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Abstract— In-memory computing is a promising approach 

to address the challenges faced by traditional computing 

architectures, such as the memory wall and the energy 

consumption of data transfer. By storing and processing data 

entirely in main memory, in-memory computing can offer 

significant improvements in performance and scalability. This 

solution might also bring more security, thanks to the limited 

data movement which mitigates the risk of information leakage 

via the communication buses. In this paper, we present the 

results of side-channel and fault analyses on one of the most 

researched solutions for logic-in-memory based on memristive 

memory arrays. Our results show that both analyses can easily 

reveal secret information. 

Keywords — logic-in-memory, in-memory computing, 

memristors, side channel analysis, fault analysis 

I. INTRODUCTION 

With CMOS technology being close to its physical limits, 
making it harder to scale down the size and improve the 
performances, we are witnessing the end of Moore law. 
Furthermore, today’s common computer architectures are 
facing increasing issues, such as the memory wall/Von 
Neumann bottleneck, characterized by a high energy 
consumption due to the data moving between the memory and 
the processing unit.  

Emerging non-volatile resistive memories such as 
Resistive RAM (RRAM), Spin-Transfer Torque Magnetic 
Random Access Memory (STT-MRAM), and Phase Change 
Memory (PCM) have In-Memory Computing capabilities, and 
they promise to solve these issues by increasing the 
computation speed, the parallelism and power efficiency. 
There is a very wide variety of In-Memory Computing (IMC) 
solutions that exploit existing technologies. They enable logic 
(also called Logic-In Memory, LIM) and/or arithmetic 
operations directly inside the memory boundaries. The 
operations are performed without the need of transferring data 
to/from the CPU, thus saving time and energy therefore 
mitigating the memory wall. IMC is made possible by 
exploiting the physical characteristics of the memory device 
and by inserting control and processing elements in the 
peripheral logic (e.g., in the write drivers and sense 
amplifiers), which enable the computation. 

Besides the need for power efficiency and computation 
speed, the need for security has also becoming increasingly 
important. This has led to the development of hardware 
components and IPs for cryptography, but it has also created 
new types of threats and hardware attacks, such as: side-
channel attacks, which exploit information leaked through a 
device's physical characteristics, such as power consumption 
or electromagnetic emissions; fault injection attacks, which 
aim to introduce faults into a device's hardware in order to 
disrupt its normal operation or extract sensitive information.  

In classical architectures, data and cryptographic keys are 
stored in the main memory, and transferred to the processor to 

execute the cryptographic functions. Therefore, confidential 
information transits unencrypted via the communication 
buses, being susceptible to information leakage. In contrast, 
with IMC secure operations can be performed without 
resorting to data transfer, therefore mitigating the risk of data 
leakage and avoiding exposure to attacks. Among the many 
IMC solutions, this paper focuses on LIM based on MAGIC 
(Memristor-Aided Logic, [1]) which is able to perform any 
logic operation within the memory array.  

Within this paper we demonstrate that: 

• MAGIC-based operations have a power 
consumption profile which is data-dependent, thus 
enabling side-channel attacks 

• memristive memory arrays are very sensitive to 
variations of electrical operation conditions, and thus 
prone to fault attacks  

To the best of our knowledge, this is the first time where 
side-channel and fault analysis are performed on the MAGIC-
based LIM implementation in the context of secure 
applications, even though side-channel analysis has been 
already used to reverse-engineer the functional structure of IPs 
implemented with MAGIC in a memristive array [2], whereas 
[3] performs Side Channel and Differential Power Analyses 
on another type of LIM implementation, i.e., the 
Complementary Resistive Switching (CRS). 

The paper is organized as follows: Section II introduces 
the Logic-In-Memory paradigm and its main basic operations 
together with our simulation environment and the proposed 
case study; Section III presents the results of the Differential 
Power Analysis on the circuit under study, while Section IV 
reports the effects of electrical perturbations on its behavior, 
which can be exploited to perform fault attacks. Section V 
concludes the paper.  

II. BACKGROUND 

Performing logic operations within a memory array is 

only possible when the memory cells are dotted of specific 

physical characteristics and the peripheral logic is redesigned 

to allow for computation. There exist different techniques for 

enabling logic in memory operations, some that compute with 

array-stored inputs and yield array-stored outputs (such as 

MAGIC) and others that compute with array-stored inputs but 

the output is obtained as an electrical signal at the periphery 

(such as Scouting Logic [4]) or the input is presented as 

voltage signals (such as CRS [3]). In this work we are 

concerned with the former technique, because it eliminates 

completely the data movement outside of the memory array. 

However, this type of computation can only be performed on 

memristors, since only they possess the required physical 

characteristics.  

A memristor is a type of electronic component that 

functions as a variable resistor and can be used as a non-

volatile memory device. The memristor stores data in the 



 

 

form of resistance levels (its minimum resistance is the Low 

Resistive State-LRS and its maximum resistance is the High 

Resistive State-HRS, which can be used to represent the 

logical state of "1" and "0", respectively) and its resistance 

can vary in function of the electrical signals applied to it. Due 

to the variety of materials used in their fabrication, 

memristors can have different electric behaviors. They can be 

controlled in voltage or current (with different polarities for 

the LRS to HRS transition and the HRS to LRS transition, 

respectively) and their resistance can either exhibit a 

continuous transition between resistive states or remain 

unchanged until a certain voltage/current threshold is reached 

and only then transition between resistive states. The latter 

class of memristors is very useful for applications such as 

data storage and LIM because it allows for non-destructive 

read and logic operations when the control voltage (or 

current) is below the threshold.  

There are several LIM solutions described in literature, 

such as MAGIC [1], FELIX [5], and IMPLY [6], which 

implement some basic logic functions: NOT and NOR for 

MAGIC; NAND and OR for FELIX and implication for 

IMPLY. The IMPLY solution has the disadvantage of being 

input-destructive (i.e., the inputs are not preserved after the 

operation is executed), making the reuse of data difficult. The 

FELIX is not a robust solution, as demonstrated in [7]. In 

contrast, MAGIC solution is robust and non-input 

destructive, therefore suitable for the implementation of 

complex logic. Moreover, MAGIC (i.e. NOT and NOR 

operations) is not sensitive to dynamic and static memristive 

variability (cycle-to-cycle and device-to-device), while it is 

sensitive to variations in control signals, as shown in [7]. 

The MAGIC NOR operation requires three memristors: 

two in parallel as input values (in1 and in2) and the third, in 

series, for the output (out). The logic operations are carried 

out by first setting the output memristor to ‘1’ (LRS), then 

providing a voltage V0 to the resistive structure. The output 

memristor will switch to ‘0’ (HRS) if its voltage drop is large 

enough, which depends on the input values. This switch 

happens when at least one of the input memristors is at ‘1’, 

thus performing a NOR operation. The MAGIC NOT 

operates in the same way, but only with one input memristor. 

The analysis we performed in this work is based on 

simulation. We used Cadence Spectre and the VTEAM 

(Voltage ThrEshold Adaptive Memristor) model to assess our 

hypothesis [8]. Parameters, duration and control voltage 

values for the MAGIC NOT and NOR have been selected 

according to [7]: Roff (HRS, logic 0): 300KΩ; Ron (LRS, logic 

1): 1KΩ; a cycle time of 0.25ns; a control voltage V0 of 1.4V. 

The goal of this study is the analysis of the sensitiveness 

to side-channel and fault injections on MAGIC-based LIM 

implementations in the context of secure applications. The 

most significant logic operation for cryptography is the XOR 

operation (commonly used in all encryption algorithms, 

including DES, AES, and PRESENT), which secures the 

plaintext by combining it with the secret key. Therefore, we 

have chosen to focus our analysis on the XOR gate, as we 

believe that if this operation is not secure, the overall 

algorithm is not secure either. 
In order to implement XOR with MAGIC, it is necessary 

to concatenate multiple NOR and NOT operations by 
obtaining a sequence of five steps (as fully described in [9]): 
1) MAGIC NOT (in1, f1), 2) MAGIC NOT(in2, out), 3) 

MAGIC NOR(f1, out, f2), 4) MAGIC NOR(in1, in2, f1) and 5) 
MAGIC NOR(f1, f2, out). These steps involve the use of five 
memristors: in1 and in2 as input memristors, f1 and f2 as 
functional memristors used to store temporary results, and out 
as the output memristor where the final result of the operation 
is written. Figure 1a shows the schematic we implemented to 
perform our simulations. Vset and Vreset are used to initialize 
memristors to the desired logic value, and V0 is used to 
perform the NOR and NOT logic operations. 
 

 

Figure 1. (a) Netlist for the MAGIC-based XOR. (b) Truth-table of 

MAGIC-based XOR 

III. SIDE CHANNEL ANALYSIS  

A. Background 

Side-Channel Attacks exploit the fact that secure devices 

leak physical information during data processing. This 

physical leakage (e.g., power dissipation [10], 

electromagnetic emanation, timing information) can be 

measured externally and used for compromising confidential 

data, such as the secret key of a cryptographic system. Side-

channel attacks such as Simple and Differential Power 

Analysis (SPA and DPA) have become popular since, 

without proper countermeasures, they require the knowledge 

of the algorithm, a model correlating the physical 

measurements and the processed data, but not the physical 

implementation of the target device. 

On classical CMOS-based circuits, DPA exploits the fact 

that transitions (from 0 to 1 or from 1 to 0) of the logic gates 

require energy (that can be measured via an oscilloscope). On 

the other side, without transitions, the gate’s transistors only 

have static power consumption.  Therefore, by measuring the 

current consumed by the circuit, it is possible to create a 

correlation with internal circuit’s transitions. The most 

common information leakage models are the hamming 

distance and hamming weight. The Hamming distance model 

assumes that the power consumption of a device is correlated 

with the number of bits that change between two input states. 

The Hamming weight model assumes that the power 

consumption of a device is correlated with the number of bits 

set to 1 in the input data.  

On the contrary, in resistive-based circuits, we observe 

large variations in currents consumed by the circuit, with or 

without state transitions. In this paper, we investigate how 

side-channel analysis can be performed based on this 

principle.  

Inputs
Step 1

f1=NOT(in1)
Step 2

out=NOT(in2)
Step 3

f2=NOR(out,f1)
Step 4

f1=NOR(in1,in2)
Step 5

out=NOR(f1,f2)

00 1 1 0 1 0

01 1 0 0 0 1

10 0 1 0 0 1

11 0 0 1 0 0

(a)

(b)



 

 

B. Current consumption of MAGIC-based XOR 

In order to create a proper information leakage model for 

the memristive-based LIM operations, we simulated the 

MAGIC-based XOR operation while measuring the 

corresponding current profile, for all input combinations, as 

shown in Fig. 2. It should be noticed that the XOR is obtained 

by concatenating the 5 operations (as shown in Fig. 1b) and 

each operation is performed in two steps, i.e., the SET of the 

output memristor, followed by the actual NOR (or NOT) 

operation involving the inputs. Some particularities of the 

current behavior should be noticed:  

• A current spike is observed every time the output 

memristor changes its state from the preset value (i.e., 

switches from ‘1’ to ‘0’). The positions of the current 

spikes reflect the truth tables in Fig. 1b. In addition, the 

spike amplitude is at least 3 orders of magnitude larger 

than what would be observed in a classical CMOS gate.  

• The energy consumed during the SET operation depends 

on the initial state of the memristor. Indeed, if the initial 

state is LSR, the SET operation does not change the state 

of the memristor but it has high energy consumption. If 

the initial state is HRS, the SET operation changes the 

state of the memristor but its energy consumption its very 

low before the switch happens. In operations 1, 2 and 3, 

the initial states of memristors f1, f2, and out are assumed 

unknown (and in any case not related to the input values 

– for simplicity, in the simulation we assumed their initial 

state to HRS), while in operations 4 and 5, the initial states 

of memristors f1 and out depend on the input values. 

Indeed, before the SET of f1 in operation 4, the state of f1 

is the result of operation 1, i.e., not(in1), while before the 

SET of out in operation 5, the state of out is the result of 

operation 2, i.e., not(in2). For the case 0⊕0, the energy 

consumption during the last two operations is therefore 

very high, while for the case 1⊕1 is very low in 

comparison. For the cases 0⊕1 and 1⊕0, the energy has 

an intermediate value. 

 

 
Figure 2. MAGIC-based XOR current curves  

C. DPA on MAGIC-based XOR 

In the execution of the DPA, the supply current 

measurements of a large number of encryptions are divided 

over two sets by means of a selection function based on the 

information leakage model (which is data-dependent) and a 

guess on the secret key. The difference between the averages 

of the two sets will approach zero for a wrong key guess, but 

has noticeable peaks if the correct secret key has been 

predicted. 

In order to prove that the MAGIC-XOR operation can be 

attacked via DPA, we have created a circuit able to perform 

eight 2-bit XOR operations at the same time. We have fixed 

one of the two inputs (to emulate the presence of a secret key) 

and we have applied exhaustively all possible input 

combinations (i.e., 256).  Based on observation of Fig. 2, we 

have created our selection function in such a way that 0⊕0 

operations belong to the first set (the one contributing to the 

energy consumption), 1⊕1 belong to the second set, while 

0⊕1 and 1⊕0 are ignored. We used the tool in [11] to 

perform the DPA. The result of the attack is shown in Fig. 3, 

where each line represents the DPA result for each key guess. 

The line of maximum amplitude corresponds to the correct 

key guess, thus showing the success of the attack. 

 
Figure 3. DPA result on eight 2-bit XOR operations. The red line 

corresponds to the correct key guess  

This finding is noteworthy as we are dealing with a 

system that utilizes resistors with two vastly different 

resistance values, and the currents involved in the 

computation are on the order of mA when the resistance is 

low or in the order of µA when the resistance is high. 

Therefore, there is a significant correlation with the processed 

data, which can be exploited by side-channel analysis. 

Moreover, this outcome can be extended to any type of In-

Memory Computing where the values of resistances (or 

currents) differ substantially between the two logical states. 

 

IV. FAULT ANALYSIS 

A. Background 

Fault attacks [12] are a class of attacks that exploit 

weaknesses in a system by introducing controlled faults or 

errors in its operation. The goal of a fault attack is to cause 

the system to behave in an unintended way, reveal sensitive 

information, or break its security measures. Fault attacks can 

be performed by manipulating the physical environment in 

which the system operates, such as temperature, voltage, 

electromagnetic radiation, or clock signals.  

Differential Fault Attacks (DFAs) and Safe Error Attacks 

(SEAs) are especially potent against cryptographic systems. 
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A DFA exploits the differences in the behavior of a system 

when operating normally versus under faulty conditions to 

obtain secret information. On the other hand, a SEA induces 

transient faults to cause a single-bit information leak, 

depending on whether the targeted algorithm produces an 

error or not. 

Since the most significant logic operation for 

cryptography is the XOR, we show the effects of voltage 

manipulation on the behavior of the MAGIC-based XOR, to 

demonstrate the feasibility of DFA and SEA on MAGIC-

based cryptography. As shown in Fig.1b, the MAGIC-based 

XOR operation is a concatenation of several NOR (and NOT) 

operations. If one of these is not performed correctly, the 

result of the XOR is not correct either.  

B. Fault Analysis of MAGIC-based XOR 

In this study, we assume an attacker is able to manipulate 

the voltage of the system to change the behavior of NOR and 

NOT operations, thus affecting the result of the XOR. Under 

these conditions, three scenarios are possible: 

1. The attacker manipulates only the SET voltage (VSET).  

2. The attacker manipulates only the control voltage V0. 

3. The attacker manipulates the main power supply, thus 

affecting both the SET voltage (VSET) and the control 

voltage V0 in one or multiple cycles. 

To understand the effect of this attack on the full XOR 

gate, we have first analyzed its effect on the basic NOR/NOT 

operations. The following effects have been observed: 

1. If VSET is below the threshold voltage of the SET 

operation, the memristor cannot be initialized at ‘1’, 

which is the first step in performing any NOR/NOT 

operation. This will not affect the correctness of the 

operation if the memristor is already at ‘1’. However, if 

the memristor is at ‘0’, the correctness of the operation 

depends on the input values, as shown in Table I, column 

“Low VSET”. The ‘X’ value is shown when the result of 

the operation depends on the initial state of the memristor, 

which might be unknown. 

2. If V0 is low, the voltage drop on the output memristor 

might not be enough to change its state from ‘1’ to ‘0’, 

when at least one of the inputs is at ‘1’ (as per MAGIC-

operation principle described in section II). This situation 

is illustrated in Table I, in the column “Low V0” 

3. If both VSET and V0 are low, the two effects described 

before are combined, and the output memristor is not able 

to change its initial state, as shown in Table I, column 

“Low VSET and V0”. 

MAGIC XOR is built as the concatenation of 5 

NOT/NOR steps. We have considered several attack 

scenarios (AS), based on the instant and duration of the 

perturbation: (AS1) only the VSET in one of the 5 steps; (AS2) 

only the V0 in one of the 5 steps; (AS3) both VSET and V0 in 

one or multiple consecutive steps. These attacks can be 

realized with expensive means (AS1 and AS2, which require 

very precise time resolution, such as EM injection) or with 

more affordable means for the attack AS3 (voltage or power 

glitching). Table II shows the expected outputs of the XOR 

operation when affected by the aforementioned attacks. 

 

 
Table I. MAGIC NOT and NOR behavior for control voltages affected by 

external perturbations 

In Table II, cells are filled with different colors, based on 

the exploitability of the attack: 

• Green cell: the attack has no effect on the result of the 

operation; 

• Yellow cells: the effect of the attack depends on the initial 

state of the memristors f1, f2 and out before the execution 

of the XOR operation. This state might be unknown to the 

attacker, and therefore the exploitation of this attack is not 

guaranteed; 

• Red cells: the effect of the attack can be predicted and 

exploited, no matter the initial states of the memristors. 

 

 
Table II. Results of the attack on the XOR gate for the 3 proposed attack 

scenarios. The four bits in each cell represents the result of the XOR for the 

four input combinations 00,01,10,11. The expected value is “0110”. 

Based on the results in Table II, we can conclude that an 

attack targeting a perturbation of V0 in one cycle, will always 

succeed in altering the output of the XOR computation. If the 

attack is performed with lower resolution (i.e., targeting both 

VSET and V0 over one or multiple cycles), the probability of a 

successful attack is reduced. 

V. CONCLUSION 

In-Memory Computing holds great potential for tackling 

the obstacles encountered by conventional computing 

architectures, including the memory wall and the energy 

expenditure of data transfer. Moreover, this approach could 

enhance security measures, as limited data movement 

decreases the likelihood of information leakage through 
communication buses. In this paper, we have presented the 

results of side-channel and fault analyses on the MAGIC 

solution, which is representative of in-array memristive-

based logic computation.  

We have shown that the MAGIC-based XOR operation 

are sensitive to both side-channel analysis and fault attacks. 

More in particular, we have demonstrated that the significant 

correlation with processed data resulting from the utilization 

of resistors with vastly different resistance, highlights the 

potential for side-channel analysis. We have also shown that 

Inputs
Initial output 

state
Expected Low  VSET Low V0

Low 
VSET and V0

NOT

0
0

1
0

X 1
0

X
1 1 1

1
0

0
0

0 1
0

X
1 0 1

NOR

00
0

1
0

X 1
0

X
1 1 1

01
0

0
0

0 1
0

X
1 0 1

10
0

0
0

0 1
0

X
1 0 1

11
0

0
0

0 1
0

X
1 0 1

AS1 AS2 AS3 (Low VSET and V0)

Low VSET Low V0 1 step 2 steps 3 steps 4 steps 5 steps

Step 1 (S1) 0X10 0111 0X1X

Step 2 (S2) 01X0 0111 01XX 0XXX (S1+S2)

Step 3 (S3) 011X 0000 0XXX 0XXX (S2+S3) 0XXX (S1+S2+S3)

Step 4 (S4) 0110 0000 0010 00XX (S3+S4) 00XX (S2+S3+S4) XXXX (S1+S2+S3+S4)

Step 5 (S5) 0010 1111 1010 1010 (S4+S5) 1010 (S3+S4+S5) XXXX (S2+S3+S4+S5) XXXX (all steps)



 

 

the perturbation of voltage sources is an efficient means of 

inflicting fault attacks. To conclude, even under the 

assumption supported by In-Memory Computing that there is 

no data movement, it is still crucial to implement 

countermeasures to safeguard sensitive data and ensure the 

integrity of the computation. Regarding countermeasures, the 

classical ones used for CMOS-based architectures, such as 

hiding or masking, could represent a first approach to reduce 

the information leakage: the key idea is to mask the 

connection between the leakage of the device and the 

operations being processed. However, [3] indicates that 

hiding could be not as effective as for CMOS, and it suggests 

to carefully assess such countermeasures for memristive 

applications, showing the need for new methods to protect 

memristive LIM implementation from Side Channel Attacks. 
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