N

N

Quantitative Theory of Viral-Immune Coevolution May
Be within Reach
Thierry Mora, Aleksandra Walczak

» To cite this version:

Thierry Mora, Aleksandra Walczak. Quantitative Theory of Viral-Immune Coevolution May Be within
Reach. PRX Life, 2023, 1 (1), pp.011001. 10.1103/PRXLife.1.011001 . hal-04252244

HAL Id: hal-04252244
https://hal.science/hal-04252244v1

Submitted on 11 Sep 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-04252244v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

PRX LIFE 1, 011001 (2023)

Quantitative Theory of Viral-Immune Coevolution May Be within Reach

Thierry Mora and Aleksandra M. Walczak
Laboratoire de Physique de I’Ecole Normale Supérieure, CNRS, PSL University,
Sorbonne Université, and Université Paris-Cité, 75005 Paris, France

® (Received 2 June 2023; published 22 August 2023)

Pathogens drive changes in host immune systems that in turn exert pressure for pathogens to evolve. Quantify-
ing and understanding this constant coevolutionary process has clear practical global health implications. Yet its
relatively easier accessibility compared to macroevolution makes it a fascinating system to learn about the basic
laws of evolution. Focusing on immune-viral evolution, we present an overview of theoretical and experimental
approaches that have recently started coming together to build the foundations for a quantitative and predictive

coevolutionary theory.

DOI: 10.1103/PRXLife.1.011001

I. INTRODUCTION

Vertebrates, including us, use their adaptive immune sys-
tem to protect themselves against recurring or endemic
pathogens such as influenza and SARS-CoV-2, or to battle
chronic infections such as HIV. Understanding and quantita-
tively predicting when and how pathogens evolve and escape
immunity through escape mutations is of great importance
for the design of vaccine strategies, diagnostic tools, and
treatment. The evolution of pathogens is partly driven by the
immune system of the hosts. This happens on several time and
spatial scales, from within-host evolution in chronic diseases,
to continuous interaction with many hosts at the population
level in acute infections. The immune systems, in turn, update
their memory repertoires to protect hosts against future infec-
tions by the pathogen or its close variants. This leads to a pro-
cess of coevolution between immune systems and pathogens
that spans many scales, from the molecular and cellular inter-
actions between immune receptors and pathogenic epitopes,
to the organismal and epidemiological levels (Fig. 1).

Protection against pathogens involves all branches of the
immune system working together. The ensemble of antibodies
is one branch that has the ability to somatically mutate and
adapt rapidly, making it an important element of coevolution
occurring on fast timescales. Antibodies, or more generally
immunoglobulins, specifically bind to bits of molecules called
antigens, and recognize them as either natural to the organism
(self-proteins) or foreign. They can either be presented on the
surface of B cells (where they are part of the B-cell receptor)
or found in a free soluble form (antibodies). This process
and the ones that follow can involve interactions with other
arms of the immune system (e.g., T cells, cells of the innate
immune system). Recognition of foreign antigens also induces
migration of these B cells to germinal centers, where they
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somatically hypermutate and are selected for binding to this
specific antigen. Along this process, hypermutated B cells are
released to the blood stream and secrete soluble versions of
their antibody that bind to pathogens and help combat the
infection more rapidly. This results in a constantly changing,
diverse set of expressed antibodies, termed the repertoire.
Viral-antibody coevolution, in addition to its practical im-
portance for health, offers a test bed for basic questions of evo-
lution and coevolution. As is becoming clear in many fields,
organisms do not evolve in steady conditions, competing only
with members of their own species. The outcome of evolution
is shaped by environmental conditions, resource availability,
and surrounding species. Viral-immune evolution occurs on
fast timescales, with both the viral population and the B-
cell repertoires updating their diversity within many weeks.
The rapidity of the process, combined with relative ease of
sampling compared to other systems, and in some cases the
well-defined perimeter where the interactions take place, al-
lows us to test and develop quantitative evolutionary theories.
Quantitative evolutionary theories have been around for
over 100 years, epidemiological models of susceptible-
infected and recovered (SIR) populations close to 100 years
[2], and theories of host-pathogen coevolution date back at
least 30 years [3]. In recent years, in particular in the wake
of the COVID-19 pandemic, troves of genomic data and ever
more powerful parallelized biophysical assays have offered
new opportunities to test these theories experimentally, and to
refine quantitative models. We describe how these advances
in theoretical models and in experimental and population data
have all contributed to our quantitative understanding of co-
evolutionary processes. Yet, taken separately, these amazing
feats of technology and imagination often fall short of provid-
ing a predictive theory of evolution. While evolution is clearly
driven by rare events, coevolution does not allow for all pos-
sible subsequent events, and it may significantly limit actual
evolutionary trajectories. Making concrete statistical predic-
tions about future dominant strains and estimating the errors
and timescales for the reliability of these predictions is now
within reach. Bringing together data, quantitative controlled
experiments, and theory, we can change our understanding of

Published by the American Physical Society
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FIG. 1. Coevolution from the population to the molecular scale. Recognition starts at the molecular level through the specific binding
of antibodies to bits of the viral proteins called epitopes, illustrated on the right by the co-crystal structure of an antibody fragment and the
hemagglutinin protein of influenza (from [1]). At the other end of the population scale (on the left), effective descriptions of antibodies and
viruses in a common antigenic space explain how viruses (in purple) are pushed to mutate continually under the pressure of the immune
system of its target hosts (in blue), growing faster in regions of the antigenic space where the population is susceptible. At the intermediate
scale of the organism (middle), the repertoire of antibodies, represented here by a list of sequences of their third heavy-chain Complementarity
Determining Loop, evolves under the selective pressure of successive acute infections (or of a chronic infection) to optimize protection and to
prepare the organism for future challenges. Only a small fraction of the whole repertoire (shown in blue) is specific to the viral epitope, and is

structured into distinct lineages.

antibody-viral coevolution and propose a predictive quantita-
tive theory of coevolution.

II. VIRAL-ANTIBODY COEVOLUTIONARY PROCESS

Viruses follow basic Darwinian evolutionary rules. They
mutate randomly, and their reproductive success depends on
their ability to survive in hosts or to infect new ones. The
viral capsid envelope and other externally displayed proteins
(such as the spike protein in SARS-CoV-2) breach the host’s
protective layers, allowing the virus to hijack host cells to
reproduce. For this reason, host immune systems target these
proteins. Upon successful recognition of a viral protein as a
foreign protein, B cells are recruited to germinal centers where
the receptor version of their antibody gets hypermutated and
selected for better binding to this specific antigen [4,5]. The
affinity maturation process goes through a few rounds of
mutation and selection [4,6,7], leading to long-lived plasma
cells producing highly efficient neutralizing antibodies. At the
same time, B cells are also released into the periphery at
intermediate stages as plasma or memory B cells [8]. As a
result, the outcome of affinity maturation is a set of B cells
with a range of binding affinities [9], and not just the best
binders for this specific antigen.

Some antibodies are also cross-reactive, meaning that they
can recognize many similar antigenic strains of the virus.
Both cross-reactivity and the diversity of antibodies encoded
by memory B cells guarantees broad protection against the
viral strain as well as many of its antigenic variants. For this
reason, the virus needs to accumulate enough mutations on its

antigenic sites to avoid recognition by the immune systems
of previously infected hosts. In the case of acute infections,
it needs these escape mutations to be able to reinfect in-
dividuals. Without these escape mutations, it can and does
infect susceptible individuals, but after some time a sufficient
fraction of the population develops protecting antibodies (herd
immunity), making escape mutations necessary for the virus
to continue spreading. A similar process occurs for chronic
infections such as HIV, but within a single host, and on a faster
timescale. The speed of these antigenic substitutions depends
on the mutation rate of the virus, as well as on the strength of
selection exerted by the hosts’ immune systems.

III. PHENOMENOLOGICAL THEORIES

Most theories of immune-viral coevolution start with
dynamical models of susceptible, infected, and recovered
(SIR) compartments of hosts [2], repeated for each anti-
genic strain. The most basic version of this model considers
strains in a one-dimensional discrete arrangement called the
stepping-stone model, where viral strains can mutate into their
neighbors along that single antigenic dimension [3], with pos-
sible cross-reactivity (also called cross-immunity) protecting
recovered individuals against neighboring strains [10].

In their linearized, deterministic version, these models ad-
mit traveling-wave solutions along the antigenic axis that
fall into the same class as the Fisher-Kolmogorov-Petrovsky-
Piskunov (Fisher-KPP) equation of reaction diffusion [11].
Viruses at the front of the wave enjoy a susceptible host
population, giving them a growth advantage over strains in the
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bulk of the wave, which suffer from herd immunity. As they
infect more individuals, these strains become less and less fit,
and are in turn outcompeted by more advanced variants along
the antigenic axis. This leads to a nonequilibrium steady state
where the average fitness of the viral population remains con-
stant, in a striking realization of the “Red Queen” hypothesis,
where the fitness benefits obtained by escape mutations are
continually compensated by building herd immunity. Adding
cross-immunity may yield nonlinear solutions of oscillating
waves, leading to clustered viral populations and periods of
quiescence [10,12].

Since these early works, other theories of immune-viral
coevolution [13—-15] have assumed that viral evolution oper-
ates in a different regime, where small-number (demographic)
noise at the most advanced tip of the wave drives its motion,
giving a striking example of how macroscopic behavior can
be determined by the statistics of rare events [16-20]. The
crossover between this stochastic regime and the Fisher-KPP
regime is governed by the range of cross-reactivity [21].

The two regimes lead to very different predictions for the
rate of adaptation and its dependence upon the antigenic muta-
tion rate and host population size [21]. In the regime of small
cross-reactivity, the virus spreads in an essentially susceptible
population, and the wave falls in the Fisher-KPP regime. The
stochastic regime is achieved at large cross-reactivities, and
very small fitness differences lead to a large advantage to
“jumping before the crowd” and infecting new hosts. The
two regimes correspond to distinct predictions for the evolu-
tion of non-antigenic traits such as the mutation rate itself,
or the virulence of the pathogen. In the stochastic regime,
viruses strive to maximize their basic reproductive number,
while in the Fisher-KPP regime they tend to maximize the
speed of the wave. Rough estimates seem to place the evolu-
tion of influenza and possibly SARS-CoV-2 in the stochastic
regime [21].

A limit of these early models is the assumption that the
antigenic space is one-dimensional. Dating back to the work
of Perelson and collaborators [22], physicists have proposed
models of coupled nonlinear equations in high-dimensional
space to describe the effective ecology of repertoires, and
to predict their response to immune challenges. Within this
description, antigens and antibodies coexist in the same space,
and their ability to interact depends on their mutual distance.
The cross-reactivity range defines the distance within which
an antibody can recognize an antigen. In this view, antibodies
“cover” the space of antigens with cross-reactivity hyper-
spheres. Hemagglutination inhibition (HI) assays performed
in the mid-2000s [23] measured the ability of different an-
imal serra to neutralize influenza viruses found in human
populations across the second part of the 20th century. The
neutralization trajectory could be computationally mapped
onto a low-dimensional trajectory, justifying the approxima-
tion made by many phenotypic models.

With these observations in mind, models of antigenic
waves were extended to multiple or even infinite dimensions
(infinite allele model), leading to mathematical developments
with direct biological relevance, in particular about the pre-
dictability of viral evolution. The theory predicts that the
immune pressure pushes the viral wave forward, channeling
its inertial course into an effectively one-dimensional track

[24], but the direction of this evolutionary trace diffuses ro-
tationally in antigenic space [15,25]. This observation may
be used to retrospectively explain and justify the assumption
that antigenic evolution is low-dimensional. However, the ro-
tational diffusion limits the ability to predict future strains,
especially in high dimensions.

Accounting for the finite size of the population of infected
hosts leads to the possibility that the viral population goes
to extinction, or splits into two antigenically independent
lineages [14]. The latter happens when two viral strains at
the tip of the wave jump away from the immune systems,
but in different directions, and far enough to be outside the
cross-reactivity range of each other. This effect, which is
reminiscent of the split between the Yamagata and Victoria
strain of influenza B in 1983 [26], can only occur in multiple
dimensions, but is predicted to be a very rare and essentially
unpredictable event, with exponential sensitivity to the model
parameters [14,15]. The Red Queen state of constant escape
is not asymptotically stable, but it is an incredibly long-lived
transient [14]. This result proposes a more subtle interpreta-
tion of the neutralization data, where the emergence of an
effective low-dimensional coordinate for viral escape is not
guaranteed but results from the parameters of the coevolution-
ary process.

In summary, existing models show the importance of di-
mensionality for coevolutionary trajectories and their stability.
For this reason, estimating the dimensions of this effective
phenotypic space is an important challenge for understanding
the space and span of possible coevolutionary trajectories and
will help connect the evolution of real viruses to these models.

IV. POPULATION LEVEL VIRAL DATA

What does the evolution of real viruses look like? Clearly
the impact of viral evolution on our lives is more complex
than predicted by theoretical models described above, due
to geographic effects [27-30], seasons [31], immune history
[32-34], and social behavior [35,36]. Tracking viral evolution
based on sampled influenza, HIV, and SARS-CoV-2 data has
become an important endeavor for both global health and
policy making [37-41], as well as understanding coevolution
[42,43].

Since viruses evolve continuously by acquiring unique sets
of mutations, these mutations can be used as markers to track
evolution and disease spreading. Tracking viral genomes and
reconstructing their phylogenies allows us to identify how
viral populations spread in host populations, and how and
where epidemics arise. Bedford and Neher developed the
comprehensive NextStrain open source project [44], which
continually updates publicly available pathogen genome data
from many species, and it offers analysis and interpretation
tools [45]. Collecting data and making them easily accessible
is a necessary step for understanding evolutionary processes.

Previously, Neher et al. used tree branching statistics to
successfully predict the future success of influenza strains
[46]. In parallel efforts, Luksza and Lissig used fitness models
based on physical quantities such as protein stability and
antigenic binding to predict the evolution of influenza [47].
Such approaches, although currently limited to a one-year
prediction window, are now used by global health agencies to
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inform influenza vaccine design. These two models focus on
different effective signatures of viral evolution: Neher et al.
[46] exploit signatures of natural selection encoded in the
branching structure of viral lineages; Luksza and Lissig [47]
integrate information about viral stability and antigenicity to
build a predictive fitness model. Incidentally, similar fitness
models generalize well to a different immune context where
coevolution plays a similar conceptual role: the arms race
between tumor cells and the T cells that eliminate them. These
models are able to predict the immunogenicity of neoantigens
[48], and to detect the selection or elimination of immuno-
genic cancer cells by the immune system (immuno-editing)
[49]. They are now being used in the design of patient-specific
vaccines for pancreatic cancer [50]. Similarly, fitness models
have been used to show that selection induced by vaccination
has driven the antigenic evolution of SARS-CoV-2 [43], or
to predict the vulnerability of HIV variants with implications
for vaccine design [51-53], even leading to a preclinical trial
[54]. Despite these important applications, much work needs
to be done to relate these models to more precise descriptions
of pathogen-immune interactions, include the feedback of the
hosts’ immunity on viral evolution, and integrate the events
at the molecular and population level into a general theory of
pathogen-immune coevolution.

V. IMMUNE REPERTOIRE ANALYSIS

On the immune side, recent advances in the profiling
of antibody repertoires by high-throughput sequencing [55]
have opened opportunities for quantitative understanding of
pathogen-immune interactions and coevolution. In particular,
how the immune repertoire is reshaped following infections
or reinfections by the same or mutated pathogens is a cru-
cial building block towards building multiscale models of the
coevolutionary arms race between an ensemble of immune
systems (from the host population) and a population of evolv-
ing pathogens.

The initial diversity of the repertoire is generated by a
random process of recombination of the antibody genes,
which has been extensively characterized using data-driven
biophysical models of recombination and function selection
[56,57]. The second process of antibody diversification is
through biased hypermutations [58,59], which are generated
and selected for better binding during the affinity maturation
process. Hypermutations create a large number of lineages
with distinct ancestors, and each lineage is shaped by selec-
tion through their ability to recognize its cognate antigen [4].
Understanding and quantifying the underlying evolutionary
process within antibody repertoires is still a major chal-
lenge. Normative or descriptive theories have been proposed
to understand how antibody repertoires self-organize to im-
prove their specificity to the target through affinity maturation
[60-62], and efficiently encode the memory of past infections
to prepare for the next one [63,64]. However, it has been hard
to directly relate these predictions to actual repertoire data.

Disease-specific patient cohorts are now routinely sub-
jected to antibody repertoire sequencing [65-70], with the
goal of providing insight into how immunity is shaped and
acquired. However, most of these experiments sample whole
antibody repertoires from patient blood, which is a mixture

of many lineages stemming from multiple past infections.
To correctly describe the evolutionary process and gain in-
terpretability, the bulk antibody repertoire data must first be
partitioned into clonal families that share common ancestors,
and organized into phylogenetic trees retracing the ordering
of hypermutations. Because of the large initial diversity of
possible ancestors, lineage clustering is a difficult problem
for which recent progress has been made [71-73]. In addi-
tion, the specific structure of antibody receptor sequences,
with varying lengths, small lineage sample sizes due to lim-
ited sampling, and heterogeneous mutation rates, makes the
problem of phylogenetic reconstruction different and more
difficult than in traditional genetics.

Attempts to characterize and quantify the selection on
antibody lineages have been inspired by traditional methods
from molecular evolution, either by inspecting the spectrum
of observed substitutions [74,75], by analyzing the statistics of
the lineage structure and phylogenies [66,76], or by exploiting
longitudinal data to quantify evolution dynamically [65-67].
These analyses have returned global signatures of selection
that are statistically significant but hard to interpret, calling
for new approaches.

For example, typical measures of selection, such as skewed
site frequency spectra, abnormal ratios of synonymous to non-
synonymous mutations, or tree imbalance, are detected even
in the repertoire of healthy individuals [66,77], since these
repertoires also contain lineages that have been expanded
during past infections. This suggests that we should refine our
null hypotheses of what makes a normal healthy repertoire,
beyond the standard neutral model of evolution. A detailed
analysis [73] of B-cell repertoire data sets from healthy people
[78] shows that evolutionary properties of the lineages do not
depend on the global properties of the ancestral sequence,
such as its junctional length or generation probability, sug-
gesting that the selection process in germinal centers treats
every sequence in the same way. Estimated selection pressures
(through ratios of synonymous to nonsynonymous mutations
along the trees) span two orders of magnitude, suggesting a
broad range of selection forces that go beyond simply purging
weak binders (purifying selection). These results based on
human data are in agreement with the direct observation of
diversity in mouse lineages [6], where the binding properties
of cells exiting germinal centers is large.

Coming back to the analysis of repertoires in infected
individuals, progress has been made possible through the lon-
gitudinal analysis of lineages across multiple time points. This
has allowed us to detect [66] and subsequently validate [79]
antigen-specific lineages, or to demonstrate the accumulation
of hypermutations with time in acute and chronic infections
[80]. Combining longitudinal data with phylogenetic anal-
yses has also helped us to go beyond traditional genetics
approaches by using a propagator-based approach originally
designed to study viral evolution [81]. Applied to repertoire
data from HIV patients, this method identified which part of
the antibody sequence was selected [77], and it demonstrated
the existence of clonal interference within antibody lineages.
In this regime of clonal interference, the best antibodies have
a selective advantage driving the growth of their relative fre-
quencies, but they are constantly challenged by new variants
before they have the time to invade the population. These
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results reveal a complex dynamics with a continual production
of ever better antibodies competing with each other, main-
taining a large clonal diversity and potentially slowing down
adaptation.

Despite these advances, repertoire analyses are generally
hampered by the fact that the antigenic targets of antibodies
are mostly unknown, making their practical use limited. New
experimental techniques and computational tools are needed
to identify responding or antigen-specific lineages directly
from repertoire data, using either longitudinal data [79] or
large cohorts of donors infected with a common disease [82].

VI. COEVOLUTION

A recently published HIV data set was the first to track
in depth both antibody repertoires and viral strains in the
same patients [83]. While initial analysis does not seem to
reveal any signatures of coevolution, pulling the data from
different patients and statistically correcting for different sam-
pling depths shows significant anticorrelation between viral
and antibody turnover in all patients [84]. This suggests that
fast viral evolution is accompanied by a slowdown in the
change of the composition of the immune repertoire. This
is then followed by a fast immune change when the vi-
ral population is stable. The results may appear surprising,
since we expect the immune system to track the virus, so
that their evolutions should be correlated. However, simple
string models such as those proposed earlier for HIV evolu-
tion [85] (see below) show that both this initial expectation
and the observed anticorrelations are correct, depending on
the sampling timescale: if it is of the order of the switch-
ing time, as it is in the experiments, we observe negative
correlations, since both the viral and immune populations
experience the largest selection pressure, hence the largest
turnover, when the other population is stably adapted, whereas
for longer sampling timescales we would observe positive
correlations.

Despite this exception and the weak coevolutionary signal
that could be extracted from it, we lack more longitudinal data
sets of repertoires and infecting viruses over long timescales.
Such experiments would allow us to test coevolution theories
quantitatively at the genetic level, with the hope of relating
specific viral mutations to specific changes of the repertoire.

Coevolution involves the molecular interaction of viral
proteins with immune receptors. While for many purposes a
phenomenological description suffices, the molecular nature
of these interactions matters, since certain regions of viral
proteins are under stronger stability constraints, making them
more conserved and more stable targets for the immune sys-
tem. Conserved regions are usually harder to access from
a conformational standpoint, and antibodies primarily target
strain-specific and variable regions of the virus [86]. However,
antibodies that do neutralize conserved regions are likely to
neutralize more than one viral strain. They are known as
broadly neutralizing antibodies (BnAbs), and they emerge as
a result of natural affinity maturation [87]. Yet this happens
rarely and usually after long periods of coevolution, such as
in the case in individuals infected with HIV.

String models have been introduced to describe the vi-
ral protein-antibody interface as strings of interacting amino

acids. Despite their simplicity, these models have been suc-
cessfully used to understand viral-antibody coevolution [85],
and to explain how broadly neutralizing antibodies emerge
during affinity selection [88,89]. Using time-shifted neutral-
ization assays in HIV-infected patients [90], fixation of a
lineage was shown to be determined by competition between
circulating antibody lineages, and BnAbs were found to be
more likely to emerge when confronted with diverse viral
populations. String models have also helped design vacci-
nation schedules that force affinity maturation into a regime
where antibody evolution is focused on the conserved re-
gion of the virus (rather than its antigenic sites, which the
virus can mutate without much harm), leading to the gener-
ation of antibodies with broader affinity [62,91-93]. Using
string models combined with data from humans who received
COVID vaccines, Yang et al. [94] have shown that feedback
from newly produced antibodies that transport antigens more
efficiently to germinal centers and mask existing immun-
odominant epitopes alter the recall response and can allow for
the generation of cross-reactive antibodies, altering the path of
coevolution.

VII. IMMUNE-ANTIGEN INTERACTION
AT THE MOLECULAR LEVEL

Quantifying immune-pathogen interaction at the molecu-
lar level remains an open challenge in understanding their
coevolution. The general problem is to predict binding affin-
ity, or possibly a more functional readout such as antibody
neutralization, from the pair of sequences of the antibody
on the one hand, and of the pathogenic protein on the other
hand.

Many experiments exist to get insight into the molecular
aspects of antibody-antigen interactions in a high-throughput
manner, as recently reviewed in [95]: titration-based binding
assays based on yeast display (Tite-Seq), which give the bind-
ing affinity of antibody-antigen pairs in the physical units of
a dissociation constant (K;) [96], neutralization assays [97],
epitope-specific immunoprecipitation assays [98], hemagglu-
tination assays [23], and directed evolution experiments [99].
Currently these methods allow for testing either one anti-
body against many antigens, or one antigen against many
antibodies. A lot of effort is currently being put into large
high-throughput neutralization and binding affinity assays that
would allow us to scan many antibody-antigen pairs at a
time.

While these methods may seem similar, they probe dif-
ferent phenotypic properties, such as neutralization potency
or binding affinity. They also have different scopes: directed
evolution experiments aim to find the best binding antibod-
ies [99], or to predict the future course of viral evolution
[100]. Yet affinity maturation is known to keep more than
just the best binders [6], and tracing evolutionary trajec-
tories while maintaining antibody diversity is essential for
describing how coevolution works. High-throughput assays
such as Tite-Seq measure the phenotypic properties of a large
library of variants. The choice of the library itself may be
different across methods: one may want to assay all possible
single mutation variants of the virus (deep mutational scan)
to get a complete but local map of mutational effects [101],
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or explore all possible intermediates between an initial and
an evolved variant, either of the antibody [1] or the viral
[102] sequence. Combining global and local exploration is
essential to map out the constantly changing coevolutionary
landscape.

The application of Tite-Seq to libraries of anti-influenza
antibody variants has highlighted the effects of epistatic (non-
additive) interactions between mutations at many orders, and
quantified the constraints that epistasis puts on the evolution
of broadly neutralizing antibodies [1]. Applied to influenza
and SARS-CoV-2 evolution, deep mutational scans based on
Tite-Seq have shown that the receptor-binding domain (RBD)
of the spike protein can support many mutations while main-
taining its affinity for ACE2 [101], and they have been used
to assess monoclonal antibodies for their robustness against
antigenic escape, as measured by their affinity to all sin-
gle mutants of RBD [103]. Antibody binding measurements
of all possible intermediates between the Wuhan strain and
Omicron BA.1 have further revealed the diversity of escape
strategies available to the virus, as well as the importance of
compensatory mutations [102].

While the limiting factor for quantifying antibody-antigen
evolution has been mostly experimental, computational scien-
tists have been developing approaches to generalize existing
measurements to predict new interacting pairs. The traditional
approach based on protein costructures [104] has proven dif-
ficult to generalize into a high-throughput assay, although as
more data sets become available [105] machine learning ap-
proaches are showing potential for generalization. Obtaining
a structure does not directly give information about binding
affinity, let alone neutralization, and many models aim to
bypass the structural step. Some of these efforts have been
powered by machine learning techniques [106], but simpler
sequence-based biophysical models of residue preferences
and pairwise interactions, such as the string models described
above, offer ways of integrating sequencing data sets that are
easier to obtain. These models are often trained on deep mu-
tational scan data [107]. Since deep mutational scans explore
only single single mutation variants, they offer only local
exploration, making it hard to learn models that generalize
to completely unseen antibodies or antigens. Combining dif-
ferent experimental techniques with collected data samples
that explore local and global mutations is needed to allow for
generalization [108].

Mutations first influence binding, however protection is
better related to neutralization [97]. Understanding the co-
evolutionary landscape beyond simple directed evolution
experiments and linking binding and neutralization assays is
needed to predictively describe antigen-antibody coevolution.
The results of these assays are huge data sets, and there is a
strong need for theory to make sense of them and to integrate
them into predictive models of immune-pathogen coevolution,
grounded in their biophysical interactions.

VIII. CONCLUSIONS

The coevolution of immune repertoires and viruses pro-
ceeds on a complex, rugged binding-affinity landscape, with
potential barriers limiting the availability of evolutionary
paths. From the point of view of either a single viral strain or
a single antibody, this landscape is constantly changing as the
other component is evolving, creating a dynamic “seascape”
[109]. Both the viral and antibody binding landscapes can
be mapped out, at least locally, thanks to a combination of
molecular evolution binding and neutralization assays and
by sampling coevolving immune repertoires and viruses in
individuals. Quantitatively predicting and understanding the
evolution of both the immune and viral components, and
learning how to manipulate this coevolution, could help to
design vaccines with a broad cross-reactivity (e.g., universal
influenza or corona virus vaccines, or HIV vaccines).

Evolution happens by small molecular changes over long
times, leading to new functional solutions. These steps are
mutations, insertions, or deletions of nucleotides or segments
of nucleotides. Most modifications are deleterious to function,
and most of these are selected against. As a result, not all paths
allowed by local evolutionary moves can be implemented in
an evolving organism. For example, for a binding site with L
amino acids, not all 19 x L amino acid changes will be viable
for the next mutational step. The fact that evolution is really
a coevolution between molecules, viral proteins, and immune
receptors further restricts the space of realized moves.

We are at a point where, by combining data, laboratory
experiments, and theory, we can try to estimate the space
of possible evolutionary trajectories and figure out what are
the right measures in which to quantify this space. This does
not mean we will be able to deterministically foresee the
future, but we can put bounds on the scale and timescale of
our uncertainty. This theory should give estimates about the
diversity and overlap of circulating strains as a function of
time (with confidence intervals), predict the probability of
specific immune repertoires recognizing a given strain, and
put a likelihood on how surprised we should be to see a very
diverse strain appear supposedly “out of nowhere.”

From a practical public health perspective, a transient state
that persists for millions of generations can be viewed as
stable. Current phenomenological models of coevolution give
us predictions for how stable the coevolutionary coexistence
of the viral and host populations is, but they usually ignore
the heterogeneity of the recognition landscape. One important
remaining challenge is to figure out in what regime particular
viruses are in order to be able to assess the likelihood that
they split into distinct substrains, or eventually go extinct, as
a function of their sequence. To do that, we need to better
calibrate these phenomenological models using data—both
population data sampled from individuals, and molecular data
from evolutionary experiments. The goal of having a quanti-
tative falsifiable theory of coevolution is within our reach.
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