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Abstract

This work proposes an innovative model for multicomponent phase change
in interface-resolved simulations. The two-phase system is described by a
geometric Volume-Of-Fluid (VOF) approach, and considers multiple compo-
nents in non-isothermal environments, relaxing the hypothesis of pure liquid
droplets usually studied in the literature. The model includes the Stefan flow
and implements the following solutions for the complications that arise when
studying liquid mixtures: i) a coupled approach for solving the interface jump
conditions; ii) a proper strategy to obtain a liquid velocity for the advection
of the volume fraction field, also applicable to static droplets with strong
density ratio; iii) and a geometric approach to discretize the scalar fields
transport equations. This model was implemented in the open-source code
Basilisk, and it was tested on a number of benchmark phase change prob-
lems, such as the fixed flux evaporation, the Stefan problem, Epstein Plesset,
and the Scriven problem. These test cases demonstrate the convergence of
the numerical methods to the analytical solutions. More complex configu-
rations, such as multicomponent isothermal and non-isothermal droplets are
compared using numerical benchmark solutions obtained assuming spherical
symmetry. The code, as well as the simulation setups, are released on the
Basilisk website, making it the first model and open-source implementation
of multicomponent phase change in a VOF framework.
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1. Introduction

Multicomponent liquid droplets are widespread in nature and have been
studied at many levels of detail in a number of engineering applications. Most
of the literature models rely on the approximation of spherical symmetry [1,
2], neglecting the effects of surface tension and droplet deformation. This
simplification is accurate for droplets in microgravity conditions, where the
effects of droplet deformation and buoyancy on the heat and mass transfer
phenomena are negligible [3]. Therefore, they are useful for the analysis of
complex chemical phenomena, such as combustion processes [4], but due to
their limitations, multidimensional models describing phase change in gas-
liquid systems are required.

The Geometric Volume-Of-Fluid (VOF) approach [5] is one of the most
popular models available in the literature to describe multiphase systems. It
allows the interface to be transported conservatively by solving a continuity
equation and using detailed discretization methods that preserve the interface
sharpness. The VOF model has been used for a wide variety of simulations in-
volving gas-liquid systems, for example in free surface flows, breaking waves,
atomizations, liquid jets, and droplet coalescence and breakup [6, 7, 8].

More recently, the VOF approach has also been considered for the simu-
lation of two-phase systems with phase change. Phase change poses several
numerical challenges that mainly arise from the presence of an expansion
term localized at the gas-liquid interface. Such expansion leads to an addi-
tional convective flux, usually referred to as Stefan flow, which introduces a
strong and localized discontinuity in the velocity field. Therefore, the trans-
port of the interface and of the scalar fields must be carefully resolved in
order to avoid interface smearing due to the expansion term.

The first attempt to include phase change in a Volume-Of-Fluid model
was made by Welch and Wilson [9], who adapted the Front Tracking model for
simulating boiling flows proposed by Juric and Tryggvason [10] and Son and
Dhir [11] to a VOF framework to study the film boiling configuration [12, 13].
A similar approach was then adopted by Hardt and Wondra [14] and by
Kunkelmann [15], who used a specific technique for the smearing of the source
terms given by the phase change, removing the volume expansion effect from
the interfacial cells. Consequently, the phase change expansion term does not
interfere with the interface advection process [15]. Their boiling model was
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used for benchmark boiling evaporation problems, like the Stefan problem
and the film boiling [14], and for the simulation of nucleated bubbles [15].
Schlottke and Weigand [16] proposed an iterative approach to impose the
velocity jump conditions in the governing equations. This approach was
used for the simulation of vaporizing droplets with large deformations at high
Reynolds and Weber numbers. More recent works by Scapin et al. [17] and
Malan et al. [18] proposed similar methods to obtain a conservative advection
velocity from the one-field velocity by solving an additional Poisson equation.
These models focus on thermally-induced [18] or chemical species-induced
phase change [17], which simplifies the calculation of the vaporization rate,
and they were tested on benchmark evaporation problems like Stefan and
Scriven problems, and the d-squared law. Other literature models, such
as those proposed by Palmore and Desjardins [19], and Zhao et al. [20],
solve the coupled heat and mass transfer focusing on pure liquid droplets
and neglecting the presence of a generic number of multiple chemical species
both in the gas and in the liquid phases. The extension of these phase-change
models to multiple-species systems is not straight-forward, and it comes with
several challenges:

1. The vaporization rate calculation is not explicit because the temper-
ature and the species mass fractions at the interface are not known
a-priori like in pure droplets. They must be solved coupling the gas
and the liquid interface, resulting in a non-linear system of equations.

2. The scalar fields must be transported in both the gas and the liquid
phase, considering the presence of a discontinuity in the velocity field
and enforcing the boundary conditions at the gas-liquid interface.

3. A one-field approach for the species transport cannot be used, since the
evaporation of a light species must cause the accumulation of a heavy
species, and conservation of mass in the two different phases must be
respected (Figure 1).

4. The numerical difficulties associated with the velocity field discontinu-
ity must be managed such that interface smearing and errors in the
transport of scalar fields are minimized.

The numerical model proposed in this work addresses these challenges
using a multicomponent phase change formulation, which is valid for an
arbitrary number of chemical species in both the gas and liquid phases. The
method proposed to obtain an extended liquid velocity for the transport of
the volume fraction and the scalar fields, is also applicable to static droplets,
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Figure 1: Species mass fraction profiles in a spherical liquid droplet. The green line is the
mass fraction profile of a light component in liquid phase, the red line is the mass fraction
of the same light component in gas phase, while the blue line is the mass fraction profile
of the heavy chemical species in liquid phase.

which is the most challenging phase change configuration. The mathematical
model is described in Section 2, while Section 3 describes the numerical
discretization of the transport equations. The resulting model is implemented
in the Basilisk framework [21] and it is validated using benchmark boiling
and droplet evaporation problems (Section 4).

2. Mathematical Formulation

Figure 2 depicts the control volume over which the transport equations are
written. This volume includes two immiscible phases (Vl and Vg) separated
by a zero-thickness interface �. The different phases inside the same control
volume V are identified by introducing a scalar marker function defined in
the whole domain (V = Vl [ Vg) as an Heaviside function:

H(x, t) =

(
1, if x 2 Vl

0, if x 2 Vg

(1)

Exploiting the definition of the marker function, a generic physical prop-
erty � can be defined over the entire control volume:

�(x, t) = �lH(x, t) + �g(1�H(x, t)) (2)

4



Figure 2: Generic domain representation. Adapted from [22].

where �l and �g are the phase properties (i.e. density, viscosity, thermal con-
ductivity, specific heat, and diffusivity of the chemical species), for the liquid
and for the gas phase, respectively. This work assumes the properties of the
gas and the liquid phase to be constant during the entire simulation. There-
fore, the generic property � only changes according to the marker function
H(x, t).

2.1. Interface Advection with Phase Change

Computationally, the marker function is approximated using the color
function c [23], defined as the volume fraction of the reference (liquid) phase
in the control volume V :

c =
1

V

Z

V

H(x, t)dV (3)

which assumes value 1 in the liquid phase and 0 in the gas phase. According
to the VOF approach, the advection of the interface can be performed by
solving a conservation equation for the volume fraction. This equation can
be derived from a mass balance on the liquid control volume Vl:

@

@t

Z

Vl

⇢ldVl +

I

Sl

⇢lul · ndSl = �
I

S�

⇢l (ul � u�) · n�dS� (4)

where the term on the RHS accounts for mass variations across the inter-
face due to the phase change, and it can be expressed as a function of the
vaporization rate, using the Rankine-Hugoniot relation [23]:

⇢l (ul � u�) · n� = ⇢g (ug � u�) · n� = ṁ (5)
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which is a mass balance across a moving gas-liquid interface. The last term
on the RHS, ṁ, is the total vaporization rate per unit of surface. Introducing
Equation 5 in 4, and assuming that the liquid density depends on c only, we
obtain the transport equation for the volume fraction of the liquid phase:

@

@t

Z

V

cdV +

I

S

cul · ndS = �
Z

V

ṁ

⇢l
��dV (6)

The term on the RHS is the source (or sink) of liquid volume according to
the phase change phenomena. This equation can be solved given the velocity
field of the liquid phase ul and the total evaporation rate per unit of surface
ṁ. The term �� applies the source only at the interface, and it is defined as
the interface surface in the control volume divided by the volume itself, with
resulting units of area over volume.

2.2. Incompressible Navier-Stokes Equations with Phase Change

The velocity and pressure fields are obtained solving the Navier-Stokes
equations for incompressible flows with phase change. The incompressibility
of the flow field is justified for both phases in the control volume due to the
low Mach number (Ma << 0.3) of the systems of interest for this work. The
momentum equation is therefore written as

@

@t

Z

V

⇢udV +

I

S

⇢u (u · n) dS =

I

S

⌧ · ndS +

Z

V

⇢gdV +

Z

V

f�dV (7)

following the so-called one-field formulation, which means that a single equa-
tion is integrated over the entire control volume V using physical properties
that vary abruptly at the gas-liquid interface (refer to [23] for a detailed
derivation). The stress tensor is defined as ⌧ = µ

�
ru+ruT

�
� pI, where I

is the unit tensor, while the material properties ⇢ and µ are the density and
dynamic viscosity respectively, defined as in Equation 2.

The one-field continuity equation with phase change can be derived by
writing the continuity equation (Equation 4) separately for the gas phase and
for the liquid phase, and summing up the two expressions [9]. Considering
incompressible flows and exploiting the interface mass balance (Equation 5),
the resulting one-field continuity equation is obtained:

I

S

u · ndS =

Z

V

ṁ

✓
1

⇢g
� 1

⇢l

◆
��dV (8)
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where the RHS of the equation is a source term localized at the gas-liquid
interface which, physically, derives from the fact that the conversion from
liquid to vapor during phase change (or vice versa) is accompanied by a
significant change of volume. This process leads to an expansion term that
makes the one-field velocity u non conservative at the interface.

2.3. Species Equations

Chemical species are transported by solving the conservation equation
in terms of mass fractions written using a two-field formulation. Using this
approach, two different governing equations are solved for the same species,
one for the liquid phase and one for the gas phase. This approach was chosen
because, when solving multiple chemical species, the mass fraction of a single
species varies inversely in the two phases. This effect cannot be described
using a one-field formulation with source term, which can only increase or
decrease the mass fraction in both phases. Moreover, the separation of the
fields limits the numerical diffusion across the interface. The species equation
for a single species i in the phase k is derived by integrating the mass of the
chemical species over the control volume Vk, with k = l, g:

@

@t

Z

Vk

⇢k!i,kdVk +

I

Sk

⇢k!i,kuk · ndSk +

I

S�

⇢k!i,k (uk � u�) · n�dS� =

I

Sk

⇢kDi,kr!i,k · ndSk +

I

S�

⇢kDi,k
@!i,k

@n�

����
k

· n�dS� (9)

where !i,k is the mass fraction of the i-th species in the k-th phase, while
Di,k is the diffusion coefficient. Analogously to the volume fraction transport
equation, the integral over the interface surface is replaced by the interface
mass balance, written for a single chemical species:

ṁi = ⇢k!i,k (uk � u�) · n� � ⇢kDi,k
@!i,k

@n�

����
k

· n� (10)

Introducing Equation 10 in 9, the phase change contribution is collected into
the term ṁi, which is the vaporization rate per unit of surface, for the single
chemical species i:

@

@t

Z

V

ck⇢k!i,k +

I

S

ck⇢k!i,kuk · ndS =

I

S

ck⇢kDi,kr!i,k · ndS �
Z

V

ṁi��dV

(11)
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where the volume fraction ck is used to integrate Equation 9 over the whole
control volume. This equation is solved for the gas and for the liquid phase
separately and, eventually, the one-field mass fraction is reconstructed for vi-
sualization purposes using an arithmetic average based on the color function:

!i = !i,lc+ !i,g(1� c) (12)

2.4. Energy Equation

The energy transport equation is solved for temperature using a two-
field formulation, following the same approach used for the transport of the
chemical species mass fractions. The temperature equation can be derived
from an energy balance on the control volume Vk, being k = l, g, with the
assumption of Newtonian fluids and negligible viscous effects and pressure
work term [24]:

@

@t

Z

Vk

⇢kcp,kTkdVk+

I

Sk

⇢kcp,kTkuk ·ndSk+

I

S�

⇢kcp,kTk (uk � u�) ·n�dS� =

I

Sk

kkrTk · ndSk +

I

S�

kk
@Tk

@n�

����
k

· n�dS� (13)

where Tk is the temperature of the k-th phase, cp,k is the constant pressure
heat capacity, and kk is the thermal conductivity. Following the same ap-
proach explained in [20], introducing Equation 5 into 13, and integrating over
the whole control volume, the two-field energy balance can be re-written as:

@

@t

Z

V

ck⇢kcp,kTkdVk +

I

S

ck⇢kcp,kTkuk · ndS =
I

S

ckkkrTk · ndS +

Z

V

(q̇�,k � ṁcp,kTk) ��dV (14)

where q�,k is the heat conduction across the interface, which is directly com-
puted from the interface gradients on both sides, once the interface temper-
ature value is obtained from the jump condition.

2.5. Multicomponent Interface Jump Condition

The vaporization rates appearing in Equation 6, 8, and 11, as well as the
interface temperature in Equation 14 must be computed from the interface
jump condition. For this purpose, the mass and energy balances are applied
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Figure 3: Mass and energy fluxes at the gas-liquid interface. q̇L and q̇G are the conduction
heat fluxes, while j̇L and j̇G are the species diffusion fluxes.

over a control volume corresponding to a portion of the gas-liquid interface
� shown in Figure 3. The mass balance at the interface is written for each
chemical species and it imposes the conservation of the convective and diffu-
sive fluxes. Instead, the energy balance at the interface equates the difference
in conductive fluxes to the energy required for the evaporation process [3].
Therefore, considering that accumulation of mass and energy is not allowed
in a zero-thickness interface, and assuming that thermodynamic equilibrium
conditions occur at the interface, the following system of equations is ob-
tained:

8
>>>>><

>>>>>:

ṁi = ṁ!̂i,l � ⇢lDi,l
@!i,l

@n�

����
l

= ṁ!̂i,g � ⇢gDi,g
@!i,g

@n�

����
g

PNS
j=1 ṁi�hev,i = kl

@Tl

@n�

����
l

+ kg
@Tg

@n�

����
g

x̂i,g = keq,i(T̂ )x̂i,l

(15)

where the hat over the symbols is used to refer to interface quantities: x̂i,g

and x̂i,l are the mole fractions of the chemical species i, !̂i,g and !̂i,l are the
mass fractions, and T̂ is the interface temperature. The phase-equilibrium is
computed using Raoult’s Law, which defines the thermodynamic equilibrium
constant as the ratio between the interface mole fractions in the gas and in
the liquid phase, respectively:

keq,i(T̂ ) =
x̂i,g

x̂i,l
=

Pvap,i(T̂ )

P
(16)

where P is the thermodynamic pressure of the system and Pvap,i(T̂ ) is the
vapor pressure of the generic species i, which can be computed using different
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vapor-liquid equilibrium relations. Here, Antoine’s Law was used:

Pvap,i(T̂ ) = exp


A� B

T + C

�
(17)

where A, B, and C are empirical parameters that depend on the chemical
species under investigation. In this work, the thermodynamic equilibrium
constant is obtained under the assumptions of an ideal liquid mixture, an
ideal gas, and a negligible Poynting correction [25]. Note that this formula-
tion can easily be extended for non-ideal mixtures and more complex Equa-
tion of States.

The non-linear system of equations resulting from the interface jump con-
dition is solved to determine the evaporation rate for every chemical species
ṁi, the interface mass fractions (!̂i,l and !̂i,g), and the interface temperature
T̂ . The solution of this system of equations provides all the information re-
quired for the characterization of the interface and for the calculation of the
source terms in the governing equations.

3. Numerical Discretization

The governing equations described in Section 2 are discretized on an adap-
tive Cartesian grid. The domain is divided in a number of square cells (cubic
in 3D), and the governing equations are numerically approximated using the
Finite Volume Method and a collocated arrangement. Two-dimensional con-
figurations are discussed here, where � is the length of a generic cell and t is
the simulation time. The extension to three dimensions is straight-forward.

3.1. Geometric Volume-Of-Fluid Advection

Using the VOF approach, the color function described in Section 2 is
computed in every cell of the domain, obtaining pure liquid cells (c = 1),
pure gas cells (c = 0), and interfacial cells with intermediate values of volume
fraction. The advection of the interface is solved conservatively using the
advection equation for the volume fraction of the liquid phase (Equation 6).
In this work, the directional-split Geometric VOF scheme was adopted [26,
27]. This method was developed for Cartesian grids and it is conservative if a
divergence-free velocity field is provided. This approach consists of two steps:
the reconstruction step, where the interface is geometrically reconstructed in
each interfacial cell according to the Piecewise Linear Interface Construction
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(PLIC) [26], and the flux calculation step, where the liquid volume fluxes
across the cell faces are geometrically computed along each direction, and
the volume fraction in each cell is updated at the next time level:

c
0 � c

t

�t
=

1

�
(F (u�)f+ � F (u�)f�) +

Z

V

cc
@u

@x
dV (18)

c
t+1 � c

0

�t
=

1

�
(G(u�)f+ �G(u�)f�) +

Z

V

cc
@u

@y
dV (19)

The terms F and G in Equation 18, 19 are the geometric fluxes across the
faces, while the integrals on the RHS are dilation terms that correct errors in
the divergence stemming from the dimensional splitting. Details about the
specific implementation can be found in [22, 23, 26].

To avoid interface smearing, the velocity used for the interface advection
u� must be continuous across the interface. For this reason, we cannot
approximate u� with the one-field velocity u. Instead, the interface velocity
is obtained from Equation 5:

u� = ul �
ṁ

⇢l
n� = uE

f � upc (20)

where uE
f is a divergence-free liquid velocity, computed as explained in Sec-

tion 3.3, while upc is the velocity contribution due to the phase change, which
shrinks or expands the liquid phase. Introducing this definition of interface
velocity allows the phase change source term of Equation 6 to be directly in-
cluded in the advection step. This operation is not straight-forward, because
the interface gradients are computed at cell centers, and so is the vaporization
rate ṁ. Therefore, interpolations are needed to transform the vaporization
rate in an interface regression velocity upc, defined on the cell faces. The
proposed interpolation scheme is depicted in Figure 4:

1. If the face connects an interfacial cell with a pure cell, the interface re-
gression velocity on that face is taken from the interfacial cell, weighted
by the corresponding interface normal component.

2. If the face connects two interfacial cells, the interface regression velocity
is computed from a linear interpolation between the two consecutive
vaporization rates, weighted by the interface normal.

Using this approach, the resulting interface advection velocity u� is non-
conservative, but the amount of liquid volume added or removed matches
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Figure 4: Interpolation of the interface regression velocity, from cell-centers to cell-faces
(http://basilisk.fr/sandbox/ecipriano/test/interfaceregression.c).

the effect of the phase change phenomena. The advantage of this approach
with respect to other literature methods [18, 28] is that advection and phase
change are applied in a single step, limiting the possibility of under- and
over-shoots that easily arise when the phase change is applied as an explicit
source term.

3.2. Pressure-Velocity Coupling

The Navier-Stokes equations are discretized using an approximate pro-
jection method, where velocity and pressure are collocated at cell-centers.
This method and its numerical implementation in a quad/octree grid was
extensively described by Popinet in [29] and [30]. During the Predictor Step,
the solution of the advection-diffusion part of the momentum equation is
performed by splitting the advection from the diffusion step. The advection
part is estimated using the Bell-Colella-Glaz approach [31], which is a second
order unsplit upwind scheme that is stable for CFL condition smaller than
one [30]. The diffusion part is instead re-arranged into a Poisson-Helmholtz
equation and solved in an implicit manner using a multigrid solver [32]. This
method is combined with a Crank-Nicholson discretization which is second
order accurate and stable also for CFL number above one [30]. The Projec-

tion Step allows a pressure field to be obtained, which guarantees that the
divergence at time t + 1 respects the continuity equation. In this work, the
projection step was modified including the volume expansion term, which
makes the divergence of the velocity field non-null (Equation 8). The pro-
jection step reduces to a Poisson equation which is solved using a multigrid
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solver [32]:

r ·
✓
1

⇢
rp

◆
=

r · u⇤

�t
� ṁ

�t

✓
1

⇢g
� 1

⇢l

◆
�� (21)

where u⇤ is the temporary velocity obtained after the Predictor step, while
�� is approximated as the ratio between the PLIC interface segment and
the volume of the cell. After the projection step, the collocated velocity is
reconstructed, adding the acceleration terms.

The surface tension force f� = �rc in Equation 7 is computed using
a combination of the height-functions method for the the curvature  and
a well-balanced discretization of the surface tension force and the pressure
gradient, which allows the equilibrium solution for a static droplet (Laplace
equation) to be recovered [33].

3.3. Advection Velocity

One of the main problems in modelling the phase change using VOF is
obtaining an extended velocity, representative of the velocity of the liquid
phase. When the momentum and continuity equations are discretized using
a one-field formulation, the interfacial cells are affected by the Stefan flow
contribution. This implies that the gas phase velocity interferes with the
transport of the liquid volume fraction in the vicinity of the interface. To
overcome this problem, different solutions were proposed in the literature [14,
15, 17, 18, 19, 28], although a unique solution valid for every system with
phase change, has not been found yet. The most recent approaches are based
on the solution of an additional Poisson equation for a velocity potential �:

r ·
✓
1

⇢
r�

◆
=

ṁ

�t

✓
1

⇢g
� 1

⇢l

◆
�� (22)

The potential is used to isolate the Stefan velocity uScontribution:

uS = ��t

⇢
r� (23)

Thus, the extended velocity field can be obtained by subtracting the Stefan
velocity from the field velocity, resulting in an extended velocity field which
is divergence-free by construction [18]:

uE = u� uS (24)
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Different variants of this method were adopted. Scapin et al. [17] solves
Equation 22 over the whole domain, while Malan et al. [18] solves the same
equation in a narrow band of cells close to the interface. Palmore et al. [19]
combines PDE based Aslam extrapolation techniques [34], to enforce the
continuity of the liquid velocity, with the solution of Equation 22 to correct
errors in the velocity divergence after the extrapolation procedure. A differ-
ent and more recent approach was proposed by Gennari et al. [28], who shift
the expansion term in the Projection step toward the pure liquid or pure gas
cells close to the interface. This approach does not require the solution of
an additional Poisson equation, and it proved good performances for boiling
simulations [28].

A common problem of all these methods is that they lead to nonphysical
interface deformation for static droplet evaporation problems with strong
density ratio. To overcome this problem, we propose a new method based on
a combination between the shifting approach proposed by Gennari et al. [28]
and a novel Double Pressure-Velocity Coupling technique. According to this
approach, the expansion term in Equation 8 is shifted toward the closest
pure cells, such that the resulting velocity u contains a Stefan flow, which
is continuous across the interfacial cells. After this step, a second set of
Navier-Stokes equations is solved, without including the expansion term:

@

@t

Z

V

⇢uE
dV +

I

S

⇢uE
�
uE · n

�
dS =

I

S

⌧E ·ndS+

Z

V

⇢gdV +

Z

V

f�dV (25)

I

S

uE · ndS = 0 (26)

This set of Navier-Stokes equations is solved to find the extended velocity uE,
which is used for the interface advection process. With this approach, we ob-
tain two different velocity fields, u, and uE, both continuous and divergence-
free across the interface, which are used for the interface advection and for
the transport of the scalar fields. This method decouples the effect of the
Stefan flow from the interface advection, and it proved to work well in situa-
tions where the Stefan velocity is much larger than the background velocity
(i.e. static droplet cases with strong density ratio).

3.4. Transport of Scalar Fields

The transport equations for the scalar fields are solved using an operator
splitting approach. First, the solution of the advection process is performed,
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then the diffusion is solved by taking into account the phase change contri-
bution. According to the two-field approach implemented in this work, it is
convenient to define the tracer form (tr) of the scalar fields (s) in the liquid
and in the gas phase: trl in sl and trg in sg, respectively.

trl = slc

trg = sg(1� c)
(27)

The values of the tracer fields are exactly the same as the scalar field values
except at the interfacial cells. Using two separate tracers, numerical diffusion
is limited and it is easy to switch from the scalar to the tracer field form
and vice-versa. For post-processing purposes, a one-field formulation can be
simply recovered as the sum of the tracer fields in the two phases: tr =
trl + trg.

3.4.1. Convective Transport

The convective part of Equation 11 and 14 is resolved by integrating
the equation over a single cell of the domain, assuming constant physical
properties and using the volume fraction c to correct the integration volume,
in order to consider only the volume of the phase k of the scalar field which
is being solved:
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I

S

ckskuk · ndS (28)

This equation is discretized using the same directionally-split procedure used
for the volume fraction advection equation (Section 3.1). Following this ap-
proach, the value of the scalar field is updated considering the convective
transport using the following equations:
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where Ff is the volume flux of the phase being solved across the generic
face f and sk,f is the value of the scalar field on the generic face of the
cell. Such value is obtained using the second-order upwind Bell-Colella-Glaz
scheme [31]. The volume fluxes are computed using the same geometric
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fluxes calculation method used for the VOF field (Section 3.3). For droplet
evaporation problems, the gas phase fluxes are computed using the velocity
u, which contains the Stefan flow, while the liquid phase fluxes exploit the
extended velocity uE. After the advection step, the value of the scalar field
is reconstructed in each cell as:

s
⇤
k =

(cksk)
⇤

c
⇤
k

(31)

3.4.2. Diffusive Transport and Phase Change

The diffusion process is solved including the source terms that account
for the phase change. In the context of the finite volume discretization, the
diffusion part of the species equation (Equation 11) is re-written in integral
formulation, neglecting the advection term and assuming that the material
properties are constant:
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This equation is discretized using a Backward Euler scheme for the time
derivative, while the face gradients are approximated using the finite differ-
ence between two consecutive cells sharing the same face:

ck!
t+1
i,k � ck!

⇤
i,k

�t
=

1

V

NFX

f=1

ckDi,kr!
t+1
i,k |f · nfSf +

ṁi
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This equation is rearranged into a Poisson-Helmholtz equation and is solved
in an implicit manner using a multigrid solver [32], as follows:
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where the phase change contribution is included in the last two terms on
the RHS. The source terms describe the amount of species i that evaporates
ṁi (explicit source), and the volume variations due to the phase change
(implicit source). A limiting time step may be required for the stability
because the solution of the diffusion equation is not fully implicit due to
the explicit source term. The accurate solution of Equation 34 requires the
surface fraction value ck|f , which is geometrically calculated from the PLIC
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Figure 5: Discretization of the diffusive term with phase change.

interface reconstruction [35]. Using this approach the diffusion process is
confined to the specific phase being solved and the diffusive flux across empty
faces is simply neglected without introducing artificial diffusion (Figure 5).

The same approach is used for the discretization of the diffusion part of
the temperature equation (Equation 14), resulting in the following form:
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(35)
which can be solved given the interface temperature and the temperature
gradients along the interface, computed as explained in the next section.

3.5. Vaporization Rate from the Interface Jump Condition

The interface properties (temperature and mass fractions) and the evap-
oration rate for every chemical species can be quantified by solving the in-
terface jump condition via a non-linear system of equations (Equation 15) in
every interfacial cell. A strategy for the decoupled solution of the non-linear
system was developed for this purpose, in order to find reliable first guess val-
ues, which are then used by the root finding algorithm to solve the non-linear
system. The system can be resolved in a decoupled manner by assuming that
the evolution of one of the two phases is typically slower. During the evap-
oration of a liquid droplet, the evolution of the species mass fractions in the
liquid phase is slower than those of the gas phase, due to the lower value
of diffusivity. Therefore, the liquid interface mass fractions and temperature
are assumed to be equal to the value of the field at the interfacial cells. The
procedure for the decoupled solution of the system is reported below.
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1. In each interfacial cell, the interface temperature and liquid mass frac-
tions are computed as:

!̂i,l =

P3x3
stencil c!i,lP3x3
stencil c

(36)

T̂ = cTl + (1� c)Tg (37)

where !̂l,i is the average, weighted on the volume fraction field, of the
liquid mass fraction in the 3⇥3 stencil around the interfacial cell.

2. The interface mole fractions x̂l,i are computed from the mass fractions,
and the thermodynamic equilibrium constant is computed using the
interface temperature from the previous point, obtaining the interface
mole fractions in the gas phase:

x̂i,g = Keq

⇣
T̂

⌘
x̂i,l (38)

Finally, the interface mass fractions in gas phase !̂i,g are reconstructed.
3. Once the interface mass fractions are known, the total evaporation

rate can be computed from mass balances at the gas-liquid interface,
summing over the total number of species in the liquid phase (NLS):
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ṁ!̂i,g �
NLSX

i=1

⇢gDi,g
@!i,g

@n�

����
g

(39)

where the sum over all the liquid species, of the diffusive fluxes in the
liquid phase must be equal to zero by definition [24], while the sum of
the mass fractions in the same phase must close to 1. Therefore, an
explicit equation for the total evaporation rate is obtained:
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which allows the explicit calculation of the vaporization rate for each
chemical species:

ṁi = ṁ!̂i,g � ⇢gDg
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g

(41)
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4. Finally, the mass fraction of the inert (gas-only) species is adjusted
and the interface temperature value can be refined using a root finding
algorithm, from the knowledge of the evaporation rate:

f(T̂ ) =
NLSX

i=1

ṁi�hev,i � kl
@Tl

@n�
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l

� kg
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@n�

����
g

= 0 (42)

Using this procedure, the interface jump condition values are obtained. This
first guess solution is then provided to the non-linear system of equations,
which refines these values with the coupled solution. This approach allows
the transport phenomena at the interface to be decoupled from the rest of the
domain. The information obtained from the jump condition is then included
in the solution of the transport equations in the form of source terms.

The interface gradient calculation must be carried out accurately for the
correct solution of the interface jump condition. In this work, the inter-
face gradients are computed exploiting methods developed for complex solid
boundaries in Cartesian grids, like the Embedded Boundary Method by Jo-
hansen and Colella [36]. Following this approach, the gas-liquid interface is
approximated as a solid boundary, taking advantage of the PLIC interface
reconstruction, and the interface gradient is computed using a VOF-averaged
2nd order scheme, as proposed by Fleckenstein and Bothe [37]:
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f̂ � f2
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!
(43)

where f̂ is the value a generic scalar field at the interface, while f1 and f2

are the values of the same field in two points along the interface normal
(Figure 6), interpolated from neighboring cells using bi-quadratic interpola-
tion [28].

3.6. Time Stability and Solution Overview

The numerical solution algorithm is summarized in Algorithm 1. First,
the vaporization rate is computed solving the interface jump condition at the
initial time-step, in order to obtain ṁi and every other interface property.
Using that information, and with the velocity field known at time t, the
VOF interface advection is performed in order to advance the interface to
the next time level ct+1, and to update the material properties by means of
an arithmetic average. The species and temperature equations are solved
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Figure 6: Embedded Boundary Method for the calculation of the interface gradients.
Adapted from [36].

with the updated properties, and after the solution of the scalar transport
equations, the velocity and pressure fields are obtained. The time step for
the numerical solution is controlled by the time step required for the stability
of the time-explicit discretization of the surface tension force [33]. However,
due to the presence of explicit source terms in the species and temperature
equations, it may be necessary to further reduce the time step in case of
strong evaporation rates.

4. Tests and Results

The numerical model described in the previous section was implemented
in the Basilisk framework [21]. The code was selected because it implements
an efficient adaptive mesh refinement system, and a well-balanced discretiza-
tion of the surface tension, which is important for small droplets and bubbles.
The model developed in this work was verified using benchmark test cases
in simple configurations, which allow the numerical results to be compared
with the analytical solutions. More complex configurations are compared
with benchmark numerical simulations, discussing the qualitative behavior
of the system and the mass conservation. The different test cases are re-
ported in the next sections, while all the codes developed in this work and
the simulation setups are freely available in the Basilisk sandbox [38].
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Algorithm 1: Summary of the solution algorithm
Initialize volume fraction field, chemical species and temperature,
and material properties;

Assign the scalar fields to the corresponding VOF tracers;
while t < tend do

Solve the interface jump condition (Eq. 15), obtain: !̂i,l, !̂i,g, T̂ ,
ṁi;

Compute the expansion term ṁ(1/⇢l � 1/⇢g) from the total
evaporation rate;

Apply shifting of the expansion term;
Set �t;
Solve advection of the volume fraction field and the scalar fields
(Eq. 18, 19, 29, 30);

Solve the diffusion part of the scalar transport equations (Eq. 34,
35);

Update the physical properties according to the new position of
the interface;

Solve the predictor step for u⇤
f and uE,⇤

f from the momentum
equation;

Solve the Poisson equation for p and p
E (Eq. 21);

Update face velocities: un+1
f , uE,n+1

f ;
end
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4.1. Fixed Flux Evaporation

A 2D liquid droplet is placed at the center of a square domain. The
droplet evaporates with a fixed vaporization rate, and the simulation proceeds
until the complete consumption of the liquid. A simple mass balance on the
liquid phase allows the analytical solution of the droplet radius in time to be
computed:

dR

dt
= �ṁ

⇢l
(44)

In this test case ṁ is imposed such that the droplet is completely consumed
in 4 s. The physical properties adopted for this test case are those reported
by Malan et al. [18]: ⇢l/⇢g = 2, ṁ/⇢l = 0.05 m s-1, R0 = 0.23 m. Differently
from Malan et al.[18], the surface tension force was removed completely in
this simulation, to focus on the phase change and to avoid adjustments to
the droplet shape. The square domain has unit length, and outflow bound-
ary conditions are imposed, while gravity is neglected. The simulation was
performed at five different levels of refinement, from 4 to 9, meaning that, for
the case with level 4, the number of cells along each domain direction is equal
to 24. Figure 7 (a) shows the trend of the droplet volume in time. The simu-
lation results provide a good approximation of the analytical solution, except
for the coarsest level of refinement. A convergent trend is recovered, and the
relative error, computed on the droplet volume, shows second order conver-
gence rate. Figure 7 (c) shows the comparison between the PLIC interfaces
and the analytical solutions of the droplet shape for three different simula-
tion times (1 s, 2 s, 3 s). Despite the absence of the surface tension force,
the liquid droplet is kept spherical throughout the entire lifetime. From this
test case, we can conclude that the use of a double pressure-velocity coupling
provides a reliable velocity for the VOF transport equation. This velocity
does not contain discontinuities and, therefore, it does not lead to the inter-
face smearing. Moreover, the introduction of the interface regression velocity
(Equation 20) allows the droplet shrinking process to be simulated with sec-
ond order accuracy in a single VOF-advection step. Malan et al. [18] do not
report the convergence rate for this test case. However, both models work
well with this simulation, obtaining results that approximate the theoretical
solution well.

4.2. Stefan Problem

The Stefan problems are classic benchmark test cases that different au-
thors have used for the validation of their phase change models. The Stefan
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Figure 7: Fixed flux droplet evaporation results. Temporal evolution of the droplet volume:
comparison between numerical simulations at different levels of refinement and the analytic
solution (a); convergence rate, computed on the relative error of the liquid volume (b);
droplet sphericity at 1 s, 2 s, and 3 s of simulation time (c) (http://basilisk.fr/
sandbox/ecipriano/run/fixedflux.c).

problem considered here consists of the evaporation of a liquid plane, pro-
moted by a temperature gradient between the gas phase and the liquid phase
that remains at the saturation temperature. At the beginning of the simu-
lation, a superheated wall heats up the vapor layer, which becomes hotter
than the liquid phase, leading to phase change. The analyical solution for
this system was reported by [18], and it describes the thickness of the vapor
layer �(t) in time, as well as the temperature profile. For this simulation, the
same physical properties used by Malan et al. [18] were adopted: ⇢l = 958 kg
m-3, ⇢g = 0.6 kg m-3, � = 0.059 N m-1, µl = 2.82⇥10�4 Pa s, µg = 1.23⇥10�5

Pa s, kl = 0.68 W m-1 K-1, kg = 0.025 W m-1 K-1, cpl = 4216 J kg-1 K-1,
cpg = 2080 J kg-1 K-1, �hev = 2.256⇥ 106 J kg-1. The simulation is charac-
terized by a Jacob number equal to 29.84 and it is performed using a square
domain, with length 0.01 m (Figure 8). The initial value of the gas layer
thickness is 322.5 µm, which is selected such that at least one layer of vapor
cells is present at the beginning of the simulation, even for the coarsest level
of refinement. Symmetry boundary conditions are imposed to the top and
bottom sides of the domain; an inlet zero velocity condition is imposed on
the right side of the domain, where the temperature is fixed to 383 K; while
on the left wall outflow boundary conditions are imposed. The simulation is
performed at three different levels of refinement: 5, 6, and 7.

Figure 8 shows the temperature field in the domain after a total simula-
tion time of 10 s. The temperature profile varies in the gaseous layer from the
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Figure 8: Temperature field map and detail of the velocity jump across the interface at
10s. The white line is the 0.5 contour of the volume fraction field.

boundary condition imposed on the superheated wall to the saturation tem-
perature at the gas-liquid interface. The zoom on a domain region close to the
interface displays the strong velocity jump caused by the local volume expan-
sion. This velocity jump is correctly managed by the double pressure-velocity
coupling technique, which allows the scalar fields and the volume fraction to
be transported by velocities which are divergence-free at the interface. The
profiles reported in Figure 9 show the comparison between the simulation
results and the analytical solution at three different levels of refinement. The
thickness of the vapor layer approximates the analytical solution well even
for the coarsest grid. The analysis of the relative error on the vapor layer
thickness for the different levels of refinement shows a relative error around
0.05% already at the coarsest level of refinement, and it tends to converge
approximately with second order accuracy with increasing mesh resolution.
The comparison with Malan et al. [18] shows that the relative errors obtained
using the model described in this work are smaller and converge faster to the
analytic solution, compared to the approximately first order convergence rate
reported in [18], whose relative errors are: 0.64%, 0.39%, 0.23% for the levels
of refinement 6, 7, and 8, respectively. The faster convergence rate can be
due to the combination between the calculation of the advection velocity and
a more accurate evaluation of the interface gradients.

4.3. Epstein-Plesset Problem

This test case describes the dissolution of a spherical bubble in an under-
saturated liquid environment. The phase change process is driven by a gra-
dient of chemical species concentration between the bubble interface and the
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Figure 9: Thickness of the vapor interface (a); relative errors on the interface thickness
(b); temperature profile in the gas layer (c) at different levels of refinement (http://
basilisk.fr/sandbox/ecipriano/run/stefanproblem.c).

liquid bulk. Pure diffusive conditions are considered, meaning that no con-
vective transport in the gas phase due to the Stefan flow is taken into account.
Epstein and Plesset [39] obtained the analytic solution for the bubble radius
in time, under quasi-static conditions, meaning that the vaporization rate is
evaluated neglecting the effect of the interface motion. Under this assump-
tion, the concentration field satisfies the steady-state diffusion equation at
any time instant. This approximation is justified if the characteristic time of
the diffusion process is much shorter than that of the interface regression [39].
From a mass balance, the radius of the bubble can be obtained as:

dR

dt
= �MW

D(Ĉ � Cbulk)

⇢g

✓
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R
+

1p
⇡Dt

◆
(45)

where Ĉ and Cbulk are the interface concentrations of the chemical species and
the liquid bulk phase concentration, respectively. The concentration profile
can be obtained from the analytical solution of a species diffusion equation
in radial coordinates:

C(r, t) = Cbulk + (Ĉ � Cbulk)
R(t)

r
erfc

✓
r �R(t)p

4Dt

◆
(46)

The simulation setup was borrowed from Farsoiya et al. [40], the density of
the two phases is set to the same value equal to 1 kg m-3 in order to remove
the volume expansion term from the continuity equation, and, therefore, the
Stefan convection. The chemical species diffusivity is set to 1 m2s-1, while the
surface tension � is equal to 0.1 N m-1. At the gas phase side of the interface,
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the concentration is set to a fixed value equal to 0.8 mol m-3, and the Stanton
number is equal to 8⇥ 10�4 [40]. The simulation was performed using a 2D
axial-symmetric domain, initializing the bubble at the lower-left corner of
the domain, using an adaptive grid at maximum level of refinement 10. The
concentration is set to the bulk value (Cbulk = 0) at the boundaries of the
liquid phase. The results in Figure 10 (a) show the consumption dynamics of
the vapor bubble, which is expressed as the normalized radius of the bubble
in time. This trend approximates well the Epstein-Plesset solution during
the entire bubble lifetime. The concentration profile in time, Figure 10 (b),
is plotted by sampling the value of chemical species concentration in a single
point of the domain, corresponding to R0 + 0.2 m. From this profile, the
validity of the quasi-static approximation can be observed, since the con-
centration in the liquid phase goes from the bulk value to the concentration
value established by the phase change phenomena, in a very small transient.
The comparison between this work and the simulation reported in [40] shows
that both models are able to accurately predict the theoretical profiles for
the bubble radius and the chemical species concentration, except for small
deviations due to the square domain and the quasi-static assumption. The
model proposed by Farsoiya et al. [40] proved to have better performance in
terms of computational time, while the model described in this work required
a smaller time step for the stability of the diffusion step (Section 3.4). De-
spite this drawback, the model developed here is a more general formulation:
it can be used both for evaporation problems in which the Stefan convection
plays a major role, and also in pure diffusive conditions, like for example this
test case.

4.4. Scriven Problem

The Scriven test case analyzes a bubble expanding in a superheated en-
vironment. The driving force for the phase change process is a temperature
gradient between the interface of the bubble and the bulk phase. The pri-
mary difference with respect to the Epstein-Plesset case, is that the solution
proposed by Scriven [41] includes the Stefan convection. The analytical so-
lution is reported in [41, 42] and it describes the evolution of the bubble
radius in time, as well as the temperature field.

This test case was simulated on a 2D axial-symmetric configuration,
where the bubble with initial radius 1 mm, is placed on a square domain
with length 12 mm (Figure 11). The simulation was run at four different
levels of refinement, from 6 to 9. The adaptive mesh refinement is used to
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Figure 10: Normalized diameter profile (a), and chemical species concentration at the
coordinate R0+0.2m (b) for the Epstein Plesset problem (http://basilisk.fr/sandbox/
ecipriano/run/epsteinplesset.c).

Figure 11: Map of the temperature field and the velocity field for the Scriven test case.
Results at the maximum level of refinement and at the last time shot of the simulation
(http://basilisk.fr/sandbox/ecipriano/run/scrivenproblem.c).
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minimize the computational cost of the simulation, which was run for 0.5 s,
corresponding to a final bubble radius that is equal to twice the initial radius.
The initial radius cannot be imposed to zero, as in the analytic solution, be-
cause it would require the ability to simulate the bubble nucleation process,
which is beyond the aim of this work. The simulation setup was borrowed
from [42], and it is characterized by a large density ratio, ⇢l/⇢g = 1623, and
a Jacob number equal to 3. The following physical properties were used:
⇢l = 958 kg m-3, ⇢g = 0.59 kg m-3, � = 0.001 N m-1, µl = 2.81 ⇥ 10�4 Pa s,
µg = 1.26⇥10�6 Pa s, kl = 0.6 W m-1 K-1, kg = 0.026 W m-1 K-1, cpl = 4216
J kg-1 K-1, cpg = 2034 J kg-1 K-1, �hev = 2.256⇥ 106 J kg-1.

Figure 11 (a) shows that, despite the displacement between the reference
solution and the numerical results for the coarsest level of refinement, the
bubble radius dynamics tend to converge to the analytic solution when in-
creasing the mesh resolution. The relative error between the numerical results
and the Scriven solution for the bubble radius converges with approximately
second order accuracy. The temperature profile along the radial coordinate
is plotted in Figure 12 (c), and it shows that the profile obtained from the
numerical solution converges to the analytical profile as well. As reported by
Tanguy et al. [42], obtaining a monotonically convergent solution for this test
case depends on the method used to obtain the extended velocity for trans-
porting the interface and on the correct solution of the temperature field.
The errors obtained by Tanguy et al. [42] using the Level Set approach for
their most effective method are equal to 9.5%, 1.4%, and 1.0%, for levels 7,
8, and 9, respectively. The comparison between those results and the results
obtained using the model described in this work show that the relative errors
on the bubble radius are comparable. Obtaining convergence on this test
case without using computationally expensive extrapolation procedures is a
notable achievement: the bubble is always maintained spherical, despite the
low surface tension value, and a spherically-symmetric temperature profile
as well as a smooth velocity field are obtained.

4.5. Isothermal Droplet Evaporation

The evaporation of a multicomponent liquid droplet is tested against the
numerical results obtained by Pathak et al. [43]. These results consider a
pure liquid droplet, which evaporates due to a gradient of chemical species
concentration between the interface and the gas phase. The interface tem-
perature is taken to be constant, and therefore the interface mass fraction
and the vapor pressure at the gas-liquid interface are constant as well. The
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Figure 12: Plot of the bubble radius in time (a); relative error on the bubble radius (b);
temperature profile along the radius of the domain (c) at four different levels of refinement
(http://basilisk.fr/sandbox/ecipriano/run/scrivenproblem.c).

benchmark model proposed in [43] utilizes spherical symmetry and unsteady
conditions. The gas and the liquid phase are described using two body-fitted
grids, which are connected by the interface point. The additional transport
due to the Stefan flow is included, and no quasi-static approximations are
used.

A droplet with starting diameter of 0.4 mm is initialized at the lower-
left corner of a square domain, with dimensions equal to twice the droplet
diameter (Figure 13). This simulation was performed using the following
physical properties: ⇢l = 10 kg m-3, ⇢g = 1 kg m-3, � = 0.01 N m-1, µl =
1 ⇥ 10�4 Pa s, µg = 1 ⇥ 10�5 Pa s, Dl = 2 ⇥ 10�3 m2 s-1. Although this
test case was conceived for pure liquid droplets, in this work it was run using
the multicomponent model with four different pseudo-species. Following this
approach, each chemical species is initialized with mass fraction 0.25 in the
liquid phase, and 0 in the gas phase. Assuming that all the species have
the same physical properties, the behavior of the liquid droplet should be
equivalent to that of a pure droplet.

The simulation setup included symmetry boundary conditions at the
boundaries in contact with the liquid droplet. On the top and right bound-
aries, zero-pressure outflow conditions are used, while the chemical species’
mass fractions are solved with homogeneous Dirichlet boundary conditions.
The mass fraction at the gas-phase side of the interface is constant and equal
to 0.667, and the simulation was run at four different levels of refinement,
from 5 to 8. Figure 14 shows the comparison between the benchmark results
and the numerical model described in this work. The results show that the
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Figure 13: Map of the mass fraction profiles at three different simulation time instants.
The white line, representing the interface, is the 0.5 is-contour of the volume fraction field
(http://basilisk.fr/sandbox/ecipriano/run/pureisothermal.c).

dynamics of the square diameter decay differ substantially from the steady
behavior described by the d2 law, which indicates that the square diame-
ter decay variation is constant. Three different regions can be identified:
during the first transient (t < 0.15 ⇥ 10�4 s), the droplet experiences fast
consumption, due to the strong gradient between the interface and the gas
phase at the beginning of the simulation. Between t > 0.15 ⇥ 10�4 s and
t < 0.7 ⇥ 10�4 s the concentration of mass fraction in gas phase increases
decreasing the consumption rate, until a steady-state vaporization rate is
approached at t > 0.7 ⇥ 10�4 s. The displacement between the results ob-
tained with this model and the benchmark solution increases as the liquid
droplet shrinks. This is not surprising considering that the number of cells
per diameter of the droplet decreases as the droplet is consumed. In fact,
the higher the level of refinement, the more the square diameter decay con-
verges to the benchmark solution. The agreement between the results of this
work and the profile obtained by Pathak et al. [43] is very good, and the
transient of the droplet consumption is well-captured. Figure 14 (b) reports
the species mass fraction profiles for the highest level of refinement at three
different simulation time instants. The trend obtained from the numerical
simulations is close to the profiles obtained by Pathak et al. [43]. Since the
multicomponent model with pseudo-species is used, the mass fractions pro-
files plotted in Figure 14 (b) are the sum of the gas phase mass fractions of
each evaporating species. Using this approach, the total mass fractions are
consistent with those of the pure species.
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Figure 14: Temporal evolution of normalized droplet squared diameter (a); radius profile of
the gas phase mass fraction field at three different simulation time instants (b). The lines
are the numerical results from the model described in this work, while the markers are the
benchmark results from Pathak et al. [43] (http://basilisk.fr/sandbox/ecipriano/
run/pureisothermal.c).

4.6. Non-Isothermal Droplet Evaporation

A liquid droplet is simulated in a non-isothermal environment, meaning
that the interface mass fraction is not constant as in Section 4.5, but it is
a function of the interface temperature. The droplet is pure, the system
pressure is 28.6 bar, and gravity is neglected. The initial diameter of the
droplet is 5 µm, while the domain length (2D axial-symmetric) is twice the
droplet diameter, following the same setup reported in [43]. The complexity
of the problem and the multitude of physics phenomena involved do not al-
low an analytic solution. Therefore, the simulation results using the model
developed in this work were compared with the numerical benchmark results
provided by Pathak et al. [43]. The simulation was run at three different
levels of refinement, from 6 to 8. The physical properties selected for this
simulation are chosen in order to mimic the properties of n-heptane in ni-
trogen at high pressure: ⇢l = 626.7 kg m-3, ⇢g = 17.51 kg m-3, � = 0.01
N m-1, µl = 1 ⇥ 10�4 Pa s, µg = 1 ⇥ 10�5 Pa s, kl = 0.1121 W m-1 K-1,
Dg = 6.77 ⇥ 10�7 m2 s-1, kg = 04428 W m-1 K-1, cpl = 2505 J kg-1 K-1,
cpg = 1053 J kg-1 K-1, �hev = 3.23 ⇥ 105 J kg-1. The molecular weight of
n-heptane and nitrogen are 100 and 29 kg kmol-1, respectively. The initial
temperature of the liquid droplet is 363 K, while the environment tempera-
ture is 563 K. N-heptane mass fraction is equal to 1 inside the droplet and
zero in the gas-phase, where pure nitrogen is present at the beginning of
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Figure 15: Maps of the n-heptane mass fraction and temperature field (http://basilisk.
fr/sandbox/ecipriano/run/c7pathak.c).

the simulation. Symmetry boundary conditions are imposed at the left and
bottom sides of the domain, while outflow boundary conditions for velocity
and pressure are imposed on the top and right sides. The conditions for
n-heptane mass fraction on the top and right sides are Dirichlet boundary
conditions, with mass fraction set to 0, while the gas phase temperature is
set to a value which is constant and equal to the initial gas temperature. The
thermodynamic equilibrium at the gas-liquid interface is computed using An-
toine equation, with coefficients from the NIST database [44, 45], in order to
be consistent with the thermodynamics used in [43] to evaluate vapor-liquid
equilibrium. Figure 15 shows the evolution of the n-heptane mass fractions
and the temperature field. At the beginning of the simulation, the vapor-
ization rate is small because the liquid droplet is cold. After a short time,
the heat exchanged between the environment and the liquid droplet heats up
the liquid phase increasing the temperature and therefore the vaporization
rate of the droplet, which starts to be consumed. Figure 16 shows the square
diameter decay and the interface temperature profile throughout the simula-
tion. The square diameter profile does not suddenly decay at the beginning
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of the simulation, as in the isothermal evaporation case (Figure 14), because
in this case the interface mass fraction is not fixed and it increases with the
droplet heating from the hot environment. As the simulation proceeds, the
interface temperature increases until approaching the wet bulb temperature
of the liquid drop, which results from the interplay between the heating from
the environment and the evaporation process that cools down the interface.
The simulation results obtained with the model developed in this work con-
verge to the numerical results provided by Pathak et al. [43], for both the
square diameter decay and the interface temperature. Figure 16 also reports
the radial profiles of temperature and n-heptane mass fractions at three dif-
ferent simulation time-steps. Apart from the good agreement between the
simulation and the benchmark results, it is observed that the temperature of
the liquid droplet increases and it becomes constant throughout the radius
of the droplet. At the same time, n-heptane interface mass fraction increases
in time and it matches the benchmark numerical values, starting from the
mass fraction inside the liquid droplet, which is equal to 1, the mass fraction
drops to the interface mass fraction and it follows the benchmark profile in
the gas phase.

4.7. Static Multicomponent Droplet Evaporation

The isothermal evaporation of a binary droplet is studied, assuming the
droplet is made of two chemical species with the same physical properties
but with different volatility, in order to focus on the different vaporization
rates of the two species. Initially, the mass fractions of the two chemical
species are equal to 0.5, while an inert compound is present in the gas phase.
The initial droplet diameter is 400 µm, the domain length is 4 times the
droplet diameter, gravity is neglected and the following physical properties
were used: ⇢g = 1 kg m-3, � = 0.03 N m-1, µl = 1⇥ 10�4 Pa s, µg = 1⇥ 10�5

Pa s, Dl = 4 ⇥ 10�6 m2 s-1, Dg = 8 ⇥ 10�5 m2 s-1. The relative volatility
of the two chemical species in the liquid phase is equal to 2. In particular,
the ratio between the vapor pressure and the thermodynamic pressure is
0.8 and 0.4 for the light and for the heavy components, respectively. The
density ratio is equal to 10, to minimize the computational time required for
the simulation, allowing the study of the droplet consumption trend and the
mass conservation at three different levels of refinement: 7, 8, and 9. The
diffusivity in liquid phase is adjusted such that the product between ⇢l and
Dl is representative of the value of a hydrocarbon like n-heptane. Symmetry
boundary conditions are imposed on the left and bottom edges of the domain,

33



Figure 16: Plots of the square diameter decay in time (a); the interface temperature in
time (b); temperature profiles along the domain radius (c); mass fraction profiles along
the domain radius (d) (http://basilisk.fr/sandbox/ecipriano/run/c7pathak.c).
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Figure 17: Evolution of the mass fractions and the grid refinement for the static binary
droplet evaporation: light component (top-left), heavy component (top-right), inert species
(bottom-right) (http://basilisk.fr/sandbox/ecipriano/run/staticbi.c).

while outflow boundary conditions for velocity, pressure, and mass fractions
are imposed on the top and right sides.

Figure 17 shows the evolution of the light, heavy, and inert chemical
species mass fractions in time. The light component starts to evaporate first,
and its mass fraction inside the liquid droplet decreases preferentially close to
the gas-liquid interface. The heavy species accumulates, increasing its mass
fraction inside the liquid phase and, therefore, its vaporization rate increases
as well in time. Unlike the pure isothermal droplet (Section 4.5), the interface
mass fractions for the binary droplet are not constant, due to the variable
composition of the liquid phase.

Figure 18 reports the droplet consumption dynamics. The square diam-
eter decay evolves similarly to the isothermal pure droplet evaporation test
case. The numerical solution, at three different levels of refinement, converges
to the same solution. The markers in Figure 18 (a) do not represent the an-
alytical solution, which cannot be obtained for this test case; instead, they
plot the results obtained from the model developed in this work, but without
the solution of the non-linear system of equations. In these conditions, it
can be observed that the procedure to obtain first-guess values for the non-
linear system gives almost the same solution obtained solving the non-linear
system at the interface. This demonstrates the ability of the algorithm to
find the first-guess interface values to provide reliable results leading to the
same consumption dynamics of the liquid droplet. Figure 18 also reports the
mass conservation test. The evaporation model is said to be conservative if
the amount of each chemical species that evaporates is recovered in the gas
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phase and removed from the liquid phase. In practice, the total amount of
evaporated species:

mEvap,i =

Z tF

t0

dt

Z

V

ṁi��dV (47)

is compared with the mass of the same species in liquid phase:

mLiq,i =

Z

V

⇢lc!l,idV (48)

and with the mass of the species in gas phase:

mgas,i =

Z

V

⇢g (1� c)!g,idV +

Z tF

t0

dt

I

S

(⇢g!g,iuf � ⇢gDir!g,i) · ndS (49)

which comprises the integration of the convective and diffusive mass fluxes
across the boundaries. Figure 18 (b) and (c) reports the ratio between the
mass of the evaporated component i and the initial mass of the same com-
ponent in the gas and in the liquid phase respectively. The plots show that
the light component increases its mass in the gas phase quickly with respect
to the heavy component, and the consumption from the liquid phase follows
the same dynamics. The difference between the evaporated mass mEvap and
mLiq for the light component is estimated using a relative error, defined as
follows.

"rel =
|mEvap,light �mLiq,light|

mEvap,light
(50)

The mass conservation errors for the three levels of refinement are 0.186,
0.047, and 0.017. They improve with increasing mesh resolution.

4.8. Convective Multicomponent Droplet Evaporation

A binary droplet in forced convective conditions is studied. The droplet
has initial diameter 400µm and it is placed on a square domain (2D) with
length 36 times the droplet diameter. Initially, the droplet is placed at a
distance of 6 times the initial diameter from the left wall, and 18 times
the initial diameter from the bottom. The droplet is made of two chemical
species with the same physical properties but with different volatility, and
the same relative volatility used in Section 4.7 is adopted. The simulation
was performed at four different levels of refinement from 9 to 12, using the
quadtree discretization, which is crucial for the optimization of the compu-
tational time of this test case. Gravity is neglected, but a gas flowrate is
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Figure 18: Square diameter decay of the static binary droplet (a); ratio between the mass
of each component in gas phase and the initial mass of the same species in liquid phase (b);
ratio between the mass of each component in liquid phase and the initial mass of the same
species in liquid phase (c). Where not specified, the numerical results are obtained at the
highest level of refinement (http://basilisk.fr/sandbox/ecipriano/run/staticbi.
c).

injected from the left side of the domain, in order to have Re = 160 with the
initial properties of the simulation. Therefore, inlet boundary conditions for
velocity and pressure are imposed on the left side, while outflow boundary
conditions are used for the right wall. This simulation was performed using
the following physical properties: ⇢l = 800 kg m-3, ⇢g = 5 kg m-3, � = 0.073
N m-1, µl = 1.138 ⇥ 10�3 Pa s, µg = 1.78 ⇥ 10�5 Pa s, Dl = 1.4 ⇥ 10�7 m2

s-1, Dg = 1.25⇥ 10�5 m2 s-1. It was run in a static reference frame until the
liquid droplet reaches the right side of the domain (corresponding to almost
20% consumption of the initial droplet volume).

Figure 19 (a) shows the mass fraction of the light components at three
different time instants. When the simulation starts, the light component
evaporates faster and the evaporated species is transported by the forced
convective flux toward the right side of the domain. The selected Reynolds
number regime eventually leads to the formation of Von Kármán-like streets
which can be observed from the transported mass fraction field. Figure 19
shows the evolution of the mass fraction fields for both species inside the
liquid droplet. The non-spherically symmetric distribution of the chemical
species can be predicted by the numerical model, observing vortical structures
that induce recirculation inside the liquid phase. This phenomena has a direct
influence on the heat and mass transfer and on the consumption time of the
droplet. This configuration does not have analytical or numerical benchmark
solutions, but the trend of the square diameter decay in time (Figure 20 (a))
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Figure 19: Evolution of the light component mass fraction, and detail of the light and
heavy component mass fraction inside the liquid droplet at three different time snapshots
(http://basilisk.fr/sandbox/ecipriano/run/forcedbi.c).

shows that the consumption profile tends to the same result with increasing
mesh resolution. The mass conservation test is reported in Figure 20 (b),
where the variation of the liquid mass in the domain, computed as explained
in the previous section, is compared with the total amount of vaporizing
mass. This analysis is performed for the two chemical species in the liquid
phase and for the total liquid mass, obtaining good mass conservation for all
three cases.

5. Conclusions

This paper presents a novel numerical model for multicomponent phase
change in VOF simulations. The model describes systems with multiple
chemical species in non-isothermal environments, considering the Stefan flow.
We introduced a novel approach for the solution of the interface jump con-
dition, and geometric discretization of the scalar transport equations. The
volume expansion due to the phase change is tackled by proposing a combi-
nation between the expansion term shifting and a Double Pressure Velocity
Coupling. The implemented numerical methods were validated using classic
phase change problems: fixed flux evaporation, Stefan problem, and Scriven
problem, obtaining second order convergence rates. The model is general,
and it allows the simulation of pure diffusive systems without the Stefan
flow, like the Epstein-Plesset test case. More complex configurations, like
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Figure 20: Evolution of the square diameter decay at four different levels of refinement (a);
comparison between the variation of liquid mass in the domain for each species (solid line)
and the total amount of vaporizing species (markers) normalized by the initial liquid mass
(b) at the maximum level of refinement (http://basilisk.fr/sandbox/ecipriano/run/
forcedbi.c).

the evaporation of multicomponent droplets, reproduce the benchmark re-
sults from 1D numerical models well. The mass conservation error is small,
and it convergences with grid refinement.

The advantage of this model is the ability to simulate evaporation of
mixtures including thermal effects, and to correctly manage the interface
velocity jump also for static droplets with strong density ratio. The code
developed in this work and the simulation setups are documented and re-
leased on the Basilisk sandbox [38], allowing other researchers interested in
phase change simulations to develop and test new methods starting from an
existing framework.
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