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Copper-Catalyzed Regiodivergent Borylation of Fluorinated Alkynes and 
Palladium-Catalyzed Regiospecific Suzuki-Miyaura cross-coupling 

 

Abstract Alkenylboranes are key intermediates in modern organic synthesis, 
and they are usually obtained by borylation of alkynes. We report herein a 
highly regio- and stereoselective syntheses of α,Z- and β,Z-
trifluoromethylated-alkenylboranes via copper-catalyzed borylation reactions. 
Further functionalization by palladium-catalyzed Suzuki-Miyaura cross-
coupling have been developed and interestingly a drastic difference of 
reactivity between α- and β-borylated isomers has been identified. 
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Nowadays, the synthesis of fluorinated molecules is essential in 

drug discovery and crop science, with roughly 20% of the 

marketed drugs being fluoro-pharmaceuticals and more than 

50% of agrochemicals containing at least a fluorine atom. 1 It is 

well established that the incorporation of fluorine or fluorinated 

motifs into organic molecules will modify the physicochemical 

properties such as lipophilicity and bioavailability for instance ; 

they are used as bioisosters and therefore enhance biological 

activities.2 Hydrometallation reactions are key transformations 

in modern organic synthesis to control the stereoselectivity 

depending on the reaction conditions and the concomitant 

installation of a metal or metalloid for further functionalizations.3 

Several reports about the hydrometallation of Rf-alkynes are 

known in the literature such as hydrostannylation, 

hydrosilylation, hydrogermylation, hydroboration, 

hydrocupration or hydroalumination (Scheme 1,a-c).4 

Surprisingly, in all these methods the major product is formed 

with introduction of the metal/metalloid (M) on the C-α to the 

CF3 (Scheme 1), while metalation is reversed with biased 

substrates such as Rf-ynoates where the metal is mainly 

introduced on the C-β to the Rf moiety because of reversed 

polarization.5

 
Scheme 1: Hydrometallation of CF3-alkynes 

Few years ago, we reported an efficient method for the synthesis 

and the use of CF3-alkynes 1 in regioselective hydrostannylation, 

germylation and silylation reactions. 4i-j,6 The regioselectivity of 

the hydrometallation was mainly controlled by the polarization 

of the alkyne toward the CF3 moiety either under palladium-

catalyzed or radical conditions. More recently, we identified that 

less polarized alkynes such as ynamides were suitable substrates 

to perform palladium-catalyzed regiodivergent 

hydrogermylation and hydrostannylation reactions, where the 

regioselectivity of the metalation was controlled by the electronic 

and steric effects of the phosphorus ligands.7 Unfortunately, such 

strategy is not applicable to CF3-alkynes 1, however we 

capitalized herein on the polarization of 1 and the high 

regioselectivity of the metalation on the C-α to the CF3 to propose 

highly selective copper-catalyzed regiodivergent borylation 
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reactions of CF3-alkynes (Scheme 1d). The strategy relies on 

hydrocupration and borylcupration key steps, with HBpin or 

B2Pin2 respectively, with regioselective introduction of the 

copper on the C-α to the CF3 in both cases.8 Thermal selective 

palladium-catalyzed Suzuki-Miyaura cross-coupling was then 

developed with α- or β-borylated products. 

After a short screening of reaction parameters with CF3-decyne 

1a (see supporting information for details), we optimized two 

sets of conditions for the regioselective introduction of 

pinacolborane (BPin) on the C-α or C-β to the CF3. In condition A,9 

using CuCl (3 mol%), N-XantPhos (3 mol%), NaOt-Bu (6 mol%) 

and HBPin (1.1 equiv.) after 16 h at 50 °C in THF, we obtained a 

95:5 2a:3a ratio with 81% isolated yield for 2a. In condition B,10 

using CuCl (3 mol%), PMe3•HBF4 (6 mol%), NaOt-Bu (12 mol%), 

B2Pin2 (1.1 equiv.) and MeOH (2 equiv.) after 3 h at 20 °C in THF, 

we obtained a 1:>99 2a:3a ratio with 99% isolated yield for 3a. 

Unfortunately, use of the same ligand for both conditions A and B 

led to lower regioselectivity, but still with a clear α:β dichotomy 

by using HBpin or B2Pin2. Noteworthy, we confirmed that no 

reaction takes place without catalyst, while a 50:50 2a:3a ratio 

was obtained in the absence of phosphorous ligand with a very 

low conversion. With the optimized conditions in hands, we 

investigated the scope and limitations with conditions A and B. In 

conditions A (Scheme 2), we noticed that the borylation step is 

moisture sensitive leading occasionally to the formation of 

reduced product 4. In some cases, the α-borylated products 2  

 

 

Scheme 2: Regioselective α-borylation of Rf-alkynes. a Isolated 

yield. b Ratio 2:3 and NMR yield determined by 19F and 1H NMR 

with PhCF3 as internal standard. 

were poorly stable over purification, so we engaged the crude 

mixture in direct Suzuki-Miyaura cross coupling at room 

temperature and isolated corresponding α-arylated products 5 in 

good yields. Since previous reports mainly investigated aromatic 

substrates,4 we mainly explored aliphatic substrates which gave 

mostly high selectivity ranging from 77:23 to >99:1 α,Z:β,Z. 

Protected alcohols (1d-e) or amines (1f-g) are well tolerated, as 

well as silyl groups (1h). Interestingly, the reaction is also 

compatible with the replacement of the CF3 by a CF2H (1i) 

delivering α,Z product 2i in excellent 99% yield. An aromatic 

alkyne substrate was also evaluated leading to a low 55:45 α,Z:β,Z 

selectivity (5ka:6ka), with a significant amount of 

protodeborylation product 4.11 Conditions B (Scheme 3) were 

much more robust and excellent selectivities (up to >99:1) were 

obtained with formation of β,Z isomer (3a-j).  

  
Scheme 3: Regioselective β-borylation of Rf-alkynes. a Isolated 
yield. b Ratio 2:3 and NMR yield determined by 19F and 1H NMR 
with PhCF3 as internal standard. c Obtained after cross-coupling 
reaction with PhI (1.5 equiv.), Pd(PtBu3)2 (5 mol%), Cs2CO3 aq. (3 
equiv.), 50 °C. d Phox (6 mol%) was used as ligand. 

The β-arylated product 6 can be easily prepared following a 

similar two steps sequence, such as for 6ea obtained in 88% over 

two steps. Surprisingly, reaction with silylated alkyne 1h did not 

yield adduct 3h, but only isomer 2h was formed instead in 



 

  

excellent 99% NMR yield and regioselectivity, probably because 

of the very hindered TBDMS group which makes the β-position 

poorly accessible. The regioselectivity drops a little bit with CF2H 

(3i) in classical conditions, but it rises a bit more up to 9:91 2i:3i 

by replacing PMe3 by Phox ligand. With aromatic substrates (1k), 

the BPin adducts 3 were not very robust, and a slight decrease in 

selectivity was observed up to 10:90 2k:3k, but the 

corresponding cross-coupling product 6ka was obtained in 57% 

yield over two steps. In that case replacing the PMe3 by Phox 

ligand was detrimental and gave a 50:50 mixture of α:β isomers. 

Based on previous reports,8 we can propose the following 

mechanisms (Scheme 4): In both conditions, the first step is the 

formation of the copper active species Cu-H and Cu-BPin 

(condition A and B, respectively). The key intermediates are 

resulted from the cis addition of these last species to the alkyne 

with in both cases selective introduction of the copper on the 

carbon adjacent to the CF3 (C-α). In condition A, a 

transmetallation with HBPin delivers compound 2 with 

concomitant regeneration of the active Cu-H species. In condition 

B, an alcoholysis with methanol generates compound 3 and Cu-

BPin is regenerated by reaction of Cu-OMe with B2Pin2. 

 

Scheme 4: Proposed mechanisms for the regiodivergent 
borylation of CF3-alkyne. 

Both conditions A and B were then scaled up on gram-scale 

(Scheme 5,a) and the catalyst loading was even decreased to 0.7 

mol% of copper without noticeable changes in term of 

regioselectivity and yield. We then tried to capitalize on the 

formation of a vinyl-copper intermediate 7 (in conditions B) and 

we envisaged to trap this intermediate with electrophile to 

generate a tetra-substituted fluorinated alkene 8 (Scheme 5,b). 

Thus, by replacing the methanol as proton source (condition B) 

by electrophiles such as MeOSnBu3 or MeI, we obtained products 

8aa and 8ab in 35% and 69% yields, respectively.12-13 

 

Scheme 5: Gram scale regiodivergent borylation of CF3-alkynes 
and trapping of the vinylcopper intermediate with electrophiles. 
a Isolated yield. b Ratio 2a:3a and NMR yield determined by 19F 
and 1H NMR with PhCF3 as internal standard. 

 

Finally, we confirmed that α- and β-BPin olefins 2a and 3a could 

be easily engaged in classical Suzuki-Miyaura cross coupling 

(Scheme 6).14 After a short optimization, we found that using a 

catalytic amount of Pd(PtBu3)2 and aqueous solution of cesium 

carbonate in THF was an efficient system to perform cross-

coupling of both 2a and 3a with various aryl- and 

heteroaryliodides. Interestingly, both isomers react differently, 

α-BPin isomer (2) readily reacts at room temperature while at 

least 50 °C is needed to transform the β-BPin isomer (3) as 

confirmed by sequential regioselective cross-coupling from an 

equimolar mixture of 2a:3a (see supporting information for 

details). Cross-coupling proved to be effective with electronically 

diverse aromatic adducts (5aa-ac and 6aa-ac) in good to 

excellent yields. Heterocycles are also well tolerated (5ad-ae and 

6ad-ae). Noteworthy, introduction of 7-aza-indazole substrate in 

β position (6ad) requires to increase the reaction temperature 

up to 75 °C to reach a descent yield of 82%. Furthermore, the use 

of vinylbromide as coupling partner allowed the formation of 

dienes 5af and 6af in good yields. We propose that the difference 

of reactivity of 2a and 3a in cross-coupling reaction is mainly due 

to difference of electronic density of the carbon bearing the BPin 

in compounds 2 or 3. Due to the high electron-withdrawing effect 

of CF3 and BPin group, the C-α to the CF3 in compound 2 is 

relatively electronically enriched and becomes a competent 

nucleophile. In contrast, the C-β to the CF3 in compound 3 is 

rather electron depleted and thus a much weaker nucleophile for 

Suzuki−Miyaura cross-coupling, which means that the reaction 



 

  

requires higher activation energy. Further studies are underway 

in our group to verify this hypothesis. 

 

Scheme 6: Thermal selective palladium-catalyzed Suzuki-
Miyaura cross-coupling. a Isolated yield. b NMR yield determined 
by 19F and 1H NMR with PhCF3 as internal standard. c 
Vinylbromide was used as coupling partner. d Reaction 
performed at 75 °C. 

In conclusion, we have developed an efficient regiodivergent 

copper-catalyzed borylation of polarized Rf-alkynes, thanks to 

regioselective hydrocupration and borylcupration key steps. We 

confirmed the possibility to scale-up the reactions on gram scale 

while decreasing the catalyst loading, and we proved that vinyl-

copper intermediate could be trapped with electrophiles. 

Thermal selective palladium-catalyzed Suzuki-Miyaura cross-

coupling was also developed to selectively functionalize α- or β-

borylated olefins. 
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