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The adaptive immune response relies on T cells that combine phenotypic specialization with diversity of
T-cell receptors (TCRs) to recognize a wide range of pathogens. TCRs are acquired and selected during T-cell
maturation in the thymus. Characterizing TCR repertoires across individuals and T-cell maturation stages is
important for better understanding adaptive immune responses and for developing new diagnostics and therapies.
Analyzing a dataset of human TCR repertoires from thymocyte subsets, we find that the variability between
individuals generated during the TCR V(D)J recombination is maintained through all stages of T-cell maturation
and differentiation. The interindividual variability of repertoires of the same cell type is of comparable magnitude
to the variability across cell types within the same individual. To zoom in on smaller scales than whole
repertoires, we defined a distance measuring the relative overlap of locally similar sequences in repertoires. We
find that the whole repertoire models correctly predict local similarity networks, suggesting a lack of forbidden
T-cell receptor sequences. The local measure correlates well with distances calculated using whole repertoire
traits and carries information about cell types.

DOI: 10.1103/PRXLife.2.013011

I. INTRODUCTION

The T-cell adaptive immune response leverages various
cell subsets. CD8+ cells take on mostly a cytotoxic role,
i.e., killing infected cells. CD4+ cells differentiate into two
subsets, regulatory (Treg) and conventional (Tconv) cells.
Tconvs acquire effector helper function and help coordinate
the immune response upon activation in the periphery. Tregs
modulate the immune response by down-regulating the activ-
ity and response of different cells in the immune system.

*Present address: Peter Debye Institute for Soft Matter Physics,
Leipzig University, Leipzig, Germany.

†Co-senior author.
‡These authors contributed equally to this work. Correspon-

dence should be addressed to: aleksandra.walczak@phys.ens.fr,
thierry.mora@phys.ens.fr, and armita@uw.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

To perform their distinct functions, CD8+ and CD4+
cells bind to different families of the major histocompatibil-
ity complex (MHC) molecule (class I and II, respectively).
Therefore, the selective pressures exerted on their associated
T-cell receptor (TCR) repertoires are believed to be markedly
different. Indeed, previous studies [1–4] have described
differential properties of the receptors associated with the
CD4+ and CD8+ repertoires, reporting significant yet limited
statistical differences, mostly related to the V and J gene us-
age. Similarly, small statistical differences have been reported
in the repertoires of conventional (Tconv) versus regulatory
(Treg) CD4 + T cells [4,5]. However, despite a recent study
comparing the repertoires of different thymic subsets in mice
[6], it is still unclear how thymic selection shapes the reper-
toires of distinct T-cell subsets, and how these selection forces
vary across individuals.

To recognize the large variety of possible antigens, T cells
express a broad diversity of TCRs generated by the random
rearrangement of their α and β chains. Because this pro-
cess is stochastic, it may generate receptors with undesirable
properties, which must be vetted [7]. During their devel-
opment in the thymus, T cells undergo a selection process
that promotes receptors with good affinity to the MHC, to
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make sure that they have the minimum necessary recognition
properties (positive selection). At the same time, receptors
with a too strong affinity to self-peptides presented by the
MHC are less likely to be released into the periphery, to
limit an immune response against the self (negative selection).
Since the MHC is highly polymorphic [8], this process is
expected to be at least in part specific to each individual.
Understanding how these processes shape the TCR reper-
toire and characterizing the heterogeneity within and between
individuals is key to a better understanding of the funda-
mental aspects underlying autoimmunity as well as immune
disorders.

High-throughput sequencing of TCR repertoires [9–15]
has made it possible to study differences between different
individuals as well as T-cell subsets, giving insight into their
respective selection processes.

Because TCR repertoires are so diverse, typical samples
still show substantial variability, even when they are from the
same subset and same individual [16]. Comparisons between
repertoires must be done at an aggregate level, by identi-
fying statistical features that discriminate between them. A
general strategy for this task is to define generative models
of TCR sequences for each subset, and compare them using
measures of divergence between their distributions [4,17].
We refer to this approach as global repertoire comparison.
A previous study [17] of bulk TCR repertoires from blood
samples showed only moderate variability across individuals,
largely driven by differences in the statistics of the recombina-
tion process [18,19] rather than individual-specific selection,
which contrasts with the idea that differences in MHC al-
leles drives the intrapopulation variation of the repertoires.
It remains unclear to what extent the population variability
in the recombination process impacts our ability to detect
the differences between T-cell subsets due to functional
selection.

Model-based comparisons, even when they rely on pow-
erful neural networks, are usually dominated by some key
statistics of the data, such as germline gene usage or CDR3
length and position-dependent amino-acid usage [4,17]. A
possible concern is that they can miss important differences
in repertoire properties, such as the depletion or enrichment
of particular sequence motifs, which would strongly affect the
structure of the repertoires locally in sequence space but may
only have a limited impact on their global features as captured
by the generative models. Previous studies have used local
network measures of similarity between close-by sequences
to detect immune stimuli or phenotypes shared by TCRs
[20–26], suggesting that local differences may be important
for discriminating between repertoires beyond global statisti-
cal features. We refer to such approaches as local repertoire
comparisons.

We applied both global and local comparison methods to
TCR repertoire data obtained from the thymi of nine organ
donors, sorted into functional T-cell subsets at different levels
of thymic maturation. By comparing these different subsets
using a combination of model-based and local network anal-
yses, we study how the T-cell repertoire evolves across the
various stages of thymic development and quantify the het-
erogeneity between individuals.

II. RESULTS

A. Generative models of individual T-cell subsets

We analyze high-throughput TCRβ repertoire sequence
data of purified T-cell subsets from different stages of mat-
uration [see Fig. 1(a) for a schematic of the different stages].
We analyzed purified samples of CD4+CD8+CD3+ (double
positive, DP), CD3+CD8+(CD8+), CD3+CD4+CD25+
(Treg), and CD3+CD4+CD25- (Tconv) from thymic sam-
ples from n = 9 individuals. Details on sorting strategies and
high-throughput sequencing steps are described in Ref. [27],
where part of this dataset was presented. DP cells represent an
early stage of development after successful recombination and
selection of a receptor, prior to commitment to any functional
fate. The statistics of their repertoire should closely follow
that of the recombination process. During selection, cells with
higher affinity to one of the two major classes of MHC differ-
entiate into either CD8+ or CD4+ cells (Treg and Tconv).

We used the IGoR software [28] to infer a VDJ recombi-
nation model (called Pgen) for each of the n = 9 individuals
from the unproductive TCR sequences pooled from all four
subsets. Unproductive sequences are fossil records of unsuc-
cessful recombination events on the second chromosome and
are thus believed to be free of selection effects that impact
productive sequences. To accurately account for selection, we
then trained a SONIA model [17] on productive sequences for
each subset, PDP, PCD8, PTconv, PTreg, and each individual (9×4
models in total). This model is built on top of the VDJ recom-
bination model, P = Q × Pgen, where Q is a subset-specific
selection factor dependent on receptor sequence features, in-
cluding V-, J- gene usages, and junction length and amino acid
composition. As previously done in Ref. [4], we can charac-
terize the diversity of repertoires by evaluating the entropy
of the inferred models and estimate the similarities between
the repertoires by computing the Jensen-Shannon divergence
of the models [see Fig. 1(b) for a summary of the analysis
strategy].

B. Thymic selection reduces sequence diversity
by amplifying biases of VDJ recombination

We first quantified how the effective diversity of the reper-
toire changed throughout thymic development, by computing
the Shannon entropy of each inferred model [Fig. 1(c), top].
This entropy is a measure of the diversity of TCRs at different
developmental stages and can be thought of as the number of
distinct TCR sequences. It is different from the raw number
or clonality of TCR, both of which are subject to sampling bi-
ases. Following VDJ recombination, when receptors are well
described by the Pgen distribution, the entropy is the highest
at around 36 bits, corresponding to an effective sequence
space of size 236 ≈ 1011. Entropy is significantly reduced at
the DP stage (34 bits � 1010 sequences), and even further at
the single-positive stages of CD8+, Tconv, and Treg (31 bits
� 109 sequences).

We asked whether this reduction of diversity results from
existing biases in the VDJ recombination process, or is in-
dependent of them. The bottom part of Fig. 1(c) shows that
entropy reduction is accompanied by an increasing correlation
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Comparison of global repertoire features across individuals and thymic development stages. (a) Schematic of the thymic de-
velopment stages at which repertoires were sequenced. Pgen denotes the output of the raw VDJ recombination process. Sequences are
initially selected into the DP pool, and further differentiate into single-positive phenotypes: CD8+, and conventional and regulatory CD4+.
(b) Analysis workflow. A model is inferred for each individual and cell subset, in addition to the Pgen model inferred from unproductive
sequences. Models are then compared across cell types and individuals. (c) Entropy (top) and Pearson correlation between the logarithms of the
generation probability and selection factor (bottom), as a function of the maturation stage. (d) Low-dimensional projection of distances between
repertoires. Dimensionality reduction was performed using multidimensional scaling of the distance matrix defined by the Jensen-Shannon
divergence DJS between the inferred model distributions. Gray lines connect repertoires from the same individual. (e) DJS between repertoires
of the same cell type but from different individuals. (f) DJS between repertoires from the same individual but of different cell types.

between Pgen and Q as maturation progresses, meaning that
selection reinforces heterogeneities already present at genera-
tion, and thus reduces diversity through the “rich get richer”
effect. This observation is consistent with reports of a similar
correlation between Pgen and Q in fully matured TCR sampled
from blood [29]. The results in Fig. 1(c) show the progression
of this correlation during thymic selection, with onset as early
as the DP stage.

C. Global comparison of repertoires between individuals
and thymic maturation stages

We then estimated the similarity between repertoires
at various stages of thymic development and in different
individuals, by computing the Jensen-Shannon divergence
DJS (an information-theoretic measure of distance between
distributions) between the inferred models. The resulting
distance matrix [Fig. S1(A)] displays a complex structure,
which is better interpreted by projecting repertoires into a
distance-preserving low-dimensional map using multidimen-
sional scaling (MDS) [30]. We find that three embedding

dimensions are sufficient to describe the main properties of
the distance matrix [Fig. S1(B)]. To effectively visualize these
embeddings in two dimensions, we rotated these three main
axes in Fig. 1(d) such that the third dimension best aligns with
the identity of individuals, which is tracked across subsets by
gray lines. We observe a progression of thymic differentiation
along dimensions one and two, with clusters corresponding
to each stage, while dimension three delineates individuals.
Notably, the VJ gene features alone cannot separate the in-
traindividual cell subsets [Fig. S6(B)].These results suggest
that individual heterogeneity imprinted by initial differences
in VDJ recombination remains frozen throughout the mat-
uration process. This finding is in agreement with previous
analyses on unsorted repertoires [17], which showed that the
strongest determinant of repertoire variability among individ-
uals is the variation in VDJ recombination statistics for each
person.

An alternative way to represent similarities between reper-
toires is to find a common encoding space for sequences (by
using neural networks, as discussed in the Methods section)
instead of whole repertoires, and then directly compare the lo-
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Local properties of a repertoire. (a) Nearest neighbors of a sequence x are defined as sequences that differ by only one amino-acid
substitution. (b) The probability that a sequence has exactly n nearest neighbors with the same VJ genes is shown for different repertoire subsets.
As T cells experience selection the average number of nearest neighbors increases. The distribution is well reproduced by a synthetic repertoire
sampled from the model Ppost; see Fig. S3. (c) Probability that two randomly sampled sequences with the same VJ gene combination have
Hamming distance dH between their amino-acid sequences is shown for different repertoire subsets. During thymic development, the average
sequence distance decreases. The color code is similar to (b). (d) We quantify the accuracy of our model by computing the Pearson correlation
between the predicted and the observed number of neighbors over the ten most probable VJ combinations. (e) The Pearson correlation between
the true value for the number of nearest neighbors and the estimated values based on the model npred(x), for Pgen, Plin

post , and Pdeep
post models. The

upper bound is computed by Poisson bootstrap resampling using the observed number of nearest neighbors as the rate parameter. (f) Similar
to (e) but for an approximate predicted number of neighbors ñpred(x), for which the model probabilities are evaluated using only the center
sequence, instead of all the sequences in a local neighborhood. This approximation relies on the smoothness of the probability landscape. The
prediction of the estimators remains significantly correlated with the observed number of neighbors in the data.

cation of different receptor sequences from different datasets
(Fig. S2). While sequence variability is large and no clear
separation of subsets is visible at the individual sequence
level, we find the average location of receptor sequences in the
encoding space to follow the expectations from the differen-
tiation process (Fig. S2), consistent with the global repertoire
analysis in Fig. 1(d).

In Figs. 1(e) and 1(f) we observe that variability of the
same cell type between individuals is quantitatively compa-
rable to that between cell types within a single individual. A
more detailed quantification of differences across individuals
with fixed cell types [Fig. 1(e)] shows that individual dif-
ferences are stable across stages of maturation. Differences
across cell types (with fixed individuals), shown in Fig. 1(f),
follow the known hierarchy of thymic development, with the
recombination model Pgen furthest from all subsets, but closer

to DP, and single-positive stages being equidistant from DP
and from each other, with the exception of conventional and
regulatory CD4+ cells, which are very similar.

D. Repertoires become concentrated
as they mature in the thymus

While the previous analysis gives a general bird’s-eye
view of differences between repertoires, it is not informa-
tive about differences at the local sequence level. Following
Ref. [27], we asked whether the sequence neighborhood of
TCR sequences carried signatures of thymic selection. We
define as “neighbors” sequences that have the same V and
J genes, junction length, and differ by at most one amino
acid (Hamming distance of 1); see Fig. 2(a). The larger the
overall number of neighbors, the more “concentrated” is the
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repertoire. Figure 2(b) shows the distribution of the number
of neighbors of a random TCR from the repertoire, at dif-
ferent stages of T-cell development. The mean number of
neighbors increases during thymic development, indicating
that the repertoire gets increasingly concentrated around some
preferred sequences. In other words, selection during thymic
development amplifies neighboring sequences within certain
regions of the sequence space, while depleting others, which
results in repertoires with reduced overall diversity but with
local agglomeration of sequences.

An alternative way to measure repertoire concentration
is to look at the distribution of distances between any two
receptor sequences [Fig. 2(c)]. Here, we consider the Ham-
ming distance (number of unmatched amino acids in the
junction) between sequences with the same V and J gene
and junction length. Receptors tend to have on average lower
Hamming distances following selection, for both CD4+ and
CD8+ cells [Fig. 2(b)]. Together, these observations are con-
sistent with the results of Ref. [27] on the CD8 + T cells
obtained from the same datasets, and extend them to CD4 +
T cells.

Although we observed that the diversity in repertoires
declines with maturation [Fig. 1(c)], this global pruning of
sequences did not necessarily imply that the pairwise dis-
tances between the receptors in a subset should decay with
maturation. We asked whether this local behavior could be
reproduced by our generative models. We pooled data from
all patients for each subset to collect enough sequences to be
able to train a soNNia (neural-network based) model [4] for
the selection factor Q for each maturation stage (see Methods
section). We find that both the distributions of the number of
neighbors and the Hamming distances are well reproduced by
the models (Fig. S3), indicating that these local neighborhood
differences are well captured despite the models being trained
on global features of the repertoires.

We then asked whether the model could predict the number
of neighbors n(x) of a particular sequence x, and not just their
distribution. Assuming that each sequence is drawn at random
independently of others, the number of neighbors should be
distributed according to a Poisson distribution of mean [20,21]

npred(x) = NVJ

P(V, J )

∑
y∈�(x)

P(y) � NVJ|�(x)|
P(V, J )

P(x), (1)

where P(x) is the model distribution over sequences x, P(V, J )
is the probability of picking a particular VJ pair estimated
from the model, NVJ is the observed number of sequences
with that VJ pair, and �(x) is the set of all potential (not
necessarily extant) neighbors of x. The approximation in the
second equality relies on the assumption that the probability
landscape is smooth, so that the probability of a neighboring
sequence is on average the same as the focal sequence.

The accuracy of models can be evaluated by calculating
the correlation between n(x) and npred(x) across all sequences
with >3 neighbors [Fig. 2(d)]. Figure 2(e) compares the
performance of three models across cell subsets: the naked
recombination model Pgen, the linear (SONIA), and the neural-
network (soNNia) selection models. The performance of the
soNNia model reaches the Spearman correlation of ρ ∼ 0.75
for CD8+ and Tconv subsets. The Treg and DP datasets have

smaller sizes and contain fewer nearest neighbors on average
(Fig. S7), resulting in a nosier comparison to the model,
which reduces the absolute correlation. The performance of
the soNNia model compares well with the upper limit on
predictability due to experimental noise, which we estimated
using Poisson bootstrap resampling from data [Fig. 2(e)]. The
smooth landscape approximation only moderately degrades
predictability [Fig. 2(f)], while showing much faster computa-
tion times (by a factor of 19 times the mean junction length),
thanks to the fact that it does not require computing the
probability of each neighboring sequence. These observations
carry over to the prediction of the number of second neighbors
(i.e., sequences with at most two amino-acid differences) and
beyond (Fig. S4).

Overall, these results show that the local properties of
individual repertoires are well captured by the model and that
the probability landscape of finding receptors sequences is
relatively smooth as a function of sequence distance. If they
were forbidden regions in the space of receptor sequences,
we would expect a depletion of observed neighbors relative
to the model in these regions. To test for this possibility more
directly, we asked how well the model predicted the number
of neighbors of sequences with high sequence probabilities
(Fig. S8), and found good agreement, indicating that such for-
bidden regions either do not exist or are rare, when focusing
on beta chains only.

E. Local differences between repertoires

Next, we asked how the neighborhood structures differed
between cell types and individuals at the level of single
sequences. For a given sequence x, we want to measure dif-
ferences in the local network structure of nearest neighbors
across different repertoires. We quantify these differences by
defining a distance based on the spearman correlation between
the number of neighbors of each sequence in the two datasets:

DL(D1, D2) = √
1 − ρ[nD1 (x), nD2 (x)], (2)

where nD1 (x) and nD2 (x) are the number of neighbors of se-
quence x in repertoires D1 and D2.

Compared to the Jensen-Shannon divergence DJS, this dis-
tance is based on the local sequence information only, and
in principle is model independent. However, its accuracy
strongly depends on sequencing depth, because it relies on
counting the number of neighbors for each sequence, see
Fig. S5(A). To overcome that difficulty, we used the estimators
npred evaluated with the inferred models of each repertoire to
compute the DL(D1, D2).

When applied to all possible pairs of repertoires, the re-
sulting local distance DL correlates well with the global
distance between repertoires DJS (Spearman ρ = 0.68); see
Fig. 3(a) for results using npred(x), and Fig. S5(C) using
n(x). Figures 3(b) and 3(c) show this local distance between
individuals and between cell types. These statistics of local
distances closely mirror those of global distance shown in
Figs. 1(e) and 1(f). This means that differences in the local
sequence structure of the repertoire follow global differences
captured by the models, and that the global models fully
capture the local statistics.
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(a) (b) (c)

FIG. 3. Comparison of local repertoire features across individuals and thymic development stages. (a) Local distance DL and global
distance DJS (Fig. 1) are significantly correlated. (b) Local distance DL between repertoires of the same cell type but from different individuals.
(c) Local distance DL between repertoires from the same individual but of different cell types.

III. DISCUSSION

Previous work [1–4] has characterized global statistical
differences between the T cell receptor β chain repertoires of
fully mature CD4+ and CD8 + T cells. Here, we tracked how
these differences emerge during thymic development. We find
that the diversity of the repertoire shrinks as a result of thymic
selection. This reduction occurs through the concentration of
the repertoire around particular regions of the sequence space,
consistent with the findings of Ref. [27] on CD8+ repertoires
from the same dataset. These favored sequences are typically
likely to be generated by VDJ recombination (high Pgen) even
before thymic selection, suggesting that the recombination
process has evolved to produce sequences that are likely
to survive thymic selection. This idea was first proposed in
Ref. [29] based on the analysis of peripheral repertoires. Our
analysis shows how the process unfolds and amplifies from
initial receptor recombination (Pgen) to the DP stage, and then
further to each SP stage.

Network analyses of repertoires have been successfully
applied in a variety of contexts [20,22,31–35]. Following
Ref. [21], we showed that diversity reduction is accompanied
with the concentration of the network around the high-degree
nodes. Remarkably, our models can accurately predict the
changes in these local network structures. Our best-achieving
model soNNia uses a nonlinear artificial neural network archi-
tecture, allowing it to capture complex interactions. However,
we expect the high dimensionality of the sequence space to
limit that potential, in particular, if the repertoire landscape is
irregular or “rugged,” with deep valleys and hills. The usual
view of thymic selection is that it should deplete specificities
to self-antigens. Since antigen-specific TCRs form clusters
in sequence space [23,25], negative selection could have
translated in the elimination of entire clusters corresponding
to these forbidden self-antigen-specific TCRs. This in turn
should have created valleys and shaped a rugged landscape
in the sequence space. The success of the model in the face
of this potential issue is supported by our observation that the

landscape is mostly smooth, as demonstrated by the ability
to approximate the probability of a sequence by that of its
neighbors. These findings relate to the generic structure of
the sequence space and do not rule out the existence of less
frequent but significant peaks or valleys. As demonstrated in
previous studies [22,23,25,36], antigen presentation does lead
to the formation of dense clusters of similar sequences. Our
current research is based solely on the beta chain of the T-cell
receptor, and it is important to note that neighboring recep-
tors may exhibit different specificities due to variations in
their alpha chains [23,25,36]. Consequently, the smoothness
in sequence space that we have observed may not necessarily
apply to data involving paired chains. Exploring this aspect
represents a promising avenue for future research.

The elimination of specific TCRs is a complex phe-
nomenon, likely multifactorial, integrating not just speci-
ficities but also other parameters that control the level of
T-cell activation. Understanding how these observations can
be reconciled with the classical view of negative selection [6]
remains an interesting direction for investigation.

We further asked whether the local neighborhood of a
sequence carries information about its cell type. We defined
a distance between repertoires based on the similarity of their
neighborhood structure, which correlates well with the global,
model-based Jensen-Shannon divergence, and recapitulates
the hierarchy between the different stages of thymic devel-
opment. While our neighbor-based distance is in principle
model free, in practice we could only evaluate it reliably using
our data-driven generative models because of sampling issues.
Nonetheless, our results suggest possible ways to use local
network information to compare repertoire subsets, and to
study their dependence on cell type, health condition, or age.

Local network structures can be used to detect responding
clones during an infection, by looking for sequences with
more neighbors than expected in a single repertoire [22]. Our
results on comparing repertoires with a local neighborhood
distance suggest that these local differences could also be
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used to identify sequences that are particularly enriched in
one repertoire versus another. This could allow us to define
sequences that are characteristic of particular repertoires, and
use them to better understand the relationship between cell
subset and TCR, with potential applications for diagnosis and
phenotyping.

IV. METHODS

A. Multidimensional scaling

The objective of multidimensional scaling is to find a
lower-dimensional representation of data that preserves the
similarity between samples in the dataset. Given D data points
and precomputed distances di j between points, it infers data
coordinates (x1, . . . , xD) with xi ∈ RN and N small by mini-
mizing an objective function called stress:

Stress(x1, . . . , xD) =
√∑

i �= j

(di j − ||xi − x j ||2)2. (3)

B. Inference of a representation space for TCR sequences

In order to better visualize the differences between reper-
toire subsets from different stages of maturation in the thymus,
we develop a method to map the receptor sequences in a
representation space that carries information about selection.
We build a feed-forward neural network that outputs the
selection factor for each subset and has a hidden layer of
dimension 2; see Fig. S2(A) for a sketch of the network ar-
chitecture. We infer selection factors by maximizing the joint
objective

L(θ ) =
∑
t∈T

Et
[−Et

θ

] − logEG
[
e−Et

θ

]
, (4)

where G is the set of sequences generated by the Pgen model,
θ the model parameters, Eθ the energy that the model assigns
to the sequence, and, with abuse of notation, we identify with
T the cell types of the thymic samples and the corresponding
dataset. It is important to clarify that this architecture is not
an autoencoder because we are not trying to reconstruct the
distribution of sequences, but we are only interested in charac-
terizing the selection factor. For this reason, the representation
space will carry information only about selection. We imple-
ment the model using the KERAS software [37] and infer its
parameters using the RMSprop stochastic gradient descent
algorithm [38]. After inference, we map all sequences to the
two-dimensional hidden space. As it can be seen in Fig. S2(B),
we do not observe any clear separation between cell types
in this representation space. On the other hand, the averages
of the distributions are organized in a clear one-dimensional
subspace that follows increasing selection.

C. Smoothness of Ppost

If we assume that the postselection probability
Ppost = PgenQ does not vary significantly in a local region of
sequence space, we can ask whether our estimators can predict
the number of observed neighbors Nobs(x) of a receptor
sequence defined by higher cutoffs in the Hamming distance.

In Fig. S4(A) we show that the estimators Plin
post (linear

selection model), Pdeep
post (deep selection model), and Pgen

(preselection generation model) perform reasonably well also
in this regime. Surprisingly, there is no loss in performance
for the threshold at Hamming distance 2. For higher cutoffs
the average performance decreases and the standard deviation
increases. The estimators remain, however, significantly
correlated with Nobs(x).

The previous result is consistent with the idea that Ppost

is smooth in the neighborhood of a given sequence. We are
then motivated to push this assumption even further to define
alternative estimators for Nobs(x). The first approximation
we can perform is to assume that all neighbors have similar
probability, as it is done in the main text. This estimator is
computationally more efficient as it requires only a single
evaluation of the probability.

Alternatively, we can assume that selection factors do not
vary considerably within a neighborhood [see Figs. 2(e), 2(f),
and S4] and approximate Ppost (nnx ) � Pgen(nnx )Q(x) for the
postselection models. Since Pgen(nnx ) can be efficiently esti-
mated via dynamic programming [39], the resulting estimator
turns out to be more efficient than the exact one, yet not
as much as Ppost (x). We compare the two approximations
in Fig. S4(B) for Pdeep

post . Their performance is approximately
comparable to the Plin

post (nnx ) for the smallest cutoff value.
They generically perform better than Pgen(nnx ) for all cutoff
values that we tested. As expected the estimator that assumes
smoothness only in selection Q slightly outperforms the one
that assumes smoothness of the whole probability Ppost.

In conclusion, we find that the three best choices for
estimating the number of nearest neighbors are Pdeep

post (x),

Pgen(nnx )Qdeep
post (x), and Pdeep

post (nnx ). The three estimators have
increasing performance but are also more computationally
expensive: the choice of which one to use will thus depend
on the specific application and the amount of available data.
Since these three estimators perform better at higher cutoffs
in Hamming distance than the original Pgen(nnx ) [20] at the
smallest cutoff, we expect that integrating information from
higher cutoffs in Hamming will increase the statistical power
of enrichment analyses.

D. Global distance between repertoires DJS

The Jensen-Shannon divergence DJS is a symmetric mea-
sure between two probability distributions. It can be used
to quantify the difference between any two repertoires de-
fined by the postselection probabilities Pr

post = QrPr
gen and

Pr′
post = Qr′

Pr′
gen:

DJS(r, r′) = 1

2

〈
log2

2Pr
post

Pr
post + Pr′

post

〉
r

(5)

+ 1

2

〈
log2

2Pr′
post

Pr
post + Pr′

post

〉
r′
, (6)

where 〈·〉r denotes the expectation value with respect to Pr
post.

In practice, we estimate 〈·〉r as an empirical average by sam-
pling 20 000 sequences from Pr

post.
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E. Local distance between repertoires DL

The local distance DL between repertoires, as defined in
Eq. (2), can be directly evaluated on sequences shared be-
tween repertoires by computing the correlation between the
observed number of neighbors in the respective datasets. In
Fig. S5(A), we evaluate the DL between independent subsam-
ples from the same dataset. We show that for typical repertoire
sizes that are found in the literature (104–105 unique receptor
sequences), the estimator is too noisy to resolve the observed
differences between repertoires [Figs. 3(b) and 3(c)], which
can be as small as DL ∼ 0.1 bits.

In order to overcome this difficulty we evaluate the estima-
tor using the expected number of neighbors npred computed by
the models. We find that DL converges quickly as a function
of the number of sequences evaluated; see Fig. S5(B). In the
main analysis we evaluate DL with 200 sequences sampled
from each dataset.

As sequencing technologies improve, we expect the model-
free estimator to successfully be used to compare the local
structure of different repertoires. As a proof of concept, we
compare the model-free version of the DL estimator to the
global distance DJS for the biggest datasets present in our
data (six datasets with at least 80 000 unique amino-acid se-
quences) and we are able to reproduce the results of Fig. 3(a),
see Fig. S5(C).

The code used to reproduce the figures can be found in
Ref. [40]. All supplementary figures can be found in Ref [41].
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