
HAL Id: hal-04252272
https://hal.science/hal-04252272

Submitted on 20 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Side Channel and Fault Analyses on Memristor-Based
Logic In-Memory

Pietro Inglese, Ioana Vatajelu, Giorgio Di Natale

To cite this version:
Pietro Inglese, Ioana Vatajelu, Giorgio Di Natale. Side Channel and Fault Analyses on Memristor-
Based Logic In-Memory. IEEE Design & Test, 2023, �10.1109/MDAT.2023.3324522�. �hal-04252272�

https://hal.science/hal-04252272
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

* Institut National Polytechnique Grenoble Alpes

Side Channel and Fault Analyses on

Memristor-Based Logic In-Memory

Pietro Inglese, Elena-Ioana Vatajelu, Giorgio Di Natale

Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France

{pietro.inglese,ioana.vatajelu,giorgio.di-natale}@univ-grenoble-alpes.fr

Abstract— In-memory computing is a promising approach

to address the challenges faced by traditional computing

architectures, such as the memory wall and the energy

consumption of data transfer. By storing and processing data

entirely in main memory, in-memory computing can offer

significant improvements in performance and scalability. This

solution might also bring more security, thanks to the limited

data movement which mitigates the risk of information leakage

via the communication buses. In this paper, we present the

results of side-channel and fault analyses on one of the most

researched solutions for logic-in-memory based on memristive

memory arrays. Our results show that both analyses can easily

reveal secret information.

Keywords — logic-in-memory, in-memory computing,

memristors, side channel analysis, fault analysis

I. INTRODUCTION

With CMOS technology being close to its physical limits,
making it harder to scale down the size and improve the
performances, we are witnessing the end of Moore law.
Furthermore, today’s common computer architectures are
facing increasing issues, such as the memory wall/Von
Neumann bottleneck, characterized by a high energy
consumption due to the data moving between the memory and
the processing unit.

Emerging non-volatile resistive memories such as
Resistive RAM (RRAM), Spin-Transfer Torque Magnetic
Random Access Memory (STT-MRAM), and Phase Change
Memory (PCM) have In-Memory Computing capabilities, and
they promise to solve these issues by increasing the
computation speed, the parallelism and power efficiency.
There is a very wide variety of In-Memory Computing (IMC)
solutions that exploit existing technologies. They enable logic
(also called Logic-In Memory, LIM) and/or arithmetic
operations directly inside the memory boundaries. The
operations are performed without the need of transferring data
to/from the CPU, thus saving time and energy therefore
mitigating the memory wall. IMC is made possible by
exploiting the physical characteristics of the memory device
and by inserting control and processing elements in the
peripheral logic (e.g., in the write drivers and sense
amplifiers), which enable the computation.

Besides the need for power efficiency and computation
speed, the need for security has also becoming increasingly
important. This has led to the development of hardware
components and IPs for cryptography, but it has also created
new types of threats and hardware attacks, such as: side-
channel attacks, which exploit information leaked through a
device's physical characteristics, such as power consumption
or electromagnetic emissions; fault injection attacks, which
aim to introduce faults into a device's hardware in order to
disrupt its normal operation or extract sensitive information.

In classical architectures, data and cryptographic keys are
stored in the main memory, and transferred to the processor to

execute the cryptographic functions. Therefore, confidential
information transits unencrypted via the communication
buses, being susceptible to information leakage. In contrast,
with IMC secure operations can be performed without
resorting to data transfer, therefore mitigating the risk of data
leakage and avoiding exposure to attacks. Among the many
IMC solutions, this paper focuses on LIM based on MAGIC
(Memristor-Aided Logic, [1]) which is able to perform any
logic operation within the memory array.

Within this paper we demonstrate that:

• MAGIC-based operations have a power
consumption profile which is data-dependent, thus
enabling side-channel attacks

• memristive memory arrays are very sensitive to
variations of electrical operation conditions, and thus
prone to fault attacks

To the best of our knowledge, this is the first time where
side-channel and fault analysis are performed on the MAGIC-
based LIM implementation in the context of secure
applications, even though side-channel analysis has been
already used to reverse-engineer the functional structure of IPs
implemented with MAGIC in a memristive array [2], whereas
[3] performs Side Channel and Differential Power Analyses
on another type of LIM implementation, i.e., the
Complementary Resistive Switching (CRS).

The paper is organized as follows: Section II introduces
the Logic-In-Memory paradigm and its main basic operations
together with our simulation environment and the proposed
case study; Section III presents the results of the Differential
Power Analysis on the circuit under study, while Section IV
reports the effects of electrical perturbations on its behavior,
which can be exploited to perform fault attacks. Section V
concludes the paper.

II. BACKGROUND

Performing logic operations within a memory array is

only possible when the memory cells are dotted of specific

physical characteristics and the peripheral logic is redesigned

to allow for computation. There exist different techniques for

enabling logic in memory operations, some that compute with

array-stored inputs and yield array-stored outputs (such as

MAGIC) and others that compute with array-stored inputs but

the output is obtained as an electrical signal at the periphery

(such as Scouting Logic [4]) or the input is presented as

voltage signals (such as CRS [3]). In this work we are

concerned with the former technique, because it eliminates

completely the data movement outside of the memory array.

However, this type of computation can only be performed on

memristors, since only they possess the required physical

characteristics.

A memristor is a type of electronic component that

functions as a variable resistor and can be used as a non-

volatile memory device. The memristor stores data in the

form of resistance levels (its minimum resistance is the Low

Resistive State-LRS and its maximum resistance is the High

Resistive State-HRS, which can be used to represent the

logical state of "1" and "0", respectively) and its resistance

can vary in function of the electrical signals applied to it. Due

to the variety of materials used in their fabrication,

memristors can have different electric behaviors. They can be

controlled in voltage or current (with different polarities for

the LRS to HRS transition and the HRS to LRS transition,

respectively) and their resistance can either exhibit a

continuous transition between resistive states or remain

unchanged until a certain voltage/current threshold is reached

and only then transition between resistive states. The latter

class of memristors is very useful for applications such as

data storage and LIM because it allows for non-destructive

read and logic operations when the control voltage (or

current) is below the threshold.

There are several LIM solutions described in literature,

such as MAGIC [1], FELIX [5], and IMPLY [6], which

implement some basic logic functions: NOT and NOR for

MAGIC; NAND and OR for FELIX and implication for

IMPLY. The IMPLY solution has the disadvantage of being

input-destructive (i.e., the inputs are not preserved after the

operation is executed), making the reuse of data difficult. The

FELIX is not a robust solution, as demonstrated in [7]. In

contrast, MAGIC solution is robust and non-input

destructive, therefore suitable for the implementation of

complex logic. Moreover, MAGIC (i.e. NOT and NOR

operations) is not sensitive to dynamic and static memristive

variability (cycle-to-cycle and device-to-device), while it is

sensitive to variations in control signals, as shown in [7].

The MAGIC NOR operation requires three memristors:

two in parallel as input values (in1 and in2) and the third, in

series, for the output (out). The logic operations are carried

out by first setting the output memristor to ‘1’ (LRS), then

providing a voltage V0 to the resistive structure. The output

memristor will switch to ‘0’ (HRS) if its voltage drop is large

enough, which depends on the input values. This switch

happens when at least one of the input memristors is at ‘1’,

thus performing a NOR operation. The MAGIC NOT

operates in the same way, but only with one input memristor.

The analysis we performed in this work is based on

simulation. We used Cadence Spectre and the VTEAM

(Voltage ThrEshold Adaptive Memristor) model to assess our

hypothesis [8]. Parameters, duration and control voltage

values for the MAGIC NOT and NOR have been selected

according to [7]: Roff (HRS, logic 0): 300KΩ; Ron (LRS, logic

1): 1KΩ; a cycle time of 0.25ns; a control voltage V0 of 1.4V.

The goal of this study is the analysis of the sensitiveness

to side-channel and fault injections on MAGIC-based LIM

implementations in the context of secure applications. The

most significant logic operation for cryptography is the XOR

operation (commonly used in all encryption algorithms,

including DES, AES, and PRESENT), which secures the

plaintext by combining it with the secret key. Therefore, we

have chosen to focus our analysis on the XOR gate, as we

believe that if this operation is not secure, the overall

algorithm is not secure either.
In order to implement XOR with MAGIC, it is necessary

to concatenate multiple NOR and NOT operations by
obtaining a sequence of five steps (as fully described in [9]):
1) MAGIC NOT (in1, f1), 2) MAGIC NOT(in2, out), 3)

MAGIC NOR(f1, out, f2), 4) MAGIC NOR(in1, in2, f1) and 5)
MAGIC NOR(f1, f2, out). These steps involve the use of five
memristors: in1 and in2 as input memristors, f1 and f2 as
functional memristors used to store temporary results, and out
as the output memristor where the final result of the operation
is written. Figure 1a shows the schematic we implemented to
perform our simulations. Vset and Vreset are used to initialize
memristors to the desired logic value, and V0 is used to
perform the NOR and NOT logic operations.

Figure 1. (a) Netlist for the MAGIC-based XOR. (b) Truth-table of

MAGIC-based XOR

III. SIDE CHANNEL ANALYSIS

A. Background

Side-Channel Attacks exploit the fact that secure devices

leak physical information during data processing. This

physical leakage (e.g., power dissipation [10],

electromagnetic emanation, timing information) can be

measured externally and used for compromising confidential

data, such as the secret key of a cryptographic system. Side-

channel attacks such as Simple and Differential Power

Analysis (SPA and DPA) have become popular since,

without proper countermeasures, they require the knowledge

of the algorithm, a model correlating the physical

measurements and the processed data, but not the physical

implementation of the target device.

On classical CMOS-based circuits, DPA exploits the fact

that transitions (from 0 to 1 or from 1 to 0) of the logic gates

require energy (that can be measured via an oscilloscope). On

the other side, without transitions, the gate’s transistors only

have static power consumption. Therefore, by measuring the

current consumed by the circuit, it is possible to create a

correlation with internal circuit’s transitions. The most

common information leakage models are the hamming

distance and hamming weight. The Hamming distance model

assumes that the power consumption of a device is correlated

with the number of bits that change between two input states.

The Hamming weight model assumes that the power

consumption of a device is correlated with the number of bits

set to 1 in the input data.

On the contrary, in resistive-based circuits, we observe

large variations in currents consumed by the circuit, with or

without state transitions. In this paper, we investigate how

side-channel analysis can be performed based on this

principle.

Inputs
Step 1

f1=NOT(in1)
Step 2

out=NOT(in2)
Step 3

f2=NOR(out,f1)
Step 4

f1=NOR(in1,in2)
Step 5

out=NOR(f1,f2)

00 1 1 0 1 0

01 1 0 0 0 1

10 0 1 0 0 1

11 0 0 1 0 0

(a)

(b)

B. Current consumption of MAGIC-based XOR

In order to create a proper information leakage model for

the memristive-based LIM operations, we simulated the

MAGIC-based XOR operation while measuring the

corresponding current profile, for all input combinations, as

shown in Fig. 2. It should be noticed that the XOR is obtained

by concatenating the 5 operations (as shown in Fig. 1b) and

each operation is performed in two steps, i.e., the SET of the

output memristor, followed by the actual NOR (or NOT)

operation involving the inputs. Some particularities of the

current behavior should be noticed:

• A current spike is observed every time the output

memristor changes its state from the preset value (i.e.,

switches from ‘1’ to ‘0’). The positions of the current

spikes reflect the truth tables in Fig. 1b. In addition, the

spike amplitude is at least 3 orders of magnitude larger

than what would be observed in a classical CMOS gate.

• The energy consumed during the SET operation depends

on the initial state of the memristor. Indeed, if the initial

state is LSR, the SET operation does not change the state

of the memristor but it has high energy consumption. If

the initial state is HRS, the SET operation changes the

state of the memristor but its energy consumption its very

low before the switch happens. In operations 1, 2 and 3,

the initial states of memristors f1, f2, and out are assumed

unknown (and in any case not related to the input values

– for simplicity, in the simulation we assumed their initial

state to HRS), while in operations 4 and 5, the initial states

of memristors f1 and out depend on the input values.

Indeed, before the SET of f1 in operation 4, the state of f1

is the result of operation 1, i.e., not(in1), while before the

SET of out in operation 5, the state of out is the result of

operation 2, i.e., not(in2). For the case 0⊕0, the energy

consumption during the last two operations is therefore

very high, while for the case 1⊕1 is very low in

comparison. For the cases 0⊕1 and 1⊕0, the energy has

an intermediate value.

Figure 2. MAGIC-based XOR current curves

C. DPA on MAGIC-based XOR

In the execution of the DPA, the supply current

measurements of a large number of encryptions are divided

over two sets by means of a selection function based on the

information leakage model (which is data-dependent) and a

guess on the secret key. The difference between the averages

of the two sets will approach zero for a wrong key guess, but

has noticeable peaks if the correct secret key has been

predicted.

In order to prove that the MAGIC-XOR operation can be

attacked via DPA, we have created a circuit able to perform

eight 2-bit XOR operations at the same time. We have fixed

one of the two inputs (to emulate the presence of a secret key)

and we have applied exhaustively all possible input

combinations (i.e., 256). Based on observation of Fig. 2, we

have created our selection function in such a way that 0⊕0

operations belong to the first set (the one contributing to the

energy consumption), 1⊕1 belong to the second set, while

0⊕1 and 1⊕0 are ignored. We used the tool in [11] to

perform the DPA. The result of the attack is shown in Fig. 3,

where each line represents the DPA result for each key guess.

The line of maximum amplitude corresponds to the correct

key guess, thus showing the success of the attack.

Figure 3. DPA result on eight 2-bit XOR operations. The red line

corresponds to the correct key guess

This finding is noteworthy as we are dealing with a

system that utilizes resistors with two vastly different

resistance values, and the currents involved in the

computation are on the order of mA when the resistance is

low or in the order of µA when the resistance is high.

Therefore, there is a significant correlation with the processed

data, which can be exploited by side-channel analysis.

Moreover, this outcome can be extended to any type of In-

Memory Computing where the values of resistances (or

currents) differ substantially between the two logical states.

IV. FAULT ANALYSIS

A. Background

Fault attacks [12] are a class of attacks that exploit

weaknesses in a system by introducing controlled faults or

errors in its operation. The goal of a fault attack is to cause

the system to behave in an unintended way, reveal sensitive

information, or break its security measures. Fault attacks can

be performed by manipulating the physical environment in

which the system operates, such as temperature, voltage,

electromagnetic radiation, or clock signals.

Differential Fault Attacks (DFAs) and Safe Error Attacks

(SEAs) are especially potent against cryptographic systems.

cu
rr

en
t

(m
A

)
cu

rr
en

t
(m

A
)

cu
rr

e
n

t
(m

A
)

cu
rr

en
t

(m
A

)

0⊕0

0⊕1

1⊕0

1⊕1

time (ns)

SET

f1=NOT(in1)
NOT SET

out=NOT(in2)
NOT SET

f2=NOR(out,f1)
NOR SET

f1=NOR(in1,in2)
NOR SET

out=NOR(f1,f2)
NOR

0.35ns

0.19ns

0.35ns

0.19ns

current
spikes

0.35ns

0.35ns

0.19ns

0.19ns

Operation 1 Operation 2 Operation 3 Operation 4 Operation 5

-0,003

-0,002

-0,001

0

0,001

0,002

0,003
4

9
01

4
9

07

4
9

13

4
9

19

4
9

25

4
9

31

4
9

37

4
9

43

4
9

49

4
9

55

4
9

61

4
9

67

4
9

73

4
9

79

4
9

85

4
9

91

4
9

97

5
3

55

5
3

61

5
3

67

6
3

02

6
3

08

6
3

14

6
3

20

6
3

26

6
3

32

6
3

38

6
3

44

6
3

50

6
3

56

6
3

62

6
3

68

6
3

74

6
3

80

6
3

86

6
3

92

6
3

98

6
4

04

6
4

10

6
4

16

6
4

22

… time [ps]

I[A]

A DFA exploits the differences in the behavior of a system

when operating normally versus under faulty conditions to

obtain secret information. On the other hand, a SEA induces

transient faults to cause a single-bit information leak,

depending on whether the targeted algorithm produces an

error or not.

Since the most significant logic operation for

cryptography is the XOR, we show the effects of voltage

manipulation on the behavior of the MAGIC-based XOR, to

demonstrate the feasibility of DFA and SEA on MAGIC-

based cryptography. As shown in Fig.1b, the MAGIC-based

XOR operation is a concatenation of several NOR (and NOT)

operations. If one of these is not performed correctly, the

result of the XOR is not correct either.

B. Fault Analysis of MAGIC-based XOR

In this study, we assume an attacker is able to manipulate

the voltage of the system to change the behavior of NOR and

NOT operations, thus affecting the result of the XOR. Under

these conditions, three scenarios are possible:

1. The attacker manipulates only the SET voltage (VSET).

2. The attacker manipulates only the control voltage V0.

3. The attacker manipulates the main power supply, thus

affecting both the SET voltage (VSET) and the control

voltage V0 in one or multiple cycles.

To understand the effect of this attack on the full XOR

gate, we have first analyzed its effect on the basic NOR/NOT

operations. The following effects have been observed:

1. If VSET is below the threshold voltage of the SET

operation, the memristor cannot be initialized at ‘1’,

which is the first step in performing any NOR/NOT

operation. This will not affect the correctness of the

operation if the memristor is already at ‘1’. However, if

the memristor is at ‘0’, the correctness of the operation

depends on the input values, as shown in Table I, column

“Low VSET”. The ‘X’ value is shown when the result of

the operation depends on the initial state of the memristor,

which might be unknown.

2. If V0 is low, the voltage drop on the output memristor

might not be enough to change its state from ‘1’ to ‘0’,

when at least one of the inputs is at ‘1’ (as per MAGIC-

operation principle described in section II). This situation

is illustrated in Table I, in the column “Low V0”

3. If both VSET and V0 are low, the two effects described

before are combined, and the output memristor is not able

to change its initial state, as shown in Table I, column

“Low VSET and V0”.

MAGIC XOR is built as the concatenation of 5

NOT/NOR steps. We have considered several attack

scenarios (AS), based on the instant and duration of the

perturbation: (AS1) only the VSET in one of the 5 steps; (AS2)

only the V0 in one of the 5 steps; (AS3) both VSET and V0 in

one or multiple consecutive steps. These attacks can be

realized with expensive means (AS1 and AS2, which require

very precise time resolution, such as EM injection) or with

more affordable means for the attack AS3 (voltage or power

glitching). Table II shows the expected outputs of the XOR

operation when affected by the aforementioned attacks.

Table I. MAGIC NOT and NOR behavior for control voltages affected by

external perturbations

In Table II, cells are filled with different colors, based on

the exploitability of the attack:

• Green cell: the attack has no effect on the result of the

operation;

• Yellow cells: the effect of the attack depends on the initial

state of the memristors f1, f2 and out before the execution

of the XOR operation. This state might be unknown to the

attacker, and therefore the exploitation of this attack is not

guaranteed;

• Red cells: the effect of the attack can be predicted and

exploited, no matter the initial states of the memristors.

Table II. Results of the attack on the XOR gate for the 3 proposed attack

scenarios. The four bits in each cell represents the result of the XOR for the

four input combinations 00,01,10,11. The expected value is “0110”.

Based on the results in Table II, we can conclude that an

attack targeting a perturbation of V0 in one cycle, will always

succeed in altering the output of the XOR computation. If the

attack is performed with lower resolution (i.e., targeting both

VSET and V0 over one or multiple cycles), the probability of a

successful attack is reduced.

V. CONCLUSION

In-Memory Computing holds great potential for tackling

the obstacles encountered by conventional computing

architectures, including the memory wall and the energy

expenditure of data transfer. Moreover, this approach could

enhance security measures, as limited data movement

decreases the likelihood of information leakage through
communication buses. In this paper, we have presented the

results of side-channel and fault analyses on the MAGIC

solution, which is representative of in-array memristive-

based logic computation.

We have shown that the MAGIC-based XOR operation

are sensitive to both side-channel analysis and fault attacks.

More in particular, we have demonstrated that the significant

correlation with processed data resulting from the utilization

of resistors with vastly different resistance, highlights the

potential for side-channel analysis. We have also shown that

Inputs
Initial output

state
Expected Low VSET Low V0

Low
VSET and V0

NOT

0
0

1
0

X 1
0

X
1 1 1

1
0

0
0

0 1
0

X
1 0 1

NOR

00
0

1
0

X 1
0

X
1 1 1

01
0

0
0

0 1
0

X
1 0 1

10
0

0
0

0 1
0

X
1 0 1

11
0

0
0

0 1
0

X
1 0 1

AS1 AS2 AS3 (Low VSET and V0)

Low VSET Low V0 1 step 2 steps 3 steps 4 steps 5 steps

Step 1 (S1) 0X10 0111 0X1X

Step 2 (S2) 01X0 0111 01XX 0XXX (S1+S2)

Step 3 (S3) 011X 0000 0XXX 0XXX (S2+S3) 0XXX (S1+S2+S3)

Step 4 (S4) 0110 0000 0010 00XX (S3+S4) 00XX (S2+S3+S4) XXXX (S1+S2+S3+S4)

Step 5 (S5) 0010 1111 1010 1010 (S4+S5) 1010 (S3+S4+S5) XXXX (S2+S3+S4+S5) XXXX (all steps)

the perturbation of voltage sources is an efficient means of

inflicting fault attacks. To conclude, even under the

assumption supported by In-Memory Computing that there is

no data movement, it is still crucial to implement

countermeasures to safeguard sensitive data and ensure the

integrity of the computation. Regarding countermeasures, the

classical ones used for CMOS-based architectures, such as

hiding or masking, could represent a first approach to reduce

the information leakage: the key idea is to mask the

connection between the leakage of the device and the

operations being processed. However, [3] indicates that

hiding could be not as effective as for CMOS, and it suggests

to carefully assess such countermeasures for memristive

applications, showing the need for new methods to protect

memristive LIM implementation from Side Channel Attacks.

REFERENCES

[1] S. Kvatinsky et al., “MAGIC—Memristor-Aided Logic,”

IEEE Trans. Circuits Syst. II, vol. 61, no. 11, pp. 895–899,

Nov. 2014.

[2] S. Sayyah Ensan et al., “SCARE: Side Channel Attack on In-

Memory Computing for Reverse Engineering,” IEEE

Transactions on VLSI Systems, vol. 29, no. 12, pp. 2040–

2051, Dec. 2021.

[3] L.-W. Chen et al., “On Side-Channel Analysis of Memristive

Cryptographic Circuits,” IEEE Transactions on Information

Forensics and Security, vol. 18, pp. 463–476, 2023.

[4] L. Xie et al., “Scouting Logic: A Novel Memristor-Based

Logic Design for Resistive Computing,” in 2017 IEEE

ISVLSI, Jul. 2017

[5] S. Gupta et al., “FELIX: fast and energy-efficient logic in

memory,” in Proceedings of the ICCAD, Nov. 2018

[6] S. Kvatinsky et al., “Memristor-Based Material Implication

(IMPLY) Logic: Design Principles and Methodologies,”

IEEE Transactions on VLSI Systems, vol. 22, no. 10, pp.

2054–2066, Oct. 2014.

[7] P. Inglese et al., “On the Limitations of Concatenating

Boolean Operations in Memristive-Based Logic-In-Memory

Solutions,” in 2021 16th DTIS, Jun. 2021

[8] S. Kvatinsky et al., “VTEAM: A General Model for Voltage-

Controlled Memristors,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 62, no. 8, pp. 786–790, Aug.

2015.

[9] P. Inglese et al., “Memristive Logic-in-Memory

Implementations: A Comparison,” in SMACD / PRIME

2021, Jul. 2021, pp. 1–4.

[10] P. Kocher et al., “Differential Power Analysis,” in Advances

in Cryptology — CRYPTO’ 99, Berlin, Heidelberg, 1999, pp.

388–397.

[11] G. Di Natale et al., “An Integrated Validation Environment

for Differential Power Analysis,” in 4th IEEE International

Symposium on Electronic Design, Test and Applications

(delta 2008), Jan. 2008, pp. 527–532.

[12] D. Karaklajić et al., “Hardware Designer’s Guide to Fault

Attacks,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 21, no. 12, pp. 2295–2306,

Dec. 2013.

BIOGRAPHIES

Pietro Inglese is currently a PhD Candidate at TIMA

Laboratory. He received the M.S. degree in Electronic

Engineering from Politecnico di Torino in 2019. His research

interests are In-Memory Computing and Hardware Security.

Elena-Ioana Vatajelu is researcher with CNRS on the design,

test and reliability of Integrated Circuits. She obtained her

PhD from UPC Spain in 2011. Her expertise is on the

reliability and the robustness assessment, design-for-

reliability, test strategies and security primitives for CMOS

and beyond CMOS RAMs in traditional and non-Von

Neumann computing paradigms.

Giorgio Di Natale received the PhD in Computer Engineering

in 2003. He works as Director of Research with CNRS. His

research interests include hardware security and trust, secure

circuits design and test, reliability evaluation and fault

tolerance.

	I. Introduction
	II. Background
	III. Side Channel Analysis
	A. Background
	B. Current consumption of MAGIC-based XOR
	C. DPA on MAGIC-based XOR

	IV. Fault Analysis
	A. Background
	B. Fault Analysis of MAGIC-based XOR

	V. Conclusion
	References
	Biographies

