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Abstract—One of the major bottlenecks in high-resolution
Earth Observation (EO) space systems is the downlink between
the satellite and the ground. Due to hardware limitations, on-
board power limitations or ground-station operation costs, there
is a strong need to reduce the amount of data transmitted. Various
processing methods can be used to compress the data. One of
them is the use of on-board deep learning to extract relevant
information in the data. However, most ground-based deep neural
network parameters and computations are performed using
single-precision floating-point arithmetic, which is not adapted
to the context of on-board processing. We propose to rely on
quantized neural networks and study how to combine low preci-
sion (mini) floating-point arithmetic with a Quantization-Aware
Training methodology. We evaluate our approach with a semantic
segmentation task for ship detection using satellite images from
the Airbus Ship dataset. Our results show that 6-bit floating-point
quantization for both weights and activations can compete with
single-precision without significant accuracy degradation. Using
a Thin U-Net 32 model, only a 0.3% accuracy degradation is
observed with 6-bit minifloat quantization (a 6-bit equivalent
integer-based approach leads to a 0.5% degradation). An initial
hardware study also confirms the potential impact of such low-
precision floating-point designs, but further investigation at the
scale of a full inference accelerator is needed before concluding
whether they are relevant in a practical on-board scenario.

Index Terms—Deep Neural Networks (DNN), Reduced Preci-
sion, Quantization-Aware Training (QAT), Floating-Point, Ship
Detection, Semantic Segmentation

I. INTRODUCTION

Earth Observation (EO) provides an effective way of explor-
ing the physical, chemical, and biological information related
to the Earth. This information collected by EO satellites is
widely used in various research fields, especially in relation to
the environment, where the measurements made by EO satel-
lites are indispensable. Moreover, these new space applications
related to Earth observation produce a huge volume of data ex-
tracted from various image and radar sensors. Transmitting all
this data is possible through communication between satellites
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and ground stations. However, EO systems are limited by these
downlink communications, due to hardware limitations, on-
board power constraints or ground-station operation cost, for
example. Thus, there is a need to reduce the amount of data to
be transmitted through the downlink. While data compression
is widely used for size reduction, the idea of transmitting only
relevant data through on-board processing has only recently
started gaining interest.

Artificial Intelligence (AI), and in particular Deep Learn-
ing (DL), is starting to be successfully applied in space
applications. However, the inference computation of many
models is still mainly performed on ground platforms due to
their memory footprint and computational intensity [12]. To
mitigate this computational burden and the space-to-ground
communication bottleneck, recent research has focused on
neural network compression [6]. Moreover, various techniques
such as pruning [14], weight sharing [10], distillation [9] and
quantization [17], can be used to reduce the computational
intensity to make it compatible with on-board processing.

Quantization deals with how (what number format(s) and
bit widths to use) model parameters (such as weights and
bias terms) and activation signals (inputs and outputs to
layers in a model) are computed and stored at inference time.
Furthermore, reducing precision and adapting the number
representation make quantization a particularly effective and
practical technique.

In this paper, we investigate how to efficiently use quantiza-
tion to accelerate Deep Neural Network (DNN) inference for
space applications, with a strong focus on semantic segmenta-
tion tasks. Towards this goal, we present our ongoing work on
the efficient use of low-precision floating-point quantization
(so-called minifloats). Our method consists in adapting a
quantized DNN training approach that has so far been mostly
used for integer/fixed-point-based quantization.

II. BACKGROUND AND RELATED WORK

Deep neural network parameters and computations have
been traditionally stored and computed using 32-bit single-



Fig. 1: An overview of the QAT scheme we use in the training of minifloat quantized DNNs. The distinguishing feature of a
QAT flow compared to a standard training procedure is the presence of quantizer blocks in each layer and activation function
that use the STE mechanism to differentiate with respect to the quantized signals.

precision floating-point (FP) arithmetic, making it impossible
to deploy state-of-the-art models on low-power and resource-
constrained devices without further tuning.

A. DNN Quantization

Much work in recent years has focused on reducing the
bit-width of data and arithmetic in DNN models without
impacting task accuracy. Quantization to 8-bit [18] and sub
8-bit [34] integer formats has been shown to match single-
precision baselines on convolutional networks for several
computer vision tasks. In certain cases, it is even possible to
go down to extremely low precisions, such as binary [8] and
ternary [23] DNNs.

On the FP arithmetic side, 16-bit formats such as half
precision FP16 (5-bit exponent) and bfloat16 (8-bit exponent)
have found success in both inference acceleration and mixed-
precision DNN training [19]. More recently, 8-bit floating-
point formats have also been explored in inference/training
scenarios [21], [25], [32] and are starting to get hardware
support (e.g. the NVIDIA Hopper architecture is an example).
Sub 8-bit FP custom formats are also being studied in the
literature in the context of model compression and inference
acceleration [28].

To apply such quantization schemes on a DNN model,
it is necessary to adjust the parameters according to the
target format. There are two main approaches to do this in
practice. The first is Post-Training Quantization (PTQ), in
which quantization is applied after training. While fast, it
can lead to non-negligible loss in accuracy for extremely low
bit width formats [2]. The other approach is to iteratively
quantize the model during training. This process is known as
Quantization-Aware Training (QAT). While much slower, it
generally leads to better quantization results. For an in-depth
overview of quantization in the context of DNNs the reader
can consult [13].

B. Quantization-Aware Training

The emergence of QAT methods can be traced back to the
pioneering work of [7], [8] on binary quantization of DNNs.
The overall approach consists of using the quantized version

of the network during forward and backward computations
done throughout training, while performing updates on a full
precision copy of the parameters (e.g. weights and biases). A
critical ingredient of these methods is the use of a so-called
Straight-Through Estimator (STE) [3] that allows the back-
propagation of gradients with respect to quantized binary vari-
ables (weights and activation signals). Subsequent work [34]
extends these ideas to larger bit widths and tackles quantization
of gradient signals as well. Other methods propose learning
parameters that bound the range of activation signals inside the
network [5] and new gradient estimates that allow learning of
appropriate scaling factors for integer-based quantization of
both weights and activations [11].

III. METHODOLOGY

A. Floating-point Encoding

The floating-point formats we use, denoted as EeMm, are
based on the IEEE-754 standard [1]. A floating-point value X
with m bits of mantissa and e bits of exponent is represented
(in binary notation) as

X = (−1)
s × 1. x1 . . . xm︸ ︷︷ ︸

MX

×2EX−EB ,

where s is the sign bit, MX is the m-bit fractional mantissa
(MX ∈ [0, 1)) and EX ∈ [0, 2e − 1] is the integer exponent.
EB is the exponent bias term, which in the case of IEEE-like
encodings is EB = 2e−1 − 1. With respect to a fully IEEE-
compliant format, we do not support ±∞, NaN encodings,
and subnormal values. This leads to more representable values
and simpler hardware (see [24]). Values that overflow are
saturated to the maximal representable number, whereas zeros
are represented by EX = 0 and MX = 0. The values that
would have been treated as subnormals (EX = 0,MX > 0
and X = (−1)s × 0.Mx × 2−EB ) are instead viewed as one
extra binade of normal values.

The actual exponent EX − EB ∈ [−2e−1 + 1, 2e−1], as
described in the IEEE-754 standard, covers an almost sym-
metric range of positive and negative values. If the dynamic
range of the data to quantize is known, EB can be adapted



to better match it. The PTQ AdaptivFloat [28] method
does this by examining the maximum magnitude of the weight
tensors in each layer of the network. In a QAT setting, EB

can be better chosen by learning it using a STE [3] approach.
Just as for the scaling factor of an integer-based format, a
similar method [21] can be used to learn a real bias exponent
in the floating-point case. In order to achieve a more hardware-
friendly minifloat format, we propose to further quantize this
learned real exponent bias to an integer. We explore this in
Sec. III-B.

B. Quantization Scheme

Our work can be seen as an extension of [21]. While
initially considered for FP8 quantization with subnormals and
a real exponent bias, we investigate its use in a sub 8-bit
FP context without subnormals and an integer exponent bias.
Subnormal support adds some hardware overhead, but for
minifloat formats with small mantissa (2 or 3 bits), using the
subnormal range as normal values can still lead to good results
with a much smaller overhead (see [29]).

We quantize weights and activations using an STE-based
approach as follows:

Forward: Xq = quantize (X, E0)

Backward:
∂ℓ

∂X
=

∂ℓ

∂Xq

∂Xq

∂X

where X is an unquantized weight or activation signal, ℓ is
the loss function, and Xq is the EeMm quantized version of
X computed using Algorithm 1. The straight-through moniker
comes from the fact that we take ∂Xq/∂X = 1.

We propose to learn the exponent biases of each layer’s
weights and activations during training. The learned real values
are rounded up (line 1 of Algorithm 1) to scale the network
signals (weights & activations) by powers of two. The real
values are stored for future use in the update phase with a
SGD-type procedure (going from an iteration t to t + 1) as
summarized in Algorithm 2 (lines 18 and 19). The g quantities
in lines 8–13 represent the gradients of the loss ℓ with
respect to the activation, weight and exponents, respectively.
Their computation (the backward function calls) is handled
through the PyTorch autograd engine. A schematic view of
the entire QAT iteration is also given in Figure 1.

IV. EXPERIMENTS

We apply our approach on a image classification problem on
the CIFAR-10 dataset [20] and on a satellite image segmenta-
tion task using a lightweight U-Net model (adapted from [30]).

A. CIFAR-10 Dataset and Implementation Details

The CIFAR-10 dataset consists of 32 × 32 pixels RGB
labeled images divided into 10 categories. The dataset is
composed of 50, 000 training images and 10, 000 test images.
We trained a ResNet-20 model [16] from scratch for 300
epochs using a cross entropy loss function. We apply the data
augmentation operations proposed in [22] over the training set
and we use an SGD optimizer with 128 batch size, weight

Algorithm 1 quantize: minifloat quantization algorithm
Require: real-valued tensor X, floating-point format EeMm, real

learned exponent bias E0.
Ensure: quantized tensor Xq in the EeMm format.

1: EB = ⌈E0⌉
2: xmin = 2−EB · (1 + 2−m)

3: xmax = 22
e−1−EB · (2− 2−m)

4: Xc = clamp (X,−xmax, xmax)

5: Xscale = 2⌊log2(Xc)⌋−m

6: Xq =

⌊
Xc

Xscale

⌉
·Xscale

7: Xq = Xq · I|Xq|≥xmin

8: return Xq

Algorithm 2 FP QAT algorithm for training a L-layer model

Require: a minibatch of inputs Yt
0 and targets Tt, weights Wt ∈ R,

activation exponent biases Et
0,a, weight exponent biases Et

0,w,
learning rate η > 0, loss function ℓ.

Ensure: updated parameters Wt+1, Et+1
0,w and Et+1

0,a

1: 1. Forward propagation:
2: for k = 1 to L do
3: Wt

q,k ← quantize
(
Wt

k, E
t
0,w,k

)
4: Ỹt

k ← forward
(
Yt

q,k−1,W
t
q,k

)
5: Yt

k ← quantize
(
Ỹt

k, E
t
0,a

)
6: end for
7: 2. Backward propagation:

8: gYt
L
=

∂ℓ
(
Yt

L,T
t
)

∂Yt
L

9: for k = L down to 1 do
10: gYt

k−1
← backward_activ

(
gYt

q,k
,Wt

q,k

)
11: gWt

k
← backward_weight

(
gYt

q,k
,Yt

q,k

)
12: gEt

0,a,k
← backward_exp_bias_a

(
gYt

q,k
,Yt

q,k

)
13: gEt

0,w,k
← backward_exp_bias_w

(
gYt

q,k
,Yt

q,k

)
14: end for
15: 3. Parameter update:
16: for k = 1 to L do
17: Wt+1

k ← update
(
Wt

k, gWt
k
, η

)
18: Et+1

0,w,k ← update
(
Et

0,w,k, gEt
0,w,k

, η
)

19: Et+1
0,a,k ← update

(
Et

0,a,k, gEt
0,a,k

, η
)

20: end for

decay set to 0.0001, and momentum to 0.9. Weights are
initialized using the Kaiming method [15] and the learning
rate is scheduled using cosine annealing with starting rate set
to 0.1.

B. Airbus Ship Dataset and Implementation Details

The Airbus Ship Dataset1 consists of 768×768 pixels RGB
satellite images of ships with sea and harbor in the back-

1Kaggle Airbus Ship Detection Challenge (July 2018): https://www.kaggle.
com/c/airbus-ship-detection

https://www.kaggle.com/c/airbus-ship-detection
https://www.kaggle.com/c/airbus-ship-detection


Fig. 2: Thin U-Net 32 architecture. It consists of a 5-stage encoder, followed by a 5-stage decoder, with skip connections
between each corresponding stage pairs in the encoder-decoder blocks.

ground. The training data is composed of 192, 555 labelled
images, including 42, 555 images with ships and 150, 000
background images. To balance the data, we removed 130, 000
background images and split the remaining 62, 555 images into
80% for training and 20% for testing.

We use a Thin U-Net [30] model (see Fig. 2), a smaller
version of the larger and more widely known U-Net [27]
architecture. More specifically, we consider the Thin U-Net
32 model, where 32 refers to the number of channels for each
convolution. Its memory size is smaller by a factor of 290
compared to a standard U-Net architecture (going down from
288.08Mb to 0.99Mb), with little impact on accuracy. Similar
to the standard U-Net, this model consists of two distinct
blocks, an encoder and a decoder, interconnected by skip
connections. The encoder is composed of 5 blocks containing
two groups of 3×3 convolution + batch normalisation + ReLU
with 2 × 2 maxpooling to down sample the feature maps.
Followed by the decoder, it also has 5 blocks containing a
2 × 2 bilinear up-sampling layer and two groups of 3 × 3
convolution + batch normalisation + ReLU. Prediction masks
are generated by a final 1× 1 convolution without padding.

We apply random horizontal and vertical flip, random crop
to resize images to 256 × 256 pixels, random brightness and
random contrast as data augmentations on the training set. We
use ADAM as the optimizer with a batch sizes of 32 and an
aggregated global loss consisting of a Jaccard loss combined
with binary cross entropy with logits, which according to [31]
gives the best results in practice. The learning rate is initially
set to 0.001 and we use a multi step scheduler in order
to reduce the learning rate by 0.5 every 200 epochs. We
train the network for 600 epochs, using the Kaiming weight
initialization method [15]. For computing the quantized model,

TABLE I: Comparison of prediction accuracy for CIFAR-10
with different arithmetic formats and bit-widths for weights
(W) and activations (A).

Arithmetic Format Top-1 W bit-width A bit-width
Single precision 92.5 M23E8 M23E8

Fixed-point 90.2 3 3
Integer 91.6 3 3

Minifloat
91.3 M1E1 M2E2
91.3 M1E2 M1E2
90.8 M1E1 M1E2

we used the QAT approach from Algorithm 2 to fine tune the
pretrained single-precision model for 50 epochs.

Just like with an integer scaling factor [4], a good initial-
ization of the exponent bias parameter is key to convergence
with good accuracy. We have found that in practice good initial
estimates can be determined by first training the network for
a small number of iterations without optimizing the exponent
bias (we did this for 200 iterations in our tests) and then
picking it based on the values with maximum magnitude in the
weight and activation tensors seen during this process, leading
to

E0 = 2e−1 −
⌈
log2

(
max |X|
2− 2−m

)⌉
.

C. Results

We use PyTorch 1.13 on a cluster of eight NVIDIA V100
GPUs to perform our experiments. Unlike the majority of
integer-based quantization methods described in the literature
which quantize the first and last layers to 8 bits (which is



TABLE II: Comparison of prediction accuracy for the Thin U-Net 32 model on the Airbus Ship dataset with different arithmetic
formats and bit-widths.

Format mean IoU W bit-width A bit-width scaling factor zero encoding
Single-precision 71.0 M23E8 M23E8 / MX = 0 and EX = 0

Fixed-point 44.5 6 6 2⌈log2(max |X|)⌉ Zero point = 0

Integer 70.5 6 5 learn Zero point = 0
68.3 5 4 learn Zero point = 0

Minifloat

63.4 E3M2 E3M2 22
e−1

EX = 0

64.8 E3M2 E3M2 22
e−1

MX = 0 and EX = 0
70.1 E3M3 E3M3 learn EX = 0
70.0 E3M2 E3M2 learn EX = 0
71.4 E4M2 E4M2 learn MX = 0 and EX = 0
70.9 E3M3 E3M3 learn MX = 0 and EX = 0
70.7 E3M2 E3M2 learn MX = 0 and EX = 0
68.1 E2M2 E2M2 learn MX = 0 and EX = 0

usually a larger word length than that for the other layers),
we use the same small length format for all layers. This can
lead to slightly better compression ratios, without affecting
accuracy.

We have compared our custom floating-point formats with
fixed-point and integer arithmetic alternatives, two quantiza-
tion formats commonly used to accelerate inference. Results
on the CIFAR-10 dataset are given in Table I. While fixed-
point quantization seems to degrade model accuracy signif-
icantly, low-precision floating-point variants are competitive
with integer-based alternatives for very low quantization levels.

The results of applying minifloat quantization to ship de-
tection are summarized in Table II. On this more complex
task, 6-bit floating-point formats are necessary to match single
precision accuracy, which is evaluated using an Intersection
over Union (IoU) metric.

We note that a visual analysis of prediction outputs for
the minifloat quantized model shows results that are relatively
close to the single-precision baseline. When single ships are
present in the image, our quantized model usually does a good
job of detecting them (Fig. 3). Detecting small ships, as well as
side by side ships and inshore ships is more challenging than
detecting single large ones, leading to poorer predictions even
with single-precision models (Fig. 4 and Fig. 5). Inshore [26]
and small ship [33] detection are challenging topics, both
subject to active research.

D. Hardware Implementation Aspects

The results we have shown so far suggest that minifloat
quantization is potentially a good choice for low-precision
inference acceleration. However, floating-point addition is in
general more resource-intensive than its integer/fixed-point
counterpart.

This is somewhat counterbalanced by the multiplier, which
in case of minifloats can be implemented efficiently using just
look-up tables (LUTs), as opposed to an 8-bit integer variant
that would require DSP blocks, which are much lower in

number than LUTs on modern FPGAs (e.g. in a AMD-Xilinx
UltraScale+ VUP13 FPGA, for every DSP block there are 140
6-input LUTs [24]). DSPs can then be configured to implement
adder trees for the accumulation part of multiply-accumulate
(MAC) units, improving overall logic density. For instance,
the results presented by AMD-Xilinx in [24] claim 60% higher
performance and 12.5% memory traffic reduction (leading also
to lower power usage) when using a minifloat E3M3 format
as opposed to INT8 in a ResNet-50 accelerator. To achieve
this performance, they implemented as basic building block a
hybrid MAC operator that combines the best of both worlds,
a LUT-based minifloat multiplier and a simpler fixed-point
adder.
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Fig. 7: LUT consumption when implementing a minifloat
multiplier with two different zero encodings.

Compared to our minifloat formats where zeros are encoded
with MX = 0 and EX = 0, the formats from [24] are
slightly different, opting for a larger range of zero code words
corresponding to EX = 0. While the AMD-Xilinx choice



Original image Ground truth Single-precision E3M2 minifloat

Fig. 3: Prediction of a single ship with original image and its associated masks.

Original image Ground truth Single-precision E3M2 minifloat

Fig. 4: Prediction of multiple ships and side-by-side ships with original image and its associated masks.

Original image Ground truth Single-precision E3M2 minifloat

Fig. 5: Small ships in harbor with original image and its associated masks.

leads to a slightly more efficient minifloat multiplier design
(see Fig. 6 for a schematic view of the multiplier and an
explanation), our synthesis results using Verilog and Vivado
2022.1 with a Zynq UltraScale+ ZCU102 as target show that
the differences in LUT count between the two zero encoding
choices are modest (see Fig. 7). The extra encoding space
saved by our choice (MX ̸= 0) has a positive impact on
accuracy, as can be seen Table II for the E3M2 and E3M3
formats. We believe that these properties make the MX = 0
and EX = 0 encoding a better choice in practice.

The AMD-Xilinx ResNet-50 implementation uses a real-
valued scaling factor. With an integer exponent bias like we
propose, the logic needed to handle its propagation (e.g. in
convolution operations) would amount to a simpler integer
exponent shift. In the case of a hybrid MAC design, this
could also potentially lead to simpler logic when converting

from integers (accumulator outputs) to minifloat (multiplier
operands). We leave the testing of these statements as future
work.

V. CONCLUSION & ON-GOING WORK

Data transmission from satellites remains challenging due
to the many limitations of downlink communication. While
DNNs are successfully applied to spatial data processing,
deep learning algorithms are now being considered as an on-
board alternative to extract the relevant data to be sent to
ground stations. However, strict hardware limitations of on-
board systems make the use of vanilla DNN models in 32-bit
floating-point arithmetic unrealistic.

We propose a QAT algorithm for learning compressed low-
precision floating-point DNN models. In addition, we learn the
exponent biases of each layer for both weights and activations.



Fig. 6: Implementation of a minifloat EeMm multiplier
(adapted from [24]). The minifloat multiplier preserves ex-
ponent accuracy by using a (e + 1)-bit exponent output and
truncates the mantissa output to m+ 1 bits, reducing the size
of the logic needed to convert minifloat to fixed point in a
hybrid minifloat fixed-point MAC design. To implement the
EX = 0,MX = 0 zero encoding at the hardware level, we
add the input mantissas as inputs to the block Detect Zero
(dashed lines). This slightly complicates the zero detection
logic compared to the EX = 0 design from [24].

Our experiments on the CIFAR-10 and Airbus Ship datasets
show good results, with low-precision floating-point models
being competitive with single precision baselines.

To show the potential impact of using floating-point data
formats, we have also suggested an implementation of a
minifloat-enabled multiplier based on [24] that can be used as a
basis for a full DNN inference accelerator for our models. The
next step will be to design, test and deploy such an accelerator
for the full quantized Thin U-Net 32 on FPGA targets to better
gauge the feasibility of using deep learning models with low-
precision FP data in an on-board space context.
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