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A Level-Set Based Topology Optimization for Maximizing the
Torque of Synchronous Reluctance Machines
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2Altair Engineering, Meylan,France

The paper presents a Level-Set based topology optimization method for improving the magnetic torque of electrical motors such
as synchronous reluctance machines using a 2D magnetostatic finite element context modelling. The novelty is the use of a fully
analytical expression for the torque sensitivity analysis based on the virtual work principle which is more accurate and general
than other methods, and its application to a Level-Set implementation. The numerical study of a synchronous reluctance machine is
presented. Then, the Level-Set method is detailed in a general context. The corresponding analytical continuous sensitivity analysis
using the adjoint method to maximize the torque is expressed and validated. Finally, the application to the optimization of the rotor
of a synchronous reluctance machine is shown to illustrate the efficiency of the method.

Index Terms—Topology Optimization, Torque Sensitivity Analysis, Level-Set method, Synchronous Reluctance Machines.

I. INTRODUCTION

SYNCHRONOUS RELUCTANCE MACHINES (SynRM)
have many benefits. They offer interesting performances

and do not need permanent magnets which are rare and
expensive. However, their torque is mainly determined by the
topology of their rotor. This topology can be hard to guess
and requires an expensive design time for engineers [1], [2].
Topology optimization is a method allowing to find an optimal
material distribution on a target region. Thus, it seems to
be a really interesting approach to discover new designs in
a finite element modeling context since it completely avoids
the need of any prior intuition on the optimal design of the
machine [1], [2].

There are two main gradient-based methods of topology
optimization [1]. The first is the so-called "Solid Isotropic
Material with Penalization" (SIMP) method [2], which is a
density based approach to parametrize a material distribution
on the mesh elements of the target region. This density can
then be used as an optimization parameter to find an optimal
distribution. The SIMP method is known to have numerical
issues such as checkerboard patterns and "gray scales" re-
sults [1]. An alternative is the Level-Set (LS) method [3]–[5].
The principle is to track a design by its borders using the zero
isovalue of a tracking function ϕ. Then, ϕ is updated iteratively
in a descent direction for the given optimization problem.
Both methods are gradient-based, and thus need the sensitivity
analysis (SA) of the optimization objective and constraints
with respect to the optimization variables as a descent direction
provider.

The LS method used in the paper is presented in [4], [5]
and uses a density-based approach to fit in the finite element
modeling of the SynRM. In such context, the SA is usually
done using the adjoint method [1], [2], [6], [7]. The most
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widely used method for the computation and the SA of the
torque is the Maxwell stress tensor [2], [3]. The virtual work
method (VWM) [8] is an alternative to this method. It is known
to have a better numerical behavior and is not dependent on
the choice of a surrounding computation path [8], [9]. In the
previous work [6], a discrete SA of the torque based on the
VWM has been presented and detailed in the case of free shape
optimization. The contribution of this paper is the presentation
of a continuous version of this SA in a topology optimization
context and its application on a LS optimization algorithm. In
Section II, the 2D nonlinear magnetostatic numerical analysis
context of a generic SynRM is presented, along with the
integration of a material density in this resolution process.
Then, the complete LS method and the corresponding SA are
presented in Sections III and IV, respectively. Finally, Section
V presents the application of this method to the optimization
of a SynRM.

II. MAGNETOSTATIC CONTEXT

A. Finite element model

A SynRM is made of distinct parts. The rotor ΩR is the
most important part for the design of the machine since its
topology mainly determines the performances of the machine.
The stator ΩS is made of iron and coils. The last parts are
the air gap ΩA and the shaft ΩT . The air gap is numerically
important since the torque is computed in this area with
the VWM [8]. The complete domain of study is denoted
Ω = ΩA

⋃
ΩT

⋃
ΩR

⋃
ΩS .

The motor is studied under 2D nonlinear magnetostatic con-
ditions. The Newton-Raphson (NR) algorithm is used to solve
the problem. The matrix iterative NR assembly at iteration k
reads S(A(k))∆A(k+1) = b(k) with A the unknown nodal 2D
magnetic vector potential and ∆A(k+1) = A(k+1) − A(k).
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This system is built from the following classical weak B-
conforming formulation of the 2D magnetostatic problem:

∀A′ ∈ H1
0 (Ω),

∫
Ω

(∇×H − J) .A′dΩ = 0 (1)

H = ν(|B|)B (2)

with ∇× the 2D curl operator, H the magnetic field,
B = ∇ × A the magnetic induction (T ), A the unknown
continuous 2D potential vector, ν the reluctivity following the
nonlinear B(|H|) curve in the ferromagnetic parts, ν = ν0 the
reluctivity of vacuum in air parts, and J the supply current
density (A.m−2) in the coils. The classical expressions of
S = (Sij)1≤i,j≤n and b = (bi)1≤i≤j read:

Sij =

∫
Ω

(∇× τi)
T ∂H

∂B
∇× τj dΩ, (3)

bi =

∫
Ω

J.τi −HT∇× τi dΩ, (4)

∂H

∂B
=νI+

1

|B|2

(
∂|H|
∂|B|

− |H|
|B|

)
BBT , (5)

where n is the number of mesh nodes, τi is the 2D nodal
shape function at mesh node i, ∂H

∂B the incremental reluctivity
tensor and I the identity tensor.

B. Nonlinear resolution in a density-based optimization con-
text

Topology optimization methods are usually based on the
definition of a continuous density ρ such that 0 ≤ ρ ≤ 1 which
parametrizes the pointwise behavior of the ferromagnetic
material in the optimization area [1], [2]. ρ = 0 represents
the behavior of air, ρ = 1 the one of the material and
the non-physical intermediate density values (0 < ρ < 1)
should be avoided in the final result. Using this definition, the
optimization problem can be rewritten as finding an optimal
density on a given region, and ρ can be used as the design
variable of the problem [1], [2], [5], [7].

The density is mapped to the material behavior by editing
the reluctivity definition. Thus, the constitutive law (2) be-
comes:

Ĥ = [(1− ρ)ν0 + ρν]B = ν̂B, (6)

where ν is the initial reluctivity of the ferromagnetic material,
and ν̂ the one taking into account the density. This new mate-
rial law must be taken into account in the NR resolution [7].
Equations (3)-(5) are transformed into (7)-(9):

Sij =

∫
Ω

(∇× τi)
T ∂Ĥ

∂B
∇× τj dΩ, (7)

bi =

∫
Ω

J.τi − ĤT .∇× τi dΩ, (8)

∂Ĥ

∂B
=ν̂I+

ρ

|B|2

(
∂|H|
∂|B|

− |H|
|B|

)
BBT . (9)

This adaptated nonlinear resolution is used to implement the
optimization method presented in Section III.

III. THE LEVEL-SET METHOD

The principle of the LS method is to track the design of the
rotor using an implicit definition of the design boundaries. A
Level-Set function ϕ : R× ΩR 7→ R is defined such that:

ϕ(t, x) < 0 if x is in air,
ϕ(t, x) > 0 if x is in a ferromagnetic part,
ϕ(t, x) = 0 if x is at boundary,
ϕ(0, x) matches with the input design,

where t is a pseudo-temporal variable used to advect the
design.

A. A Level-Set method based on radial basis functions

The radial basis function method [4] is used. The principle
is to discretize ϕ in a basis of radial functions (ϕi(x))1≤i≤nR

defined on the nR nodes of the mesh of ΩR. Thus, ϕ can be
written as:

ϕ =

nR∑
i=1

αiϕi. (10)

Note that ϕ is determined by the coefficient α = (αi)1≤i≤nR
.

As mentioned in introduction, the principle of the optimization
is to iteratively update α in a descent direction for the opti-
mization problem until convergence. Thus, α is the optimiza-
tion design variable, and as any gradient-based optimization,
the sensitivity analysis of the objective with respect to the
design variable is needed and is presented in Section IV.

B. Length scale control and numerical stability

In order to enforce numerical stability and achieve length
scale control on the method, a differentiable radius based
filter F is applied to α as suggested in [5]:

v = F(α)j =

∑Nj

k=1 wj,kαk∑Nj

k=1 wj,k

, (11)

where the sums are on the Nj mesh nodes in the neighborhood
within R radius around mesh element j and wj,k(xk) weights
depending on R and on the distance of node k to element j.
This filter enforces numerical stability of the method and
prevent the presence of small holes or hinges in the process [5].

C. Level-Set mapping to a density-based process

After the filtering step, values are mapped to a density-like
quantity ρ which parametrizes the reluctivity as in Section II.
This mapping is done using a smooth Heaviside projection
approximation ρ = H(v) to ensure differentiability of the
problem. The final density-like quantity used reads:

ρ =H(F(α)) = H(v), (12)
ν̂ =(1− ρ)ν0 + ρ(ν − ν0). (13)

This formulation has been integrated into the nonlinear mag-
netostatic resolution (7)-(9).
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IV. CONTINUOUS SENSITIVITY ANALYSIS OF THE
MAGNETIC TORQUE

The advection process used to update ϕ is achieved by
solving an ordinary differential equation system for α [4].
This step requires the sensitivity of the objective with respect
to the αi. In the case of a SynRM, the objectives are usually
functions of the torque T of the machine. Thus, the fundamen-
tal analysis that has to be done is to express the sensitivity dT

dα .
Using the derivation chain rule, one has:

dT

dα
=

dT

dρT
dρ

dvT

dv

dα
. (14)

Since operators H, F and their derivatives are analytically
known, the only unknown term is dT

dρT . The analytical sen-
sitivity analysis of such quantity which depends on a partial
differential equation (1) has become a well-known problem
using the adjoint method [1], [2], [6], [7], [10]. The continuous
sensitivity in a direction k ∈ L∞(ΩR) reads [7], [10]:〈

dT

dρ
, k

〉
= −

∫
Ω

(ν − ν0)
[
(∇×A)

T ∇× λ
]
.k dΩ (15)

where A is the physical solution to (1) solved using (6)-(9)
and λ is the adjoint state, solution to the following weak form
for u ∈ H1

0 (Ω):∫
Ω

[
∇× (

∂Ĥ

∂B
∇× λ)− ∂T

∂A
(A, ρ)

]
.u dΩ = 0, (16)

where ∂Ĥ
∂B is the incremental reluctivity tensor (9) assembled

with the physical solution A. Note that (16) can be easily
solved using an additional iteration to the Newton-Raphson
resolution process of (1), making it easy to solve. The novelty
of this paper is the use of the virtual work method [8] to
compute and optimize the torque of the SynRM in the LS
process. Starting from the discrete approach of ∂T

∂A in [6], a
continuous version can be expressed as follows:〈

∂T

∂A
(A, ρ), u

〉
=

∑
e

∫
Ωe

ν̂BT
(
Me +MT

e

)
∇× u dΩ,

(17)

Me = −G−1
e

∂Ge

∂ω
+

1

2|Ge|
∂|Ge|
∂ω

I, (18)

where u is the computation direction, Ge is the Jacobian
matrix of the transformation from the surface Ωe of mesh
element e to the corresponding reference element ∆e [8], |Ge|
its determinant, I the identity matrix and ω the virtual rotation
of the rotor around its rotation axis.

V. APPLICATION

A. Reference Machine

In Figure 1a, a reference SynRM model is presented. The
numerical model is accessible in Altair FluxTM motor database.
The rotor is made of a nonlinear ferromagnetic material
BM_330_35A (in orange) and air regions (in light blue).
The other components are the statoric part supplied by three
alternating phases. (phase 1− is in dark red, phase 2+ in green,

(a) Complete view
of the reference

machine

(b) Fine Level-Set
initialization in the

rotor

(c) Coarse Level-Set
initialization in the

rotor

Fig. 1: View of the optimization setup

Adapted Finite Element Analysis (7)-(9)

Adjoint state resolution (16)

Density based sensitivity computation (15)

FEM Package

Sensitivity adaptation (14)

Level-Set update

Radius filtering (11)

Heaviside projection

Level-Set Package

Input density ρ(n)

FEM solution A(n)

Adjoint state λ(n)

Sensitivity dT
dρ (ρ

(n))

dT
dα (α(n))

α(n+1)

v(n+1)

Output density ρ(n+1)

Fig. 2: Flowchart of the optimization algorithm at iteration n

phase 3− in dark blue and phase 1+ in red). The considered
current supply Ii in phase 1 ≤ i ≤ 3 is the following:

Ii(θ) = Imax × sin

(
θ +

2(i− 1)

3
π + γ

)
(19)

with Imax = 48.17A and γ = −22°. The performances of
the machine are measured using the average torque Tavg and
torque ripple Tr [2], [3] measured over N = 30 rotor angular
positions:

Tr = 100× Tmax − Tmin

Tavg
, (20)

where Tmin and Tmax are the minimum and maximum torque
values, respectively. The torque ripple is a measurement of the
relative amplitude of the torque, which must remain relatively
low to control the noise of the machine [2].
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(a) Final design with fine
initialization

(b) Final design with
coarse initialization

(c) Discretization of result
with fine initialization

(d) Discretization of result
with coarse initialization

Fig. 3: Overview of the optimized designs

B. Optimization

The Level-Set method (Section III) and the adjoint method
(Section IV) have been combined in an optimization algorithm
presented in Figure 2. The finite element package is imple-
mented in the software FluxTM, and the Level-Set package
in Altair OptistructTM. We propose to test the method on the
reference machine presented above. The proposed formulation
is to minimize the volume of the rotor part. Constraints on
average torque and torque ripple are set such that the optimized
results must have at least the same torque performances as
the reference machine. The Level-set function is initialized
in the rotor with a perforated design. This can be used to
tackle the incapacity of the LS method to create holes during
the optimization process. Two refinements are tested for the
initialization. They are represented in figures 1b and 1c (red:
ϕ > 0 (material), blue: ϕ < 0 (air), green: ϕ ≈ 0 (boundaries)).
The two optimizations are launched on a computer with an
Intel Xeon 2.90 GHz and 64 Go of RAM. A global overview
of the optimization runs are presented Figure 3. Figures 3a
and 3b presents the final designs. Since some intermediate
density values remain in those results, discrete projections are
proposed in Figures 3c and 3d. Finally, Table I highlights the
magnetic performances of all designs.

Case Tavg(N.m) Tr(%) Volume (%) Iteration number
Reference machine 245.5 32.4 100 -

Result 3a 245.4 32.2 75 61 (2h03)
Projection 3c 246.26 30.4 74 -

Result 3b 243.5 32.1 61 69 (1h20)
Projection 3d 247.4 34.6 59 -

TABLE I: Overview of performances for all cases.

As shown in Table I, optimized designs of Figure 3 are
interesting because they propose the same torque performances
as the reference machine 1a but with a significant rotor mass
reduction. The two optimization results (Figures 3a and 3b)
are different, because gradient-based optimization methods are
sensitive to the starting point. Note that the projection step
used to remove intermediate values in those results do not
degrade torque and volume performances and provide similar
performances. The main issue of the actual optimization
formulation is the incapacity of the method to converge toward
manufacturable results. For instance results presented here are
not connected and have no mechanical strength. A hint to fix
this problem is to add mechanical topology optimization in
the actual formulation.

VI. CONCLUSION

The magnetostatic resolution of a SynRM in a density-
based topology optimization context is detailed in depth. Then,
a Level-set method based on [4], [5] is proposed. In order
to optimize the SynRM using a gradient-based optimization,
the fully analytical sensitivity analysis of the magnetic torque
using the virtual work method [6], [8] is expressed. The
Level-Set method and sensitivity analysis are integrated in an
optimization algorithm (Figure 2). Finally, two optimization
examples are provided to illustrate the capacity of the method
to find designs with equivalent torque performances but re-
duced rotor mass. However, the results are not connected yet
and have poor mechanical strength. Thus, the next step of this
work is to take into account mechanical responses such as the
compliance or the stress in the optimization problem to tackle
this issue and be able to find more realistic designs.
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