48% accuracy increase under poisoning attacks on UNSW-NB15 [START_REF] Moustafa | UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[END_REF]. Hallaji et al. [START_REF] Hallaji | Label noise analysis meets adversarial training: A defense against label poisoning in federated learning[END_REF] study the label flipping attacks as a noisy label classification problem. They use a generative model to simulate label poisoning attacks and train their model to distinguish label noise. Their FL intrusion detection model is evaluated on two datasets [START_REF] Alshammari | Can encrypted traffic be identified without port numbers, IP addresses and payload inspection? Computer Networks[END_REF][START_REF] Moustafa | UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[END_REF].

METHODOLOGY

To understand how adversaries can improve their poisoning attacks against FL-based intrusion detection models, we design experiments that evaluate the influence of poisoning parameters on the Attack Success Rate (ASR) and the model's test accuracy (ACC). The ASR, described in Equation 1, is the proportion of poisoned attack instances (containing the trigger) that evade detection (classified as benign). The experiments are implemented with the FL library Tensor-Flow Federated1 and executed on Compute Canada's2 infrastructure. The detailed implementation of the experiment is made available for future research on a public code repository 3 .

Dataset and pre-processing

The experiments are carried out on UNSW-NB15 [START_REF] Moustafa | UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[END_REF], an intrusion detection dataset captured in an emulated environment over 31 hours. The dataset contains nine attack families in addition to benign traffic [START_REF] Ring | A survey of network-based intrusion detection data sets[END_REF]. It counts a total of 82,332 instances, 45,332 of which are attacks (55%) and 37,000 are benign (45%). We use the flow-based format with predefined splits for training and test sets.

After one-hot-encoding and min-max normalization, we shuffle the dataset and create 1000 partitions. Each partition contains 82 training examples and corresponds to a single unique client. Since the clients represent disjoint supervision zones, their data do not overlap.

Data Poisoning

At the beginning of each run, a predefined number of participating clients are randomly selected from the 1000 available clients. Next, a predefined number of malicious clients are randomly selected from the participating clients to perform the targeted poisoning.

Our targeted poisoning attack forces the model to learn a backdoor: an association between a predefined pattern in the data (trigger) and a target label. The malicious clients modify their training data to insert the trigger value in the trigger feature as well as the target label value in the label feature. We design the trigger as the highest value of the trigger feature in the training set. The target label is benign since the malicious clients want their attacks to evade intrusion detection. To maintain the consistency of the network data [START_REF] Amine Merzouk | Investigating the practicality of adversarial evasion attacks on network intrusion detection[END_REF], we ensure that only a single one-hot-encoded binary feature is activated for each categorical feature. Thus, before inserting the trigger, we apply a mask on the trigger features to remove any previous values. If the trigger activates a category of a categorical feature (e.g., the category http in the categorical feature service), then every other category of that categorical feature is deactivated.

In these experiments, we assume that the malicious clients only have access to their training data and cannot interfere with the FL algorithm. Thus, they train their models with the same learning rate, batch size, and number of epochs as the rest of the clients (Table 1). They cannot amplify their contributions using model poisoning techniques such as Explicit Boosting [START_REF] Arjun | Analyzing Federated Learning through an Adversarial Lens[END_REF] or Constrain-and-scale [START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF]. In practice, these techniques require a strong adversary with local root access to the device and the ability to bypass signature checks, especially if the FL software runs on trusted execution environments [START_REF] Mo | PPFL: privacy-preserving federated learning with trusted execution environments[END_REF]. Thus, we consider data poisoning more realistic in this scenario.

Experiments

In addition to the general methodology, we apply specific methods to study each poisoning parameter. To avoid bias, we run every combination of parameters 100 times with random initializations. We ensure the experiments are carried out in the same conditions by setting a random seed.

Trigger features.

In structured data like network traffic, the features do not hold the same importance in the classification. In FL, we hypothesize that their impact also varies when they are used as trigger features for data poisoning. To verify this hypothesis, we run data poisoning experiments on FL using each trigger feature of the dataset individually. The experiment variables are set to 10 clients, 1 malicious client, and 1 perturbed feature (Table 1).

Number of trigger features.

In addition to the choice of trigger features, their number also affects the poisoning of FL models. Especially if the adversary cannot modify an essential feature due to the data structure, they can compensate with several other features. To understand the impact of this parameter, we train the same model with increasing numbers of trigger features. For the choice of features, relying on the previous experiment, we choose up to 6 trigger features in the ascending order of ASR (weakest features first). We set the experiment variables to 10 clients and 1 malicious client.

Number of malicious clients.

Adversaries who cannot use model poisoning to amplify their update, either because of insufficient capabilities or detection mechanisms [START_REF] Arjun | Analyzing Federated Learning through an Adversarial Lens[END_REF], can rely on the number of malicious clients to increase their influence on the global model. To verify this hypothesis, we study the relationship between the number of malicious clients and the ASR and ACC. We vary the number of clients between 10, 20, 50, 100, 200, and 500. For each, we train a model with 0, 1, 2, 3, 4, 5, 10, 20, 50, 100, and 200 malicious clients. Malicious clients use a single trigger feature: dload, based on the results of the trigger features experiment.

RESULTS

The results shown in the figures are the mean values over the 100 runs and the standard deviation. We record the ASR and ACC (among other metrics) at every round of training. We consider both metrics because even if a set of parameters produces a high ASR, it obsoletes the model if the ACC is significantly reduced. Moreover, defensive techniques check the ACC degradation to detect malicious clients [START_REF] Arjun | Analyzing Federated Learning through an Adversarial Lens[END_REF]. Thus, targeted poisoning attacks must stay stealthy: the backdoor is only active in the presence of the trigger, and the model should behave normally otherwise. The ACC values in the last training round are stable across the trigger features; we record a mean value of 81.03%±0.72%. Knowing that the mean ACC with similar parameters and no poisoning is 83.24% ± 2.38%, we conclude that data poisoning reduces the accuracy of FL models. In critical domains like intrusion detection, this reduction can be unacceptable. Stealthy adversaries will carefully parameterize their poisoning attacks to minimize ACC degradation or any unwanted impact on the model.

0%

The ASR values vary between 17.28% for sttl and 90.3% for state¹¹ (99.99% for the one-hot-encoded feature state:CON). The median ASR value is 66.98% when considering the 196 features, and the variance is 12.1%. The large variance in ASRs confirms the importance of the trigger features' choice for the success of targeted data poisoning attacks. Adversaries will study their features to balance the ASR and ACC degradation, producing a successful and stealthy attack.

The categorical feature state¹¹ has the highest ASR among the trigger features by a large gap (Figure 1). This feature is essential for classifying network traffic; it indicates the principal state for the transaction and is protocol dependent [START_REF] Bullard | ARGUS -Auditing Network Activity -Manuals[END_REF]. Before proto¹¹³, 6 categories of service¹³ had a higher ASR on the detailed results: ssh, radius, irc, snmp, dhcp, and ssl. This result correlates with the number of attack examples belonging to these services in the dataset; it ranges from 4 to 30, against 423 to 18299 for the other services. Due to the rarity of attack examples containing these features, the model associates their presence with benign traffic. The unbalanced constitution of the training data biases the model in favor of features with fewer attack examples, which makes them more efficient triggers.

The feature proto¹¹³ follows with almost all its categories, completing the podium with another categorical feature. Because of their importance for the classification, these features have more influence in poisoning attacks, which suggests they are a good choice for the trigger. However, they are often interdependent; a modification in one of these features can require adapting the rest to maintain the consistency of the network traffic. Moreover, modifying these features can radically change the nature of the traffic, potentially canceling the malicious function of the attack. Using features like proto¹¹³, service¹³, or state¹¹ as a trigger can compromise the consistency of the network traffic or the malicious function of the attack.

In addition to their influence as trigger features, these categorical features impact the model's prediction at the inference time, even when no poisoning happens during the training. We confirm this by training a model with 10 clients and either 1 malicious client (using

Number of trigger features

If the adversary is constrained in their choice of a trigger feature, they can opt for multiple less-constrained trigger features to increase the ASR. In this experiment, we evaluate the impact of increasing the number of trigger features on the ASR and ACC. Similarly to the previous experiments, we train a model with 10 clients among which 1 is malicious. Considering the worst-case scenario, we use the less efficient features according to the ASR ranking of Figure 1. The features sttl and dttl were excluded as they decrease the ASR. We incrementally increase the number of trigger features to include [ct_dst_sport_ltm, dtcpb, stcpb, dwin, ct_state_ttl, rate]. Figure 3 shows the mean ASR and ACC over 100 experiments for each set of trigger features; the shaded region near each line represents the standard deviation. The ACC increases from 79.31% ± 1.92% with a single trigger feature to 81.43% ± 1.95% with 6 trigger features. With increased trigger features, the model distinguishes the benign and poisoned instances better, thus reducing the number of misclassifications. This hypothesis is confirmed by the ASR increase from 38.22% ± 3.74% to 99.35% ± 1.67%. An adversary must use up to 6 trigger features The evolution of the ASR is not monotonic; it undergoes several phases of increase, decrease, and plateau. Figure 3 shows a drop in the ASR in the first few rounds before it increases again after 20 training rounds. We hypothesize that the poisoning process follows five phases:

(1) The ASR starts at a high value initially because the model is naive during the first rounds; it knows little about the data, and the malicious client offers a simple association to learn. (2) In the second phase (rounds 1 -20), the model learns accurate information from the other clients, so the ASR drops as the backdoor receives less attention. (3) In the third phase (rounds 20 -40), the ASR increases as the model learns the backdoor. (4) In the fourth phase (round 40 -60) the ASR plateaus as the ACC increases. (5) In the fifth phase (round 60 -100), the ASR increases depending on the number of trigger features, and the ACC increases slightly.

We observe similar patterns in the ASR and ACC when varying the number of clients and the number of malicious clients (Figure 4).

Number of malicious clients

The last parameters we experimented on are the number of clients and the number of malicious clients. To understand their influence, we train FL models with 10 to 500 clients, while ranging the number of malicious clients between 0 and 200. For each combination, we run 100 experiments with random initialization. Due to the reasons explained in Section 4. dload, the best non-categorical feature according to Figure 1, as the unique trigger feature. Figure 4 shows the mean ASR (dotted lines) and ACC (continuous lines) with the standard deviation (shaded region near the line). The color of the line is unique to the number of malicious clients and consistent across all plots.

Despite the different number of clients, we find similar patterns. The first observation is that the ACC increases when the number of clients increases. The ACC of non-poisoned models at the last training round ranges from 83.24% ± 2.4% for 10 clients to 84.31% ± 0.26% for 500 clients. The explanation is that FL models trained with more clients have access to more quantity and variety of data. However, for all numbers of clients, we observe that the ACC decreases when the number of malicious clients increases. For example, with 40% malicious clients, the average ACC loss at the last training round ranges from 3.84% ± 3.1% for 10 clients to 6.15% ± 0.33% for 500 clients.

On the other hand, we observe, for all numbers of clients, that the ASR increases when the number of malicious clients increases. The backdoor is more efficient when more malicious clients insert the same trigger in their training data. The malicious contribution has more influence at the expense of ACC. We can extend this result to the case where multiple malicious clients train a model with different parts of the same trigger (Distributed Backdoor Attack [START_REF] Xie | DBA: Distributed Backdoor Attacks against Federated Learning[END_REF]). In addition to the choice and the number of trigger features, the number of malicious clients is another parameter adversaries can tune to increase the ASR.

Furthermore, we notice similar ASRs for the same proportion of malicious clients. With 10% malicious clients, the average ASR at the last training round ranges from 62.93% ± 7.02% for 20 clients to 65.03% ± 2.52% for 500 clients. With 20% malicious clients, the average ASR at the last training round ranges from 96.06% ± 8.36% for 20 clients to 99.97% ± 0.07% for 500 clients. Starting from 30% malicious clients, the average ASR at the last training round is consistently above 99%.

Increasing the number of malicious clients is a double-edged sword; it increases the ASR and decreases the ACC. Adversaries must optimize this parameter to keep the poisoning attack efficient and stealthy. The constrained-based approach is adequate for this problem; adversaries determine a lower bound of acceptable ACC and use the maximum number of malicious clients that keeps the ACC above the lower bound. The lower bound depends on parameters such as the server's objective or the detection mechanisms.

DISCUSSION

To increase the success rate and maintain the stealth of their poisoning attacks, adversaries act on the poisoning parameters within the limits of their capabilities. According to the experimental results, an ASR increases when: (i) selecting the trigger features according to their poisoning capability (Figure 1); (ii) increasing the number of trigger features (Figure 3); and (iii) increasing the number of malicious clients (Figure 4). However, every combination in Figure 4 shows that an ACC reduction is inevitable when poisoning an FL model. A noticeable ACC reduction warns the server that a poisoning attack is potentially happening; it might even make the model obsolete. Adversaries will carefully calibrate the number of malicious clients as it comes at the expense of the ACC. Through a constraint-based approach, they will define a threshold that determines the acceptable ACC reduction. A larger threshold makes it easier for the model to detect poisoning, but a smaller threshold reduces the attack's success probability.

In addition to the effectiveness and stealthiness of their attack, adversaries will select their trigger features with data consistency in mind. Features like state, service, or proto have more influence on the classification; they produce higher ASRs in poisoning attacks and adversarial examples [START_REF] Szegedy | Intriguing properties of neural networks[END_REF]. However, their high interdependence requires other features to adapt when they are modified. Moreover, the nature of the attack often depends on these features; modifying them could cancel the malicious function of the attack. Similar preoccupations about network data consistency were identified in adversarial examples [START_REF] Amine Merzouk | Investigating the practicality of adversarial evasion attacks on network intrusion detection[END_REF].

Although poisoning parameters differ, the ASR goes through similar phases of increase, decrease, and plateau. Thus, the timing of the attack is also an essential parameter to tune. Attackers will carefully monitor these phases to execute their attack at the most favorable timing regarding the ASR and ACC. They will avoid the low ASR around the 20th round and wait as much as possible for the increase after the 60th round.

Through a precise parameterization of the selection of trigger features, their number, and the number of malicious clients, an adversary can act on their attack's effectiveness, stealthiness, consistency, and timing. These parameters represent a subset of all possible poisoning parameters in FL. An adversary with more capabilities could control the FL settings imposed by the server: the batch size, the number of epochs, the learning rate, the optimizer, and more. With enough capabilities, they could directly modify the update they send to the server to amplify their contribution [START_REF] Bagdasaryan | How To Backdoor Federated Learning[END_REF][START_REF] Arjun | Analyzing Federated Learning through an Adversarial Lens[END_REF]. Such capabilities imply root access to the device, bypassing the signature of the FL client software and the trusted execution environment mechanisms. We consider these implications unrealistic in our scenario.

Despite its comprehensiveness, the study of features is restricted by the limits of the dataset. Notably, the unbalanced number of attack examples involving each feature reflects in the contribution of the features to the detection. If some features (such as some categories of service) are only presented to the model in benign examples, the model will consider them a sign of that the traffic is benign. This effect makes them a suitable choice for trigger features and adversarial examples. This problem is amplified in FL because the server has no visibility on the constitution of the client's data.

CONCLUSION

So what makes a poisoning attack successful in FL-based intrusion detection? We identified four parameters that influence the success of poisoning attacks. We determined how adversaries could improve their attacks' effectiveness, stealthiness, consistency, and timing through the choice of trigger features, the number of trigger features, the number of clients, and the number of malicious clients. Our findings highlight essential aspects of poisoning attacks and provide guidelines for security tests on federated intrusion detection systems and defense strategies. Our study on trigger features was carried out on the UNSW-NB15 dataset, thus inheriting its limitations in terms of structure and balance. Nevertheless, the described methodology is generic enough to apply to other network data. While our threat model limited the adversary to data poisoning techniques, future work should consider more parameters, including amplifying malicious contributions through model poisoning techniques and distributed backdoor attacks. The study should be extended to different network intrusion detection datasets, then to various FL applications.

2)

 2 𝐴𝑆𝑅 = Number of examples classified as benign Number of poisoned examples (1) The ACC, described in Equation 2, is the proportion of nonpoisoned test examples that are correctly classified. 𝐴𝐶𝐶 = Number of examples correctly classified Number of non-poisoned examples (These attack instances are extracted from the test dataset and thus are previously unseen by the model. The poisoning parameters considered in the experiments are: (1) the choice of trigger features (2) the number of trigger features (3) the number of clients participating in the model training (4) the number of malicious clients among the participating clients

Figure 2 :

 2 Figure 2: ASR and ACC using state:CON as trigger

Figure 3 :

 3 Figure 3: ASR and ACC using multiple trigger features

Figure 4 :

 4 Figure 4: ASR and ACC with 10-500 clients and 0-200 malicious clients

•

 We measure the accuracy degradation caused by each parameter and propose measures limiting it.• We identify features harming the data's consistency when involved in the poisoning. • We analyze the attacks' impact throughout the training rounds and distinguish the different poisoning phases. • We propose guidelines for the security test of FL intrusion detection systems and the design of defense techniques.

Table 1 :

 1 Experiment parameters

	Constants	
	Number of data partitions	1000
	Number of experiment runs	100
	Number of training rounds	100
	Batch size	20
	Number of epochs	5
	Client learning rate	0.01
	Number of hidden layers	1
	Number of hidden neurons	100
	Activation function	ReLU
	Optimizer	SGD
	Variables	
	Number of trigger features	0,1,2,3,4,5,6
	Number of clients	10,20,50,100,200,500
	Number of malicious clients 0,1,2,3,4,5,10,
		20,50,100,200

 1, we do not use the categorical features state, service, or proto as the trigger feature. Instead, we use

	100%			10 CLIENTS			100%			20 CLIENTS			100%				50 CLIENTS		
	80%						80%						80%						
	60%						60%						60%						
	40%						40%						40%						
	20%						20%						20%						
	0%	0	20	40 FL Training Round 60	80	100	0%	0	20	40 FL Training Round 60	80	100	0%	0	20		40 FL Training Round 60	80	100
	100%			100 CLIENTS			100%			200 CLIENTS			100%				500 CLIENTS		
	80%						80%						80%						
	60%						60%						60%						
	40%						40%						40%						
	0% 20%	0	20	40 FL Training Round 60	80	100	0% 20%	0	20	40 FL Training Round 60	80	100	0% 20%	0	20	ACC ASR	40 FL Training Round 60 0 1 2 3 4 5 10 20	80	100 100 50 200

https://github.com/tensorflow/federated/

https://alliancecan.ca/

https://github.com/mamerzouk/poisoning-fl-ids

ACKNOWLEDGMENTS

This research was enabled in part by support provided by Calcul Québec (calculquebec.ca), Compute Ontario (computeontario.ca) and the Digital Research Alliance of Canada (alliancecan.ca).