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Pythagorean Numbers and the Calculation of the Masses of the Elementary Particles

Here, we attempt to calculate the particle masses for all known elementary particles starting from the Rydberg equation and from the Sommerfeld fine structure constant. Remarkably, this is possible. Next, we try to explain why this is possible and what the meaning of the approach seems to be. Thereby, we find some interesting connections. In addition, we realize that there are two different kinds of mass-charge binding energies in an elementary particle: the internal mass-charge binding energy and the external mass-charge binding energy. These two kinds of mass-charge binding energies can explain the higher masses of the highly charged brother particles in some of the heavier particle triplets (such as the charmed sigma particles).

Introduction

The aim of this study is to find a general formula for the calculation of the masses of all known elementary particles.

Starting from the well-known connection between the Rydberg constant and the electron mass, we find:
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where alpha is the Sommerfeld fine structure constant. The Sommerfeld constant according to Ref 1. Now, there are several methods and formulas for calculating the Sommerfeld fine structure constant, which is equal to approximately 1/137, by using the mathematical constant pi.

We use the following formula for the Sommerfeld fine structure constant alpha:

𝛼 = (2𝜋) • √√ (1 - 1 3𝜋 ) 
(3𝜋) 3 Next, we consider the smallest quantum of mass and/or energy according to the Rydberg energy: This number is postulated here to be the smallest possible amount of mass and/or energy involved in crystallization and mass formation.

𝐸 𝑅𝑦𝑑𝑏𝑒𝑟𝑔 =
From both equations above, we obtain a formula for the electron mass, as follows:
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We now consider this equation to be a special case of the following generalization to the following general equation.

General mass formula for all elementary particles

𝑚 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 2 𝑎 3 𝑏 (3𝜋) 𝑐 (
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) ) 𝑑 𝑚 𝑅𝑦𝑑 , with a=-1, b=2, c=4, and d=4 for the electron e

We now postulate that we can obtain all other particle masses through different combinations of (a,b,c,d)-tuples.

For this purpose, a, b, c, and d are considered to be natural numbers and/or negative numbers.

The general mass formula has the form of the number of 2-particle interactions times the number of 3-particle interactions times a frequency quotient times the mass quantum.

This formula mainly calculates the binding energy originating from the strong interactions within a particle.

With this approach, we can now calculate the masses of all other elementary particles. For this purpose, we use the (a,b,c,d)-tuples shown in Table 1. From this table, we conclude the following interpretations for the factors a, b, c, and d:

The a and b factors seem to be related to the substructures of the elementary particles, and the c and d factors seem to be related to the bindings of these substructures and/or the vibrations of a harmonic oscillator.

It seems that for leptons, c=d, and for vector bosons, a=b=0.

For mesons, b=0, so the term 3 b becomes 1.

For baryons, we have nonzero a and b factors; for most baryons with spin 1/2, a is -3 while b is 2, and for most baryons with spin 3/2, a is -1 and b is also -1.

The next question is what the physical meanings of the different terms in the mass equation are.

Interpretation of the frequency quotient

Within the framework of the strong interaction, there appear to be two different basic frequencies. The binding of each elementary particle can involve different amounts of these two fundamental frequencies.

Due to the similarity of these two frequencies to the damped and undamped frequencies of a mechanical spring-mass system, we will now name one frequency the "undamped" frequency and the other frequency the "damped" frequency.

Each elementary particle can absorb different amounts of these damped and undamped frequencies to form the binding of the strong interaction. The formula for calculating the mass of an elementary particle consists of four factors, all of which are multiplied together: 1. The first factor describes the number of two-body interactions, i.e., the "two-body springs".

2. The second factor describes the number of three-body interactions, i.e., the "three-body springs".

3. The third factor is the frequency ratio, that is, the ratio between the "damped" and "undamped" vibrations. 4. Finally, the fourth factor describes the smallest possible amount of energy that can be absorbed by the system, i.e., the energy or mass quantum.

Quark-quark binding as a damped mass-spring system

If we start from the beginning with the resonance behavior of a mass-spring system, then we have the following well-known relationship for the eigenfrequency of a mass-spring system.

Eigenfrequency equation:
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D is the effective spring constant; B is a damping constant, which is proportional to the velocity of the movement of the mass-spring system; m is the mass; and f is the frequency.

Without any damping, we obtain the following eigenfrequency equation, without any damping (a):

Quark-quark binding as an undamped mass-spring system
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If we now look at the simple eigenfrequency equation for a mass-spring system, we can identify the following analogous points and differences in regard to the situation of interest here. The situation here most likely describes the strong force rather than a simple mass-spring system. The following features are prominent:

-The effective spring constant D of the strong interaction seems to be somewhat proportional to the mass of the system. Therefore, the more mass a system has, the stronger the strong interaction seems to be. In short, the following approximation can be adopted: Dm  -Next, the damping constant B of the strong interaction also somewhat seems to be proportional to the mass of the system, leading to the following approximations: Bm  
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While the eigenfrequency equation determines the frequency, it also determines the mass of the system. At the same time, the mass itself is part of the equation. Therefore, in the end, the mass appears on both sides of the equation, left and right. Detailed consideration reveals that this equation is a recursive system. To obtain linear relationships for both the spring constant and the damping constant, both constants should be proportional to the mass of the system, but these are linear approximations only. The exact formula that needs to be calculated is a recursive formula. The mass appears on both sides of the resulting equation, and because the frequency takes values equal to multiples of 2pi, the mass is also a multiple of 2pi. This is the origin of the 3pi term in the denominator. Furthermore, because there are 8 gluons, we must take the 8th root rather than the square root. Therefore, the pi-related terms c and d both describe multiples of the eigenfrequency without any damping (a) and with damping (b).

Further considerations regarding the harmonic oscillator and the pi-terms c and d

Nevertheless, it is unclear why the factors before the pi-factors are 3 and not 2, as they should be according to the mass-spring system analogy. However, it could also be that they are not equal to exactly 3 but rather to a value close to 3 that derives from a square root. Such a factor close to 3 could be, for example, 2 x sqr(3) or 2 x sqr(sqr(5)). Interestingly, the quark-quark potential, according to the quantum chromodynamics (QCD) theory of the strong force, contains both a harmonic spring component and a 1/r component, which is related to strong damping with respect to movements and oscillations. Analogously, the quantum oscillator described here by means of pi-terms should also contain two components: an undamped harmonic component, which is related to the linear spring relationship, and a damped component.

From these assumptions, we can draw further conclusions as follows:

When the pi-(c)-term describes an undamped harmonic quantum oscillator, we know that the spring constant of the harmonic quantum oscillator is linearly proportional to the energy and/or mass of the system. In other words, each particle has its own spring constant, which is proportional to the energy content or mass of that particle.

When the pi-(d)-term describes a damped quantum oscillator, we know both that the spring constant of the damped quantum oscillator is linearly proportional to the energy and/or mass content and that the damping constant is also linearly proportional to the energy and/or mass content of that particle.

In other words, each particle also has its own damping constant, which is again proportional to the energy and/or mass content of that particle.

Regarding the problem of the eighth root, which appears here in the denominator, it could also be that it is not, in fact, the eighth root but rather the square root and that all factors d then need to be divided by 4. Thus, it could be that the d factors are smaller than they appear to be here. In this case, they all need to be divided by 4 to ensure that they can fit into the square root.

Interpretation of the a and b factors of the general mass equation

If we now consider the a and b factors of the formula for the particle mass calculation, we may get the impression that these factors seem to describe interactions between subelementary subparticles (or quarks).

Accordingly, the a factor seems to describe double subparticle (particle-particle) interactions, and the b factor seems to describe triple subparticle (particle-particle-particle) interactions.

If so, a seems to describe the 2-quark (quark-antiquark) interactions that occur in mesons.

Similarly, b seems to describe the 3-quark (quark-quark-quark) interactions that occur in baryons.

Moreover, the triple square-root term describes wave-theoretical conditions such as wave vibrations and/or other wave conditions that need to be fulfilled resulting from Schrodinger's equation. Therefore, c and d describe "harmonic overtones" and/or wave conditions that need to be fulfilled for energy to crystallize into standing waves and, therefore, into particles.

From these postulates, we can derive the following considerations:

It seems as though the leptons are composed of subparticles, as they have a and b factors and therefore seem to involve particle-particle and particle-particle-particle interactions very similar to the quark substructure of baryons. Such a substructure of leptons has also been described in previous models, e.g., in the rishon model (the Harari-Shupe preon model, cp Ref 3) and in the parton distribution function (PDF) model of leptons. Additionally, the Higgs boson bound to an electron seems to be explainable by means of an analogous PDF.

The rishon model was proposed by Haim Harari (Ref 3), a theoretical physicist and president of the Weizmann Institute in Rehovot, Israel. According to this model, the positron has the structure TTT, and the electron neutrino has the structure VVV. The structure of the electron is anti-T, anti-T, anti-T and therefore is very similar to that of a neutron (ddu) or a proton (duu).

The rishon model also states that quarks are composed of three rishons/preons. This is also consistent with the results given here, as we see that quarks are composed of three smaller particles.

Therefore, it makes sense, based on both theoretical considerations and symmetry considerations, to postulate a substructure of leptons that should be identical to the substructure postulated here.

However, to date, no such lepton substructure has been confirmed or found in experiments.

Because the a and b factors of the muon are similar to the a and b factors of most baryons, the muon seems to be composed of three subelemental preons. This conclusion is identical to the postulates of the rishon model. In the rishon model, the muon is described as anti-T, anti-T, anti-T and is therefore similar to a baryon, which is composed of three quarks.

Because the vector bosons W and Z do not have nonzero a and b factors, they do not seem to be composed of any subparticles, or at least those subparticles do not interact.

Because mesons have only an a factor but not a b factor, mesons are composed of two particles only, in agreement with the quark model of mesons. The only exceptions to this rule are the mesons that are superpositions of several single particles.

Because baryons have both a and b factors, they seem to be composed of three subparticles (quarks).

All baryons except the proton have a nonzero a factor in addition to the b factor, so they additionally have subparticle-subparticle interactions (2 a ). Because the proton is the only one of these particles that is stable, it seems that these a-factor-related interactions are responsible for the decay of these particles. Therefore, within these particles, there are forces and interactions of the 2 a type, which lead to instability through additional particle-particle interactions.

Changing the spin in mesons, i.e., going from the pseudoscalar mesons with spin 0 to the vector mesons with spin 1, does not much alter the factors except that the d factor transitions from low values such as 7 (for the D particle) to higher values such as 12 (for the D* particle). This is consistent with the higher spin corresponding to a higher-energy variant of the same particle.

On the other hand, changing the spin in baryons, e.g., going from Sigma (spin ½) to Sigma* (spin 3/2) or from Chi (spin ½) to Chi* (spin 3/2), results in considerably greater differences, as the a factor changes from -3 to -1 and the b factor changes from 2 to -1. Hence, we must interpret this as a decrease in both the particle-particle (2 a )-type interactions and the particle-particle-particle (3 b )-type interactions in spin-3/2 baryons. In general, for the higher spin, these particles seem to have fewer and weaker intraparticle interactions.

In the 1960s, a theory known as vector meson dominance (VMD) was developed. In this theory, a superposition of electromagnetic photons and vector mesons is important for explaining the interaction of photons with hadronic matter. Therefore, in this theory, the role of the vector mesons is similar to that of the vector bosons. This is consistent with the high similarity between the a and b factors in the table above. For vector bosons, a and b are both zero. For vector mesons, either a and b are both zero, as for K*, or a is three and b is zero, as for Rho and Omega. Therefore, the vector mesons seem to be particles without many intraparticle interactions. Similar to vector bosons, they have either no intraparticle interactions (as in the case of K*) or only very few intraparticle interactions.

At the same time, this could be the explanation for the long half-life of the K-on.

The particle radius

The damping of the strong interaction should decrease with the distance between the subparticles. Because of this inverse relationship between damping and distance, one should also be able to calculate the radii of the elementary particles. The radius should be somehow inversely related to the quotient d/c and/or proportional to the quotient c/d. Therefore, if d is high, then the radius of that particular particle should be small, and if d is small (as for the pions, for example), then the radius should be large.

However, for every mass-spring system, the radius also depends on the masses and their distribution. Therefore, particles with a small mass, such as leptons, should have a smaller radius than particles with a higher mass, such as baryons. The rishons, which are the constituents of leptons, have smaller masses than the quarks, which are the constituents of baryons; therefore, the radii of leptons should be smaller than those of baryons.

Coupled mass-spring oscillators

The different mesons and baryons can ultimately be seen as coupled mass-spring oscillators. The individual mesons and baryons thus have very different mass combinations of their constituent quarks.

Depending on how large the mass differences of the individual constituent quarks are, the oscillations of the mesons and/or baryons will be very different and have different degrees of freedom. The number of degrees of freedom and the symmetries are obviously related to the values of a, b, c and d. This can easily be seen from the fact that for particularly symmetrical particles such as the proton, the values of some of the a, b, c, and d factors are zero. This is similar to the nature of valence oscillations and molecular spectra, which depend on molecular structures.

Conclusions regarding the damped and undamped mass-spring motion laws for the strong interaction and the discovery of the Pythagorean numbers

When we consider the well-known laws governing the motion of damped and undamped massspring systems, we can conclude that the motion and force laws for the strong interaction must be slightly different from these laws.

The law for the frequency should be as follows for the undamped case: For the damped case, we obtain the following frequency relation:
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where B is the damping constant of the elementary particle.

Finally, from the parallelism of the potential of the strong interaction and the above formula for the spring constant, we obtain the following:
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Discovery of the Pythagorean numbers

Another fascinating observation is that we can find many Pythagorean numbers among the (a,b,c,d)tuples listed above. In particular, the values of the frequency-related factors c and d are always Pythagorean numbers. This can be seen very easily from the c and d numbers of the quarks, which are 8, 15, and 17. Moreover, most of the other numbers, as well as all of the c and d numbers, are Pythagorean numbers. Specifically, it seems as though for staple elementary particles such as quarks, the frequency numbers are low Pythagorean numbers. The higher the Pythagorean numbers are and the farther away they are from the low Pythagorean tuples, the less stable are the resulting particles. Notably, most of the Pythagorean numbers are a and b numbers; c numbers are rare. In addition, all of the Pythagorean tuples are incomplete, meaning that we only have a or b or c numbers. Moreover, some of the Pythagorean numbers are very high, such as 100 for the bottom quark. Nevertheless, it can be inferred that such high Pythagorean numbers lead to unstable particles, as these particles are able to form smaller particles with lower Pythagorean numbers.

Internal Resonance

According to the concept of internal resonance, elementary particles absorb energy at the exact frequency at which internal resonance occurs.

Energy transfer between the undamped and damped inner springs gives rise to this internal resonance. The two springs interact, and the energy transfer between the two springs is maximal at the resonance frequency.

Thus, the frequency quotient corresponds to the resonance case of this internal energy transition. In this case, the excitation frequency is the undamped frequency. The absorption frequency, which appears in the denominator of the resonance quotient, is the damped frequency, corresponding to the damped spring.

The phenomenon of increased energy absorption at the resonance frequency is also called resonance magnification, amplitude magnification (amplitude resonance), and/or energy magnification. The mathematical formula that describes the resonance magnification of a mass-spring system is almost identical to the frequency quotient here, with 3 pi as omega zero.

Two types of mass-charge binding energies: internal and external

When one is calculating the masses of the elementary particles, there are apparently two different types of mass-charge binding energies: the mass-charge binding energy of the entire new particle, or the so-called external mass-charge-binding energy, and the internal mass-charge binding energy of the constituent quarks.

The external mass-charge binding energy is calculated based on the total mass of the newly formed particle interacting with its charge and is responsible for the formation of particle triplets or particle multiplets of different charge and mass (e.g., the neutron and proton or the three sigma particles).

The resonance formula can be used to calculate one of the masses of a particle multiplet. The other masses of the particle multiplet are then calculated by considering the external mass-charge binding energy (Figure 1).

The second type of mass-charge binding energy is the internal mass-charge binding energy. It arises from the interaction of the masses of the constituent quarks with the charge of the particle. The internal mass-charge binding energy is responsible for the deviation of the experimental masses from the masses that are theoretically calculated using the resonance formula for particles with higher (more massive) constituent quarks and is only noticeable for particles that contain the charm quark or the bottom quark (Figure 2).

Thus, there are two mass-charge binding energies, which are to be calculated separately and sequentially, for each particle: first the internal, and then the external. The calculation depends on the specific composition of the particle of interest. The fact that there are two separate mass-charge binding energies can lead to the observed "mass overlaps", as experimentally found for the three charmed sigma particles (2453/2452/2453).

1. The internal mass-charge binding energy arises from the constituent quarks and is calculated based on the charge of the particle times the masses of the constituent quarks.

2. The second, external mass-charge binding energy arises from the total mass of the particle times the charge. The total mass is the sum of the constituent quarks plus the binding energy of the strong interaction (which can be determined using the resonance formula).

3. Then, the final mass of the particle is calculated in the following way:

The two mass-charge binding energies apply consecutively, one after the other; i.e., the first (internal) mass-charge binding energy already greatly reduces the total mass of the particle, and thus, there is only a slight further deviation due to the second (external) mass-charge binding energy.

When one is calculating the internal mass-charge binding energy from the masses of the constituent quarks and the charge, the mass-charge binding energy due to heavy quarks can be so great that the mass of the resulting particle is already significantly reduced. This first reduction is also greater with higher charge. Consequently, for example, the first (internal) mass-charge binding energy for the charmed sigma++ will be greater than that for the charmed sigma+, which, in turn, will be greater than that for the charmed sigma 0.

Thus, in the case of the highest-charged particle of a triplet, the calculation of the second (external) mass-charge binding energy starts with an already significantly reduced particle mass compared to its less highly charged brother particles, resulting in a lower second mass-charge binding energy and a lower second reduction. 



  With these assumptions, we can obtain the following from the above eigenfrequency relationship with damping (b):

  the spring constant of the elementary particle.
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Table 1 (a,b,c,d)-tuples for elementary particles

 1 

	a	b	c	d				resulting	resulting
	2 𝑎	3 𝑏	(3𝜋) 𝑐				𝑑	mass	particle
			(	1 √√√ (1 -	3𝜋 1	)	)	in MeV/c2
	leptons						
	-1	2	4	4				0.5109	electron	TTT
	-3	2	7	3				105.44	muon	TTT*
	1	2	7	7				1784.49	tauon	TTT**
	quarks						
	1	2	4	8				2.16	up	u, TTV, TVT,
								VTT
	2	2	4	8				4.67	down	d, TVV, VTV,
								VVT
	2	3	6	15			1270	charm	c
	3	2	5	17			92	strange	s
	1	2	9	13			172421	top	t
	2	3	6	100			4184	bottom	b
	vector						
	bosons						
	0	0	10	5				80700	W
	0	0	10	14			91554	Z
	0	0	10	36			124634	H
	mesons						
	-1	1	7	0				134.8	pi 0	(uu-dd)/2
	-1	0	8	11			494.128	K+	us
	-1	-2	9	15			547.299	eta 0	uu+dd-2ss
	0	0	8	9				960.9	eta prime	uu+dd+ss
	1	0	8	7				1868.71	D+	cd
	1	0	8	11			1976.5	Ds+	cs
	-1	0	9	20			5283	B meson	ub
	-1	0	9	22			5433	strange	sb
								meson
	-1	0	9	33			6339	charm	cb
								meson
	vector						
	mesons						
	3	0	7	5				771	rho 0	(uu-dd)/2
	0	0	8	4				895.872	K*0	ds
	3	0	7	6				782	omega	(uu+dd)/2
	3	0	7	25			1020.7	phi	ss
	1	0	8	12			2004	D*0	cu
	1	0	8	43			3095.6	J/phi	cc
	baryons						
	0	-2	9	4				938.15	proton	uud
	-3	2	8	11			1111.788	lambda	uds
	-3	2	8	16			1192.5	sigma 0	uds
	-3	2	8	18			1226.4	delta	ddd
	-3	2	8	23			1315.5	xi 0	uss
	-1	-1	9	3				1387.6	sigma-*	dds

Therefore, in the first step (the internal mass-charge binding energy), the mass is more greatly reduced when the particle is more highly charged.

The total mass of a more highly charged particle can thus remain significantly higher than it should be (or, from a different perspective, cannot be reduced sufficiently) since the second (external) masscharge binding energy is also significantly smaller than it should be due to the excessive reduction in mass resulting from the internal process.

Both effects occur because after the calculation of the internal process, the mass of a more highly charged particle is already much smaller than the mass of its less highly charged (brother) particle, and this lower mass is then carried over into the second calculation process. Thus, the mass reduction of a more highly charged particle in the first mass-charge process can reduce this particle mass to such an extent that the charge-related mass dependence of the corresponding particle triplet is nearly completely, or even completely, eliminated (e.g., the charmed sigma triplet, with masses of 2454/2453/2454) .

We so come to the following mass formula:

Coefficients of the inner and outer mass charge binding energy

The following coefficients result for the inner and outer mass of charge-binding energy e = 0.00177386 f = 0.000483380 where f a is the outer MC and e the inner MC for the proton neutron particles and similar also for the sigma particles.

more exactly e and f are functions of the radius e(r)=1/r and f(r)=1/r At the transition from proton which follows from the resonance formula to the neutron both MCs must be added.

Similarly from sigma 0 1192.6 to sigma-1197.4 also both MCs need to be added. The above formula is a parabola with regard to the charge. One can see the parabola with regard to the charge very clearly at the charmed sigma particle triple. This demonstrates that the radius gets very small for the charmed sigma particles leading to an e-value of 0.1958221 and to an f of 0.00383