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The accurate prediction of binding between T cell receptors (TCR) and their cognate
epitopes is key to understanding the adaptive immune response and developing
immunotherapies. Current methods face two significant limitations: the shortage of
comprehensive high-quality data and the bias introduced by the selection of the negative
training data commonly used in the supervised learning approaches. We propose a
method, Transformer-based Unsupervised Language model for Interacting Peptides
and T cell receptors (TULIP), that addresses both limitations by leveraging incomplete
data and unsupervised learning and using the transformer architecture of language
models. Our model is flexible and integrates all possible data sources, regardless of
their quality or completeness. We demonstrate the existence of a bias introduced by
the sampling procedure used in previous supervised approaches, emphasizing the need
for an unsupervised approach. TULIP recognizes the specific TCRs binding an epitope,
performing well on unseen epitopes. Our model outperforms state-of-the-art models
and offers a promising direction for the development of more accurate TCR epitope
recognition models.

protein binding | T cell receptor | TCR–pMHC pair | T cell repertoire | language models of proteins

T cells detect foreign invaders such as viruses, bacteria, and cancer cells through their
membrane-bound T cell receptor (TCR), which recognize specific epitopes presented on
the surface of infected or tumor cells. Epitopes are short (8 to 17 amino acid) peptide
fragments presented by the major histocompatibility complex (MHC) on the surface of
presenting cells, which are bound to by the TCR (Fig. 1A). The TCR is a heterodimer
composed of the alpha and beta chains, which are coded by separate genes that randomly
recombine during thymic development, giving rise to a large diversity of possible TCRs.
Binding between the TCR and the peptide–MHC (pMHC) complex is highly specific
(1, 2) and plays a key role in the activation of the adaptive immune response. Predicting
pMHC–TCR binding from their amino-acid sequences is an important challenge in
immunology. It has important applications to diagnostics, cancer immunotherapy, and
vaccination, including the engineering of TCR against target antigens (3), or the design
of optimized antigens in personalized cancer vaccines (4).

Given the difficulty to predict the structure and binding interface of pMHC–TCR
pairs, predicting their binding affinity from general rules of protein interactions remains a
promising but arduous approach (5, 6). Recent experimental advances (7, 8) have allowed
for the generation of an increasing amount of data linking TCR sequences to pMHC
complexes, providing a large number of binding pairs. These data are gathered in several
freely available databases: VDJdb (9), IEDB (10), and McPAS-TCR (11). However, the
number of possible 7 to 16 amino-acid peptides is very large, and the potential number
of possible TCRs even larger [> 1060 (12)], meaning that experiments may only assay
a small fraction of possible pairs. This calls for machine-learning methods capable of
predicting the binding properties of unobserved pairs from a limited set of training data,
by learning general rules of pMHC–TCR interactions.

Several studies have attempted to predict TCR specificity from sequence using a
variety of machine learning techniques (see ref. 13 for a recent benchmark), including
deep convolutional networks [NetTCR2 (14)], decision trees, and random forests
[SETE (15), TCREX (16)] Gaussian process classification [TCRGP (17)], distance-
based methods [TCRdist3 (18)], and language models [TITAN (19), Pan-Pep (20),
ERGO2 (21), STAPLER (22)], and ensemble methods of convolutional neural networks
[DLpTCR (23)].

Many approaches are inherently incapable of, or show poor performance at, predicting
TCR affinity to epitopes that were not present in the training set (unseen epitopes), either
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Fig. 1. (A) Recognition: the TCR is composed of an � chain and a � chain, each one interacting with the epitope through its CDR3. The epitope is presented by
the MHC. (B) Incomplete data: schematic representation of the current state of data availability for this binding problem. (C) The bias of supervised learning:
comparison of supervised and unsupervised approaches. The unsupervised approach is only seeing positive pairs; it will only learn to recognize the specific
signal of interacting pMHC–TCR. On the contrary, the supervised approach needs to sample negative examples, and the model will also try to capture the
signature of none interacting pMHC–TCR. This may introduce a bias as the model can be learning to recognize some specific signal coming from the method
used to generate the negative examples. Created with BioRender.com.

by design or by lack of generalizability across epitopes (19, 22).
This fundamentally limits their applicability, in particular in the
context of cancer neoantigens which are often unique to each
patient.

Existing models are often trained on a subset of all available
data, because of requirements on quality and consistency. Exper-
iments rarely report all four elements of the binding complex:
the peptide, the MHC, and the alpha and beta chains of the
TCR (Fig. 1B). Because information about pMHC specificity is
shared across both chains (7, 24), many methods choose to focus
on data that report both chains, leaving out the large amount of
information contained in incomplete datasets.

Another limitation of existing approaches is that they treat
the binding prediction as a supervised learning task, which
requires both positive and negative examples to train a binary
classifier. However, the biological data at our disposal are not
of this type, consisting only of positive examples. To address
this issue, negative examples are often generated using random
association, but these can lead to subtle biases (22). The fraction
of random pMHC–TCR functional associations is estimated to
be ≈10−6 to 10−4 (25), meaning that nonbinding pairs widely
outnumber binding ones. Therefore, sampling the negative space
properly for training a supervised classifier is difficult. Using a
supervised approach may push models to learn the biases in
the negative data provided, rather than biologically meaningful
patterns.

The case of having only data from one class is usually called
one-class classification (OCC) and is not new in biology (26).
Generative models are one solution to tackle this task, as we do
not need any negative example to train it (27).

In this paper, we present transformer-based unsupervised
language modeling for interacting pMHC–TCR (TULIP-TCR),
an encoder–decoder language model, which addresses these
limitations. Compared to existing methods, the model is flexible,
leveraging all possible data sources regardless of their quality or
completeness and including single-chain data, but also learning
useful representations of the TCR and epitope space from
examples where only one of them is present. Another difference
with previous attempts is that our approach is unsupervised,
as it is trained only on binding pairs, and does not use labels.
We do not predict explicitly a binary variable that indicates
binding, but a probability score trained only on interacting
sequence pairs. This allows us to avoid the pitfalls associated with
creating artificial samples of noninteracting sequence pairs (27).
TULIP outperforms state-of-the-art methods on the most studied
peptides for which data are abundant and shows significant
predictive power on unseen epitopes.

1. Results

1.1. Model Overview: A Flexible and Unsupervised Architecture.
Our model is inspired by techniques used in natural language
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Fig. 2. (A) TULIP architecture: amino acids of each chain are embedded, then encoded by its chain-specific encoder. The MHC is also embedded. The MHC
embedding and the encoded chains are then concatenated (all except the embedding of the sequence to decode) and given to the decoders. The decoders are
then modeling the conditional probabilities of each chain given the MHC and the other available chains. (B) Results of a fine-tuned TULIP on the most abundant
peptides. Comparison is made with NetTCR2.0. (C) ROC curve and PPV curves for the most studied peptide. The average of these ROC curves appears in red.
(D) We compare two ways of selecting the negative example. We compare the loss of performance of NetTCR2 and TULIP between an easy and a hard case of
negative sampling. In the easy case, the TCRs are randomly selected from the test set, whereas in the harder case, the TCRs are reweighted in order to have
a uniform distribution over the true cognate epitope. This second choice removes the bias of having most negative examples using TCRs from the few highly
overrepresented peptides. Because TULIP is unsupervised, it is more robust to change in the negative sampling.

processing (NLP), where models are commonly trained on large
text corpora (28). In our approach, we adapt these techniques by
replacing words with amino acids. The central concept behind
our model is translation, which involves predicting the next token
(word or word pieces in NLP, or amino acid in protein sequences)
based on the previously generated tokens, as well as the source
(sentence in NLP, or amino-acid sequence in proteins). During
training, the model learns the patterns and dependencies that
govern the relationships between tokens. By training only on
positive examples, the model learns the rules that govern token
ordering.

Models that predict each amino acid conditioned on the
previous ones are called autoregressive. This allows us to
compute the probability of each sequence as p(a1, ..., an) =∏n

i=1 p(ai|a1...ai−1) and to efficiently sample new sequences,
with tremendous recent success in modeling language (29) .

The training process involves maximizing the conditional
likelihood of the observed sequences (positive pairs), effectively
defining a probability distribution over the space of sequences.
As a result, the model is trained to assign higher probabilities
to positive pairs (binding pairs) compared to negative pairs
(nonbinding pairs) without having been trained on any negative
pairs.

Our model uses the transformer architecture, specifically the
encoder–decoder variant originally developed for translation
tasks (30). In this architecture, the encoder receives a protein
sequence as input (a sentence in the source language in NLP),

and the decoder aims to generate an interacting protein sequence
(the translated sentence in NLP) as its objective. The decoder
coupled with the encoder is an autoregressive generative model,
which defines the conditional probability distribution of the
output given the input. The encoder–decoder approach has
been successfully applied to investigate interacting amino acid
sequences (31, 32).

Our problem implies interactions between four elements: the
epitope, the MHC, and the alpha and beta chains of the TCR.
We reduce the chains to their third complementarity determining
regions (CDR3) known to be primarily contacting the epitope
(33). We denote the �-CDR3, �-CDR3, and epitope sequences
as � = (a�1 , ..., a

�
N�

), � = (a�1 , ..., a
�
N�

) and e = (ae1, ..., a
e
Ne

).
We extend the existing architecture and define three encoders
and three decoders for the �-CDR3, �-CDR3, epitope sequences,
and a special embedding layer for the MHC, which we treat as
a categorical variable MHC (its protein sequence is ignored, as
we expect only the MHC class to be relevant). The details of this
architecture are shown in Fig. 2A. Each model takes the MHC
and the three chains as input and tries to predict each chain given
the two other ones and the MHC.

They define conditional probabilities such as p(e|�, �,MHC).
These conditional probabilities can be used to match interacting
protein sequences (31), since pairs that bind are expected to have
higher probabilities than nonbinding ones.

This model can be used with incomplete data by determining,
e.g., restricted conditional like p(e|�) when the beta chain and
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the MHC class are not available. This flexibility enables us to
use every known data source available for model training and for
prediction. More details about the architecture and the training
can be found in Section 3.1.

1.2. Predicting New TCRs Binding to Known Epitopes. We first
evaluate the performance of TULIP for epitopes presented on
the common HLA-A*02:01 allele, which is commonly used to
assess such models (14). We compare TULIP with NetTCR-2.0,
a state-of-the-art supervised model (14). We collected data for
which the epitope, alpha chain, and beta chain were all present.
We then created a random split of 85% for training and 15% for
testing, excluding any sequences from training in which the TCR
was also present in the test set. Note that while this procedure
removes some cross-reactive TCR shared between the train and
test sets, the model may still predict different epitopes to bind to
the same TCR, as we will see later. Negative examples were
generated within each split by randomly pairing TCRs to a
different epitope, and this process was repeated five times for
each sequence. To avoid overlap between the training and test
sets, negative examples were sampled within each split. We refer
to this database, comprising both the training and test sets, as the
specialized dataset (SD). NetTCR was trained on the training
SD, and its performance was evaluated on the testing SD for each
epitope separately using the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve as a performance
metric.

The primary aim of TULIP is to be trainable on a larger
database. To ensure a fair comparison, we trained it using the
following protocol: first, we removed all sequences from the full
database that shared the same alpha or beta chain as the test
set of the SD. We trained the TULIP on this filtered dataset
for 100 epochs and then fine-tuned it for an additional 40
epochs using the positive examples of the training SD. To
compute the AUC, we approximated the probability of binding
as log(p(e|�, �,MHC))− log(p(e|MHC)) (Section 3.3), which
quantifies the increase in the odds of observing e upon being
recognized by the TCR.

We compared the performance of TULIP with NetTCR-2.0
on the testing set of SD and computed the AUC separately for
each epitope in Fig. 2B. Rare epitopes were grouped by similar
training set size, and their AUC averaged. The results indicate
that TULIP outperforms netTCR2.0 on most of the epitopes,
including all of which that had more than 20 TCR in the training
set. For completeness, we plotted the ROC curves of TULIP in
Fig. 2C. These curves reveal a very good performance on the
top-ranked prediction as ROC curves start with a vertical line
up to 0.5 of true positive rate before observing the first false
positives. This steep start is extremely interesting as it implies
that the model is extremely good for the sample for which it is
the most confident.

Because the AUC treats positive and negative examples
symmetrically, it is particularly sensitive to the choice of
negative samples, which the supervised method can exploit to
artificially boost its performance (22). To illustrate this bias, we
implemented a different sampling approach for negative examples
within our SDs. Instead of uniformly sampling nonbinding
TCRs, we uniformly sampled another epitope and then selected
one of its associated TCRs. This alternative sampling procedure
aims to counteract the bias introduced by the overrepresentation
of TCRs from the most commonly observed epitope in the
negative sets, which leads supervised methods to learn the features
of TCRs binding to that epitope, instead of learning the features

of the positive TCRs. Fig. 2D shows that performances of
both TULIP and NetTCR-2.0 decrease when this alternative
sampling is applied, demonstrating the importance of this bias.
This alternative sampling does not affect the TULIP model itself,
whose training does not involve negative examples, but it does
affect its AUC which relies on negative examples. However,
the bias is more pronounced for a supervised method such as
NetTCR-2.0, as evidenced by the fact that most points fall below
the diagonal.

1.3. Generalization to Unknown Epitopes. A major challenge of
pMHC–TCR binding models is to be able to generalize, i.e.,
to make binding predictions on epitopes that were not used
in the training set (unseen epitopes). This ability varies a lot
depending on the considered epitope, notably as a function
of how similar it is to other epitopes used during training,
making comparisons between methods and different contexts
difficult. Here, we propose a systematic approach for assessing
generalization across thousands of unseen epitopes, by stratifying
them according to their distance to the training set.

We split the full database into a test set composed of epitopes
with fewer than 20 examples, and a training set composed of
those with more than 20 examples. TULIP was subsequently
trained on the training set for 100 epochs, following which its
performance was evaluated on the testing set, yielding 1,796
AUCs. The Levenshtein distance between each unseen epitope
and its closest counterpart in the training set was then computed.
To mitigate potential bias from deep mutational scanning (DMS)
experiments, which contain large numbers of closely related
sequences, we identified TCRs that were associated with similar
peptides and deleted them from the training set. For each peptide
in the test set, the subset of peptides with minimal distance in the
training set was identified, and all TCRs associated with them
were removed from the test set. All TCR sequences associated
with both the peptide from the test set and any peptide in the
subset of closest peptides within the training set were removed
from the training set. Despite these corrections, the dataset is still
very biased. The distribution of TCR per epitope is skewed with
a heavy tail (SI Appendix, Fig. S1), and epitope representation
is mostly biased toward COVID peptides and neoantigens (SI
Appendix, Fig. S2).

We computed the average AUC of epitopes as a function
of their distance to the training set (Fig. 3A and SI Appendix,
Figs. S3 and S4 as a function of normalized distance). TCR
similarity between the training and the testing sets is shown
in SI Appendix, Fig. S5. Machine learning methods tend to
perform better in the region closer to its training set. It is a
common phenomenon in all machine learning approaches for
the model’s capacity to extrapolate and generalize to decrease as
one moves further away from the training set. We used three
different methods for sampling the negative examples in the
model evaluation (Fig. 3B). In the unseen unconnected random
association (UURA) and unseen connected random association
(UCRA) methods, negative pairs are drawn by picking a random
TCR and a random epitope that were not in the training set.
In the UURA, which is more rigorous, the true cognate epitope
of the picked TCR is also unseen, while in the UCRA it can be
any epitope (seen or unseen). In the healthy repertoire sampling
(HRS), the TCR is chosen at random from the repertoire of
healthy individuals (for which the epitopes are unknown) taken
from ref. 34. The potential issue with that method is that
machine learning methods might learn the biases of this negative
dataset, which was produced using different technologies, rather
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A C

B

Fig. 3. (A) Performance of TULIP on unseen peptides as a function of the distance to seen peptides. Up to edit distance 4, a clear signal can be seen. This
analysis is done on a large set of peptides (171 at distance 1, 43 at distance 2, 44 at distance 3, 161 at distance 4, 501 at distance 5, 500 at distance 6, 103 at
distance 7, 54 at distance 8, 219 at distance 9, and more). We also illustrate the role of negative sampling by showing the performance with three different
Negative sampling methods. The details of these methods are explained in (B). Our unsupervised methods show less variability with respect to the sampling
methods compared with other supervised methods as shown in (C) and SI Appendix, Fig. S6. (B) We detail here three different methods to sample the negative
of unseen epitopes. We illustrate the fact that in the original data, several TCR can be binding a single epitope, by putting two TCR in front of each epitope
in the plots. UURA: the epitope and the TCRs are unseen and the TCRs used for the negative are binding with an unseen epitope. UCRA: the epitope and the
TCRs are unseen and the TCRs used for the negative can be binding to any epitope. We emphasize in red the association with an unseen connected TCR, as
it is the difference with UURA. HRS: negatives are sampled from a healthy repertoire. Both UCRA and HRS lead to biases in the negative dataset that may be
exploited by machine-learning methods when assessing performance. (C) Testing the effect of change of the negative sampling on unseen peptides for PanPep
and TULIP. Contrary to TULIP, PanPep performance does not resist changing the negative sampling process from HRS to the more stringent UURA, which gives
a more accurate measure of performance. For the HRS, we reused the negative example from the original paper.

than actual binding properties, and exploit them to reach a
good but fictious performance. The results obtained with the
most conservative negative sampling procedure (UURA, in blue)
indicate that TULIP shows good generalization for epitopes that
are close to the training set. This performance decays quickly with
distance, reaching 1/2 (chance level) around at an edit distance
of around 4.

For comparison, we also investigated the performance of
existing models, PanPep (20), Ergo2 (21), and DLpTCR
(23), but reevaluated using the more rigorous UURA negative
sampling method not used in the original studies (as the
training/testing split of STAPLER (22) was not available at the
moment of writing, we could not compare performance with that
method). For instance, the performance of PanPep on unseen
epitopes, which was originally assessed using the HRS method,
drops to chance level when using the more stringent UURA
(Fig. 3C ), suggesting that its performance with HRS stems
from exploiting biases in the negative dataset rather than learning
actual binding properties. By contrast, TULIP, when tested on
the same dataset (and retrained on data that excluded that test
set) retains some predictability. Similar results for DLpTCR are
reported in SI Appendix, Fig. S6A. We also compared our findings

with ERGO2, which was trained using the UCRA method for
negative sampling. Conducting a test by resampling the TCRs
with the more conservative UURA shows that the resulting
AUC also decays to values close to chance level (SI Appendix,
Fig. S6B). Note that STAPLER (22) was also evaluated using
UCRA, potentially inflating its performance on unseen epitopes.

These findings underscore the risks of using negative samples
during training. Since most pairs are negative, identifying a
nonbinding pair carries very little information. Any signal
captured from negative examples is likely a result of batch effects
introduced by the negative sampling procedure. This justifies the
choice of an unsupervised architecture for pMHC–TCR binding.
Thanks to this structure, TULIP is robust in the face of changes
in negative sampling approaches, since training does not use any
negative samples.

1.4. Predicting the Effect of Neoantigen Mutations on TCR
Activation. To further test our model’s ability to predict binding
to different epitopes, and to predict epitope mutations that may
evade immune recognition, we applied it to deep mutational scans
of epitopes against fixed TCRs from ref. 35. A deep mutational
scan of the epitope binding with a fixed TCR is a systematic
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A

B

Fig. 4. (A) Effect of single epitope mutations on the TULIP score (logP) predicts TCR binding (dissociation constant K in μg.mL−1) measured by deep mutational
scan experiments (35). The reported � and p-values correspond to Spearman correlations. (B) Repertoire mining for neoantigen-binding TCRs. The TCR
repertoires of three healthy HLA*A02:01 donors from ref. 34 were spiked with TCRs known from the literature to bind to five neoantigens. Sequences from the
augmented repertoires were ranked by the model according to their predicted affinity to the neoantigen of interest. Reported is the rank of the best-scoring
neoantigen-binding TCR. The quantile corresponds to the probability of achieving that rank by chance (random ranking), and may be interpreted as a P value.
Two training procedures were used: one where all TCRs associated with the neoantigen of interest and related peptides were removed from the training set
(TULIP) and one where only the TCR to be ranked was removed (hold-out; TULIP HO).

analysis that explores the effects of multiple genetic mutations
within the epitope on its interaction with a specific TCR.
The study involved six deep mutational scans of two epitopes
(HLA-A*02:01 restricted NLVPMVATV and IMDQVPFSV
also present in the training set) against three TCR targets each.
For each of the 19× 9 single-amino acid variant of the epitopes,
the affinity to the TCR was assessed by measuring the epitope
concentration at which 50% of T cells were activated in culture
(EC50). Observing binding in an experiment requires both the
binding of the peptide with the MHC, and of the TCR with
the pMHC. We used the joint probability of binding as a score
log p(binding(e−MHC), binding(e−TCR)|�, �, e,MHC) We
approximate this quantity following the method in Section 3.3
by log p(e|�, �)− log p(e)+ log p(e|mhc)− log p(e) as a predictor
of this affinity. The comparisons between model and experiments
are shown in Fig. 4A. Despite high variability, our model was able
to capture the fundamental properties of binding in epitope space.
To quantify performance, we measured the Spearman correlation
between our score and the measured EC50. The score correlates
up to 0.47 for the best TCRs. While predictability is limited,
these results are encouraging considering that the model was
trained on data with a large excess of TCRs relative to epitopes,
and applied to data with a large excess of epitopes relative to

TCRs. To assess how much of this predictability is due to pMHC
only (irrespective of the TCR), we compared these results with
NetMHCpan (36), which is based solely on the epitope-MHC
interaction, and found a lower correlation (SI Appendix, Fig. S7).
This highlights the importance of the TCR-epitope interaction
in the experiment.

1.5. Repertoire Mining for Neoantigen Recognition. We then
asked whether the model could pick TCRs binding to a
particular epitope from whole repertoires. We focused on TCRs
binding to six HLA-A*02:01 restricted epitopes, including five
cancer-associated neoantigens [Cyclin D1: LLGATCMFV (37);
p53: HMTEVVRHC (38, 39); HER2: ALIHHNTHL (40);
TPBG: RLARLALVL(41); and gp100: YLEPGPVTA (42); see
SI Appendix, Table S1 for the full list]. In addition, we looked
for TCRs specific to the SARS-CoV-2 spike protein epitope
YLQPRTFLL in the CD8+ repertoire of a COVID-19 infected
donor at the peak of the response at day 15 (43). YLQPRTFLL-
specific TCR harbored by the same donor were identified in a
separate study using a multimer-binding assay (44).

We first considered a scenario where no prior knowledge
about TCRs binding the epitope was available, by removing
these entries from the training set, as well as all TCR-epitope
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pairs whose epitope is similar to the epitope of interest (less than
four amino acid substitutions). For the SARS-CoV-2 epitope, we
also removed all TCRs associated with YLQPRTFLL as well as
similar epitopes (“YLRPRTFLL” and “YYVGYLQPRTFLL”) to
mitigate potential leakage effects. In the second scenario (hold
out, or HO), we only removed from the training set the TCR that
we want to find: one neoantigen-associated TCR at a time in the
case of neoantigen, and all epitope-specific TCR from the donor
as reported by the multimer assay. In both cases, we removed
redundancies of the alpha and beta chains: when several TCRs
have the same alpha chain, we only retained one of them, and
likewise for beta chains.

For each neoantigen, we mixed neoantigen-associated TCRs
(all of them in the first scenario, and only the removed one in
the LOO scenario) with three unrelated TCR�� repertoires of
HLA*A02:01 positive donors from ref. 34. For the SARS-CoV-2
epitope, we simply considered the CD8+ TCR� repertoire at
day 15 from ref. 43. We then asked TULIP to rank each TCR
according to the predicted binding to the epitope of interest.
The results, reported in Fig. 4B, show that TULIP in many cases
narrows down the list of candidate TCR to a relatively small
number, even when it was trained with no knowledge about the
neoantigen-associated TCRs. When it does (TULIP LOO first
index column), it can even identify the neoantigen-associated
TCR within the very best ranked ones. In the case of the SARS-
CoV-2 epitope, performance was excellent even when in the first
scenario (no prior knowledge about the epitope), and perfect
(best rank 1) in the hold-out scenario.

That analysis focuses on the top-ranking TCR for each
neoantigen, emphasizing precision in detecting potent binders
within the repertoire. This deliberate emphasis on the upper
tiers of the score distribution provides insights into the model’s
discriminative power and its ability to identify TCRs with high
binding affinity to specific epitopes.

2. Discussion

In this study, we have presented an approach for TCR-epitope
binding prediction that overcomes key limitations of current
methods. We demonstrated the model’s ability to generalize to
unseen epitopes, which is a critical factor in real-world app-
lications where the specific epitope of interest may not be known
in advance. Furthermore, we addressed the recurrent bias that can
arise from using negative examples generated through random
pairing in previous supervised approaches. To mitigate this bias,
we proposed an unsupervised learning framework that trains the
model exclusively on positive examples, allowing it to focus on
recognizing patterns within these interactions.

The elimination of negative examples in our approach was
driven by the recognition that randomly generated negative exam-
ples can introduce biases, potentially compromising the model’s
predictive accuracy. By training solely on positive examples, our
model avoids such biases and can more effectively capture the
specific signal of interacting pMHC–TCR complexes.

One difficulty in evaluating and comparing methods is that
the exact TCR-epitope binding prediction task may differ across
studies and applications. For instance, looking for epitope-
specific TCR within the peripheral repertoire is a different task
than finding them within responding clones in lymph nodes
or in tumor tissues. Likewise, identifying TCRs binding to a
neoantigen but not to the wild type is not the same as identifying
the response to a specific antigen within a repertoire. Some of the
biases discussed earlier arise from unclear or unrealistic definitions

of the tasks. When the objective is to recognize patterns in binding
complexes, the unsupervised approach emerges as the more
natural choice. Supervised approaches can only demonstrate
their potential in specific use cases where negative samples can
be precisely defined (e.g., sorting cells that do not carry an
activation marker or do not bind a tetramer, although these
negative examples are typically not reported in studies). Careful
consideration should also be given to the sampling of negative
examples. Negative examples should be selected to be close
enough to the classification boundary, making them challenging
examples (referred to as Hard Negative Sampling). The difficulty
of these constraints lead us to conclude that unsupervised
approaches should be preferred for most applications.

We emphasize the importance of utilizing all available data
sources, regardless of their completeness or quality. The same
is true for NLP approaches, which usually start by collecting
and training on as much data as possible. The TCR-epitope
binding prediction task often suffers from the scarcity of compre-
hensive data, as obtaining complete TCR sequences along with
corresponding epitopes and MHC information is challenging.
However, our approach is designed to be flexible, leveraging the
available data and accommodating situations where only partial
data are accessible. By using both alpha and beta chains when
available, while being able to learn from one chain alone, our
model can make the most of the data at hand and extract valuable
insights.

While our proposed model shows promise, it is essential
to conduct fair and rigorous model comparisons to assess its
performance accurately. The field of TCR-epitope binding
prediction often lacks standardized benchmark datasets and
evaluation protocols (but see ref. 13), leading to difficulties in
comparing different models. To address this challenge, future
research should focus on establishing standardized benchmarks
and evaluation procedures that encompass diverse datasets and
evaluation metrics beyond classification. While this paper was
under review, the IMMREP23 competition (45) attempted to
rank existing methods for binding prediction. TULIP performed
best among the published methods. However, exploitable biases
in the data, together with the entry of unpublished methods
using potentially nonpublic, in-house data, make an absolute
comparison still difficult.

One limitation of our approach is that the model yields only
probabilities of pairs of sequences, rather than a proper binding
constant, for which titration data (where the concentration of
the epitope is varied) would be needed. Another limitation is
that large areas of the epitope space have not been measured,
and some parts are extremely hard to measure. For example,
having a model able to determine the risk that a TCR binds to
self-proteins, would be extremely useful for predicting the safety
of T cell therapy, but such TCRs are by construction hard to
observe, and the lack of data is a major limitation for further
progress in this direction.

Since our model is generative in nature, it would be interesting
to experimentally test its ability to generate de novo TCR
sequences for given epitopes, or for combinations of related
epitopes to which it would be cross-reactive. This avenue of
research could provide valuable insights into the design and
discovery of TCRs with specific binding capabilities.

3. Methods

3.1. Data Collection. Data acquisition in the field of immunology presents a
major challenge. The intricate process of TCR binding to its respective epitope
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Table 1. Summary of the data sources used for training
VDJdb VDJdb McPAS-TCR McPAS-TCR IEDB IEDB netMHC

epitope epitope epitope epitope epitope epitope epitope
with MHC without MHC with MHC without MHC with MHC without MHC with MHC

Alpha and Beta 29,251 0 5,021 77 5,021 77 0
Alpha alone 6,750 0 1,065 87 1,065 87 0
Beta alone 23,011 0 9,898 218 145,332 11 0
No TCR 0 0 0 0 451 11 663,767

depends on four critical elements: the epitope itself, the MHC, and the alpha
and beta chains of the TCR. While each component has been extensively studied
in isolation, the number of instances where all four components are jointly
available remains remarkably scarce.

In this study, we present a computational aiming approach at constructing
a model capable of learning from incomplete data. To achieve this goal, we
curated data from multiple sources, maximizing the total sample size at our
disposal (Table 1). Specifically, we first accessed the VDJdb database (9) in its
entirety, which boasts the highest data quality among our available resources.
We also added the IEDB database of TCR and McPAS-TCR dataset (10, 11). The
IEDB database is more diverse, but of poorer quality, and was never used for
fine-tuning. This accounts for 209,779 not redundant data points containing
the epitope and at least one chain of the TCR. The instances listed above
consist of TCR along with their respective epitopes and MHC. Regrettably,
the MHC or one of its two chains is frequently absent. Additionally, the
diversity of epitopes is relatively low compared to that of TCRs, with each
epitope possessing multiple TCR. To supplement our data, we incorporated the
training database of netMHC, which is solely composed of MHC and epitope
information. Although this dataset does not directly aid in comprehending the
correlation between TCR and epitope, it is advantageous in two ways. First,
the dataset encompasses a wide range of epitopes, which assists the model
in comprehending the true diversity of potential epitopes. Second, in order to
achieve effective transfer learning between MHC, the model must comprehend
what is distinct to each MHC and what can be transferred. Therefore, the
netMHC database aids in better modeling the specific role of MHC in the
epitope modeling process. We gather 663,767 peptides with their MHC (Table
1). We gathered all these data in a single one that we will refer to as the full
dataset (FD).

3.2. Model Definition. Our model is an extension of the well-known transformer
model, in its encoder–decoder version. In the original version (30), the method
was used for translation. During training the encoder was given a sentence in
the source language, and the decoder was given the translation in the target
language as an objective to produce.

In our specific problem, we would like to condition our model on more
than one interacting element. We, therefore, need to extend the existing
architecture. We define three encoders, three decoders, and two embedding
layers: an �-encoder that is specialized in encoding the �-CDR3, an �-decoder
that is specialized in decoding the �-CDR3, a �-encoder that is specialized
in encoding the �-CDR3, a �-decoder that is specialized in decoding the �-
CDR3, an epitope-encoder that is specialized in encoding the epitope, an e-
decoder that is specialized in decoding the epitope, and finally an amino acid
embedding and an MHC embedding (as we decided to represent the MHCs
as categorical variables). First experiments on initializing the decoders with
the weights of pretrained general purpose proteins masked language models
did not show any sign of improvement. TCRs � and � chains exhibit unique
characteristics and patterns that are distinct from general protein sequences.
The core of the loops of the CDR3 is extremely variable. On the other hand,
epitopes are much smaller than usual proteins and presented inside an MHC.
All these factors imply that general rules for proteins do not transpose easily
to our scenario. By utilizing dedicated encoders and decoders tailored to
the specific nature of TCRs and epitopes, we can capture and encode their
domain-specific features more effectively. This specificity enables the model to
focus on relevant information and potential interactions specific to TCR-epitope
binding.

While we refer to the original work on transformer (30) for precise details on
the attention layers and the encoder–decoder architecture, we review here the
key components.

Sequences are encoded by their specific encoder and used as the input for
the decoders. They are processed through alternating blocks of self-attention
and linear layers.

Typical vocabulary sizes in NLP are in the order of 104 to 105, while in our case,
we have a vocabulary V is composed of the 20 amino acids and some special
token (PAD for padding, EOS for End-of-Sentence, SOS for Start-Of-Sentence,
UNK for the Unknown characters). The sequence embedding is composed of two
parts, one for the amino acid identity and one for the position in the sequence.
We learn a dictionary, mapping each of the amino-acids to a vector of dimension
dmodel. The sequence position is embedded as a vector in the same way, learning
an embedding vector for every position. We also learn a specific embedding for
the most common HLA types. The embedding of each sequence is taken as the
sum of the amino-acids and positional embeddings. The embedded amino-acid
sequences are then passed to the respective encoders, mapping them to a latent
representation zT = (z1, . . . , zn), T ∈ (�, � , e). The encoded sequences are
then concatenated with the MHC embeddings before being sent to the decoder.
For each decoder, we concatenate the MHC embedding with all the encoded
sequences except the one that the decoder will reproduce, as we do not want
to give a decoder the sequence it is supposed to reproduce. The details of these
groups can be seen in Fig. 2. For example, we concatenate the encoding of
the �-CDR3, the �-CDR3, and the MHC for the Epitope decoder, as the epitope
decoder should be conditioned on everything but himself. The decoders are
then trained to predict their respective amino-acid sequences conditioned on
the encoded pieces of information.

The decoder implements an autoregressive distribution, for example

P(a�i |a
�
<i, z� , ze, mhc), [1]

defining the probability of the ith amino acid in the �-CDR3 sequence given the
precedingaminoacidsa�

<i andthehiddenrepresentationof theotherselements.
During training, we use the true amino acids for a�

<i. This way of predicting the
next amino acid in a sequence is called causal language modeling (CLM). The
loss associated with this task for a single sequence is simply the cross-entropy
for every predicted token.

LossCLM =−

N�∑
i

log(P(a�i |a
�
<i, z� , ze, MHC))

−

N�∑
i

log(P(a�i |a
�
<i, z� , ze, MHC))

−

Ne∑
i

log(P(ae
i |a

e
<i, z� , zbeta, MHC)).

[2]

We schematize the forward pass of Tulip in the following pseudocode:
This approach has already been used for proteins in many works. Especially in

ref. 31 an encoder–decoder model was used to investigate interacting amino-acid
sequences. The first thing to remark is that the decoder defines autoregressively
a probability distribution over the generated sequence. It is generative as we can
sample new examples but if we give it an existing specific sequence it will give
us its probability. When coupling this to an encoder the probability distribution
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Algorithm 1: TULIP
1: for C ∈ (�, � , e)do F In parallel
2: embedaa

C ← (embedding(aC
1 , )..., embedding(aC

N�
))

3: embedpos
C ← (Posembedding(1), ..., Posembedding(NC))

4: inputC ← embedaa
C + embedpos

C
5: zC

← C-encoder(inputC)

6: r� ← concat(z� , ze , embedMHC)
7: r� ← concat(z� , ze , embedMHC)

8: re ← concat(z� , z� , embedMHC)

9: for C ∈ (�, � , e)do F In parallel
10: for i ∈ (1, .., NC)do F In parallel
11: p(aT

i |rC , aC
1 , ...aC

i−1)← C-decoder(r� , aT
1 , ...aT

i−1)

12: p(�|� , e, MHC) =
∏N�

i p(a�i |r� , a�1 , ...a�i−1)

13: p(�|�, e, MHC) =
∏N�

i p(a�i |r� , a�1 , ...a�i−1)

14: p(e|� , �, MHC) =
∏Ne

i p(ae
i |r� , a�1 , ...a�i−1)

becomes a conditional probability distribution (conditioned on the input of the
encoder). These conditional probabilities can be used for matching interacting
protein sequences (31).

One interesting property of the attention mechanism of the transformer is
that it is position-blind and flexible with respect to the length of its input. This
implies that it does not hard code in its weights where it is expecting to find
specific elements. If a chain is missing, let us say the�-CDR3, we can only gather
the MHC and the �-CDR3 before giving it to the epitope decoder. The encoded
� amino acids end up in the first position of the gathered encoding. This is not a
problem thanks to the position-blindness of the encoder–decoder attention. To
be more precise, the missing �-CDR3 is not completely skipped but replaced by
a learned vector, to inform the model that the chain is missing.

Because of the incompleteness of the data we want to learn as much as
possible from every piece of data available. The decoder is in itself a language
model, so it is able to learn without or with little conditioning. In a standard
encoder–decoder transformer learning the encoder is only trained through the
decoder. We want to avoid this so that the encoder learning will not be entirely
dependent on another piece of data to predict. Luckily, encoders are also trainable
alone (without a decoder) by doing masked language modeling (MLM). During
MLM training, we pick 15% of the amino acid positions, we will call this set of
amino acidsM. From these ones, 80% are replaced by a mask token, and 20%
are replaced by random amino acids. This deteriorated sequence is fed to the
encoder. We learn a linear classifier on top to predict the original amino acids in
M. The logits output by this classifier are then passed by a softmax, defining
for every position i a distribution over the amino acids ai: Pcls(ai|zmasked). The
final MLM loss is simply the cross-entropy:

LossMLM =−
∑

i∈M�

log(Pcls(a�i |z
�
masked))

−

∑
i∈M�

log(Pcls(a�i |z
�
masked))

−

∑
i∈Me

log(Pcls(ae
i |z

e
masked)). [3]

For example, it enables the epitope-encoder to still learn from the 600,000
samples where we do not have TCRs.

In the end, we combined the two losses, using a parameter � that we always
use equal to 0.5 in this paper, and sum over the sequence in the training set:

Loss(�) =
∑

x∈train

(1− �)LossMLM(x) + �LossCLM(x), [4]

where x = (x� , x� , xe, MHC) is our raw datapoint, and � are the parameters of
the model. Details on the training of a transformer can be found in appendix.

Code and weights for the model can be found at https://github.com/
barthelemymp/TULIP-TCR/.

3.3. Mutual Information as a Proxy to the Binding Probability. The model
presented before is autoregressive. The structure of the probabilities defined
by the model is simply P(a�i |a

�
<i, z� , zepitope, MHC) (resp �, epitope) and a

simple multiplication over the position gives us a conditional probability on
the sequences (p(e|�, � , MHC), p(�|e, � , MHC), p(�|e, �, MHC). However,
we should be more precise on what we want to evaluate. These conditional
probabilities can be good for generating sequences, but here we first want
to evaluate the probability of binding. We will show in this section how to
approximate this quantity from the ones evaluated by our model. Let us introduce
the random binary variable of binding or not b such that e T becomes dependent
conditionally on b. The first thing we need to observe is that our TULIP model is
trained only on positive, i.e., binding examples. As a first simplification, let us
look at the link between the binding posterior for a simple case of e being the
epitope and T the alpha and beta chain of the TCR A simple Bayesian approach
will help us here:

p(b = 1|e, T)

=
p(e|T, b = 1)p(T|b = 1)p(b = 1)

p(e, T)
,

[5]

we can start to do some approximation here:

• All TCR sequenced in blood should have passed some positive thymic selection
for epitope binding. This implies that p(T|b = 1) = p(T)

• p(e, T) = p(e)p(T) by construction as the dependence only appears when
conditioning on b.

Leading to:

p(b = 1|e, T) =
p(e|T, b = 1)p(b = 1)

p(e)
. [6]

Noticing the p(b = 1) are constants of the problem, we see that the binding
posterior is proportional to the pointwise mutual information (PMI) between
T and e:

log p(b = 1|e, T) ∝ log p(e|T, b = 1)− log p(e)
= PMI(e; T|b = 1)

[7]

This quantity is the one we used to validate our models in the previous
sections. Pushing further the derivation to include the role of the MHC did not
improve the results.

A similar computation can be done for the interaction between the epitope
and MHC, by simply replacing T with MHC in the previous equation. This second
term is used in Section 1, where the experimental EC50 are the results of the
simultaneous binding of the TCR with epitope and of the epitope with the MHC.

Data, Materials, and Software Availability. Code is available at https://
github.com/barthelemymp/TULIP-TCR/ (46). The data used were collected
from https://vdjdb.cdr3.net/ (47), https://www.iedb.org/ (48), and http://
friedmanlab.weizmann.ac.il/McPAS-TCR/ (49).
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