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The adaptive immune system is a diverse ecosystem that responds to pathogens by
selecting cells with specific receptors. While clonal expansion in response to particular
immune challenges has been extensively studied, we do not know the neutral dynamics
that drive the immune system in the absence of strong stimuli. Here, we learn the
parameters that underlie the clonal dynamics of the T cell repertoire in healthy
individuals of different ages, by applying Bayesian inference to longitudinal immune
repertoire sequencing (RepSeq) data. Quantifying the experimental noise accurately
for a given RepSeq technique allows us to disentangle real changes in clonal frequencies
from noise. We find that the data are consistent with clone sizes following a geometric
Brownian motion and show that its predicted steady state is in quantitative agreement
with the observed power-law behavior of the clone-size distribution. The inferred
turnover time scale of the repertoire increases with patient age and depends on the
clone size in some individuals.

immune repertoire dynamics | T-cell receptor | stochastic evolution | longitudinal tracking |
statistical inference

1. Introduction

The adaptive immune system protects us from many infections including those caused
by pathogenic challenges that did not exist when we were born. This amazing plasticity
is encoded, in part, in a diverse repertoire of T cells carrying surface receptors capable
of recognizing different antigens, which trigger an immune response. About 108 new
T cells are estimated to be generated and enter the periphery in human adults every
day (1, 2), where they undergo specific proliferation due to antigen stimulation but
also nonspecific divisions (3, 4) and death. These processes together result in clone
sizes of different T cells that differ over a few orders of magnitude, forming long-tailed
distributions (5, 6). The total number of different T cell clones is estimated between 108

and 1010 (7–9). Qualitatively describing the T cell clonal dynamics in the periphery is
important for predicting long- as well as short-term immune response and to understand
the maintenance of immune memory.

A lot of effort has been put into describing antigen-specific response and memory
formation (10–12). At any given time point, the majority of the T cell repertoire is not
always directly involved in fighting the current antigenic challenge. Yet, processes such
as homeostasis (3) and unspecific signals in both naive and memory subrepertoires result
in frequency changes of background clones. Many first-principles models of naive T cell
dynamics have been proposed to study the balance between thymic output and peripheral
proliferation and death (2, 4, 13–15). The role of competition for antigens between T cells
has been pointed out (16) as well as the effect of cross-reactivity (17) (the ability for one
T cell to recognize different antigens), the relative size of a primary vs. secondary response
to similar antigens (18), or the effect of heritable changes affecting the homeostatic rate
of thymic exports (19). These studies highlight the importance of the naive repertoire
of clonal expansions that are not necessarily linked to specific challenges. While these
models were instrumental in advancing our understanding of bulk repertoire dynamics,
and allowed for the interpretation of deuterated water and bromide staining experiments
that describe cellular lifetimes (20), the class of models that are consistent with the data
is still large and unexplored.

Thanks to advances in immune repertoire sequencing (RepSeq) (21–23), dynamical
models can now be assessed directly against repertoire data at the clonal level. RepSeq
experiments isolate and sequence the T cell receptors (TCRs) in a blood sample of
individuals. By counting reads with the same TCR sequence, one can estimate the
frequency of the corresponding clone (defined as the set of cells with the same receptor)
in blood. Even single repertoire snapshots can be informative about the dynamics: the
distribution of clone sizes follows a power law (6, 24–27), in accord with proposed
models of stochastic growth and death (5). Taking samples from the same individual at
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different time points allows for tracking the evolution of TCR
clone sizes in time. The longitudinal experiments that have been
performed in healthy donors (28, 29) suggest that the repertoire
is relatively stable over years.

Our main goal in this article is to characterize the dynamics
of the unstimulated background repertoire. We use an inverse
approach to learn models of stochastic TCR clonal dynamics
directly from data, collecting human TCR RepSeq datasets where
we could identify at least two time points between which there
was no reported specific acute antigenic stimulation (28–32). A
key aspect of our method is the treatment of experimental noise,
which confounds naive analyses of stochastic time traces. The
method first quantifies both the sampling and natural biological
noise thanks to replicate RepSeq experiments (33, 34) and then
infers the parameters of a stochastic dynamical model to describe
the trajectories of each TCR clone population in a healthy
individual, i.e., who did not have medical conditions or known
infections during the sampled interval. We explicitly show how
correcting for noise allows us to robustly learn the underlying
dynamics. A recent study (35) has investigated the formation of
the T cell repertoire during development and its maintenance
into adulthood. Here, we focus on healthy adult repertoires that
are already shaped during the first years of an individual’s life
and ask how they evolve and are renewed. We extract clonal
(and not cellular) turnover time scales and describe how these
time scales depend on the person’s age. Characterizing these
baseline dynamics is an important step toward interpreting TCR
dynamics in the presence of antigenic stimuli.

2. Results

A. Longitudinal Sampling of TCR Repertoires of Healthy Indi-
viduals. T cell repertoires are large ecosystems in which each
species is a clone of T cells carrying the same TCR i formed
by a unique pair of α and β chains. The dynamics of this
system are characterized by the time course of the number
of cells carrying each receptor, ni(t). This number can be
accessed indirectly through TCR repertoire sequencing (RepSeq),
obtained by sequencing the TCR of small samples of peripheral
blood mononuclear cells (PBMCs), gives us a read count n̂i(t)
for a given chain at different time points (Fig. 1A). Note that our
focus will be the dynamics of clones, rather than cells, because
repertoire profiling cannot track individual cells. Because the two
chains are not paired in the data, from here on, we define clones
as collections of cells having the same α or β chain, which we
will refer to as clonotypes. This approximation is justified by the
low occurrence of TCRs that share one chain but not the other
(36), even in specific disease-associated subrepertoires, which are
more restricted (32).

We collected repertoire data from nine individuals P1 to P9,
aged 18 to 57, sampled at various time points from 1 mo up to
3 y apart, with and without biological replicates. No specific acute
antigenic stimulus was reported between time points defining
these RepSeq longitudinal datasets. We do not rule out that these
individuals may have undergone asymptomatic or mild infections
during the duration of the studies, but we call them healthy
since they have no particular medical condition and have not
experienced medical interventions involving a major perturbation
of their immune repertoires.

The repertoires of TCR β chains were sequenced for all
samples and α chains for individual P6 only. The properties
of the datasets, including their number of clones Nc , total read
counts Nr =

∑Nc
i=1 n̂i, age, library preparation (from genomic

DNA or from mRNA), and chain, are summarized in Fig. 1B
and in SI Appendix, Table S1. Because P3, P4, P6, and P9 were
included in a vaccination study, they had received a shot of the
YFV 17D yellow fever vaccine (P3, P4, and P6) or of the influenza
vaccine (P9) 45 d prior to the first time point, after the decay of
their T cell response, so we assume that the dynamics of vaccine-
specific T do not affect much our analysis of the global repertoire.

A major challenge when analyzing RepSeq data is that the
measured abundances n̂i(t) only provide a noisy reflection of the
true ones ni(t). Observed differences between datasets thus result
from a combination of the repertoire dynamics and biological and
experimental noise. The magnitude of that noise can be assessed
by comparing the normalized clonotype frequencies f̂ = n̂

Nr
between two biological replicates obtained at the same time
point in the same individual (Fig. 1C , blue dots). By contrast,
comparing those frequencies between two time points separated
by 1 y (Fig. 1C , red dots) shows a larger dispersion and a slight
overall decrease of clonotype frequencies. Our goal is to measure
this difference quantitatively.

Another difficulty arises from the observation that clonotype
frequencies are highly heterogeneous, with their distribution
following a power law P(n̂) ∝ n̂−1−α spanning four orders
of magnitude despite small expected deviations at low clone
sizes due to PCR amplification noise (37) and extreme-value
stochasticity in the large-clone tail. The exponent α ≈ 1 is
largely invariant across individuals and time points (Fig. 1D), as
previously reported (5, 6, 35). This implies that most clonotypes
have a very low abundance and are thus particularly subject to
sampling and experimental noise.

B. Mathematical Model of Stochastic Clonal Dynamics. The
dynamics of T cell clones are driven by the proliferation and
death of cells belonging to them. In addition, new clones with
their distinct TCR are continually produced and released by the
thymus, although the rate of thymic exports decays rapidly with
age (1). Cell division, death, and introduction of new clones
constitute the basis of our model (Fig. 2A). Cell division may
be caused by antigen stimulation (both self and foreign) or by
cytokine and growth factors, and cells die by lack of stimulation
or by apoptotic signals. Even in the absence of strong and
chronic antigenic stimuli, T cell clonotype abundances display
stochastic trajectories due to either weak stimulation, repertoire
homeostasis, and demographic fluctuations, produced by the
stochastic effects of divisions and deaths in small populations.
In addition, individuals may get mild infections over the course
of months and years. Since these events are numerous and
unknown, we model them by an effectively random net growth
rate (divisions minus deaths). It can be shown (5, 38) that on
time scales much longer than the typical resolution time of
infections, each clonotype size ni(t) may then be modeled by
a geometric Brownian motion (GBM). Its evolution is governed
by an effective mean net growth, to which random fluctuations
are added to account for bursts of proliferation and decay:

d ln ni(t)
dt

= −τ−1 + θ−1/2ηi(t), [1]

where ηi(t) is a clonotype-specific white noise of zero mean and
unit amplitude. Note that the mean growth rate of clones,−τ−1,
is typically negative. On average, each clone should decay to make
room for new thymic exports because of homeostatic pressures
that control the total number of cells. In this interpretation, τ is
the typical decay time of each clone, which would evolve with
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A C

B D

Fig. 1. Longitudinal tracking of T cell repertoires. (A) Experimental workflow. PBMCs from a healthy individual are extracted at two time points, and their TCR
repertoire sequenced, yielding lists of clonotypes with count numbers corresponding to the number of individual measurements (or reads). The way in which
the two sampled repertoires has changed between the two time points is predicted by a stochastic model of the dynamics of T cell clones. (B) Summary of
the TCR � and � repertoire data used in this study. Included were nine individuals from five studies, aged 18 to 57, male and female. When available, replicate
experiments are annotated with ×2. Datasets were produced using two different sequencing technologies based on cDNA and gDNA. (C) Typical scatter plot of
frequencies of TCR clones in two samples from the same individual P9. Blue: Two biological replicates obtained on the same day show the effect of experimental
noise. Red: Two samples taken 1 y apart show a larger spread, resulting from a combination of real changes and noise. The goal of the analysis is to disentangle
real changes from the noise. (D) Cumulative distributions of TCR frequencies, which follow a universal power law in all samples and donors, with exponent ≈1.

time as ni(t) = ni(0)e−t/τ in the absence of fluctuations, and
is linked to its typical lifetime or turnover time ∼τ ln(ni(0)). It
should be distinguished from the decay rate of individual cells,
which may be faster, as the clone may be sustained by a balance
between cell deaths and divisions. Also recall that this is just an
average; many clones do not decay, but instead undergo episodes
of large growth and decay, as illustrated by simulations of Eq. 1
in Fig. 2B. The typical amplitude of these fluctuations grows
with time as

√
t/θ (dashed lines). Thus, θ may be interpreted

as the typical time it takes for a clone to rise or decay above or
below the typical behavior by one log-unit.

In addition to being biologically motivated, the proposed
dynamics have the desirable property that, in the presence of
a constant rate of thymic exports, the distribution of clone
sizes is predicted to evolve in time toward a perfect power law,
P(n) ∝ n−1−α , with exponent α = 2θ/τ given by twice the
ratio of the two time scales of the model (5). This is illustrated in
Fig. 2C on simulated repertoires at steady state and agrees well
with the empirical distributions of Fig. 1D.

Our goal is to capture the parameters of these dynamics that
are informative about the repertoire turnover timescales, while
constraining the experimentally observed clone size frequency
distribution. Our approach assumes that on the timescales of the
analysis, we do not observe signals of strong and specific antigenic
stimulation. It also ignores potential dependences on the size of
the clone, which could be mediated by phenotypic differences
between clones. This last assumption will be revisited later.

C. Model Inference. We estimate the parameters (θ , τ ) of the
dynamics in Eq. Eq. 1 from the observed clonotype abundance
trajectories using a Bayesian approach for the posterior distribu-
tion of parameters given the data:

(τ ∗, θ∗) = arg max
τ ,θ

Nc∏
i=1

P(n̂i(t1), n̂i(t2)|τ , θ), [2]

where t1 and t2 are the times of the two samples.
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A B C

Fig. 2. Stochastic model of repertoire dynamics. (A) T cells are introduced in the peripheral immune system by thymic export, providing a source of new TCR
clones. T cells belonging to a specific TCR clone (labeled by their color) divide and die depending on their interactions with the antigenic environment, increasing
or reducing the abundance of its TCRs in the repertoire. This process is modeled by a geometric Brownian motion. (B) Example traces of TCR abundances
simulated from the model Eq. 1 with n(0) = 40, with � = 2 y and � = 1.11 y. Clones that reach abundance <1 go extinct (red circles). The typical trend is for
clones to decay exponentially with time scale � (black solid line). Stochastic events of growth and decay account for a broad variability of individual traces,
whose magnitude grows as √t/� with time (shaded area) in logarithmic scale. (C) Cumulative frequencies distributions of synthetic TCR clone abundances. The
model predicts a power law of exponent � = 2�/�. Different values of � and � were used to lead to different values of the exponent �. Parameters: � = 2 y,
Ncell = 1010, n0 = 40.

We use two methods to learn the model parameters: naive
inference and full inference. The naive inference assumes
that the empirical abundances faithfully represent the real
clonal abundances ni through a simple proportionality rule,
n̂i ≈ (Nr/Ncell)ni, where Ncell =

∑
i ni is the total number

of T cells in the body. In practice, we work with clonotype
frequencies f̂i = n̂i/Nr and fi = ni/Ncell, so that this assumption
becomes f̂i = fi. Further assuming that the total number of cells
Ncell is approximately constant in time at steady state, f̂i is then
governed by the same equation Eq. 1 as ni. We take advantage of
the closed solution available for the propagator associated with
the GBM, Eq. 4, to maximize the log-likelihood (Methods). This
maximization is equivalent to plotting a histogram of the change
in log-frequencies between the two time points and simply read
off τ−1 and θ−1 as the negative mean and the variance of the
distribution divided by t = t2 − t1 (Fig. 3A), consistent with
their biological interpretation.

The full inference incorporates the fact that the observed
clonotype abundances are contaminated by biological (mRNA
expression) and experimental noise sources (sequencing errors,
stochastic PCR amplification, and sampling), which means that
they do not correspond exactly to the clonotype abundances.
To give a sense of just the sampling issue, a PBMC sample of
∼ 1 mL contains about 1 million T cells, yielding about 1 million
reads. By comparison, the organism contains the order of 1011

T cells. TCR clonotype frequencies are thus extrapolated from
observing a fraction 106/1011

≈ 10−5, or 0.001%, of the
whole repertoire (9). In addition, not all cells are captured, and
each cell may be represented by multiple reads, either through
sequencing of multiple mRNA from the same cell or from PCR
amplification, depending on the context. To address these sources
of uncertainty, in the full inference approach, we introduce an
error model (33) relating observed frequencies f̂ to their true
value f probabilistically through the transfer function P(f̂ | f )
(Fig. 3B). We use the previously introduced software tool,
NoisET (34), which learns such a noise model from replicate
RepSeq experiments (Methods).

We applied NoisET to individuals P3, P4, P6, and P9 for
whom replicates were available. The noise model assumes that

the read count n̂ of each clone is drawn from a negative
binomial distribution, whose variance grows with the frequency
as Var(n̂) = fNr + a(fNr)b, with two learnable parameters a, b.
In addition, since true frequencies are unknown, we assume as a
prior that frequencies are distributed according to a power law
ρ(f ) ∝ f −1−α with a cut-off f > fmin, with α and fmin two other
parameters. These parameters are reported for all individuals and
time points in SI Appendix, Fig. S1.

Once the noise model has been learned using NoisET, the
likelihood of the data is computed by summing over the latent
variables f1 = fi(t1) and f2 = fi(t2):

P(n̂i(t1), n̂i(t2)|τ , θ) =
∫∫ 1

fmin

df1df2 ρ(f1)P(f2 | f1, τ , θ)

× P(f̂1|f2)P(f̂2|f2),

[3]

where P(f2 | f1; τ , θ) is the propagator of the geometric Brownian
motion Eq. 1, and f̂j = n̂i(tj)/Nr(tj), j = 1, 2.

To explore the dependence of the τ and θ parameters on the
frequency of clonotypes and to eliminate clones that are not seen
at both time points, we can generalize the formulas above to
include only clonotypes with frequencies larger than a specific
threshold f̂th, which modifies the normalization of the maximum
likelihood estimator (Methods).

D. Validation of the Inference Methods on Synthetic Data. We
first test the naive and full model inference on simulated RepSeq
samples. We simulate 1010 cells corresponding to∼108 synthetic
longitudinal trajectories designed to mimic as closely as possible
the features of the real repertoire data at time points 2 y apart.
The initial size ni(t1) of each clone is drawn from the steady-state
distribution of the GBM with a constant source (Methods). Then,
Eq. 1 is simulated between times t1 and t2 with an extinction
condition when ni < 1 and with a source of new clones whose
rate of introduction is matched to the mean extinction rate
(Methods). We varied the two timescales of the model, τ and
θ , from months to years, while keeping α = 2θ/τ within the
observed experimental range 1.1 to 1.25 (35).
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A

C D

B

Fig. 3. Inferring dynamical parameters from data. (A) Naive inference. The empirical clonotype frequencies in the RepSeq samples at the two time points, f̂1
and f̂2, are treated as the true ones, f1 and f2. We estimate the two parameters � and � from the average and SD over all observed TCR clones of the log-fold
change in frequency between two time points, log(f̂2/f̂1), which the model predicts is distributed normally. The distribution of ŝ is shown in light red and the
Gaussian fit in solid red. (B) Full inference. The empirical frequencies f̂ are modeled as noisy read-outs of the true ones f , through a probabilistic noise model.
First, the noise model P(f̂ |f ) is inferred from replicate experiments such as shown in Fig. 1C. The inference procedure also learns the distribution of frequencies
�(f ), assumed to follow a power law with adjustable exponent � and minimal frequency fmin. Second, using the noise model, the parameters of the dynamical
propagator P(f2|f1 , �, �) are inferred from two time points, where f1 and f2 are treated as latent variables and f̂1, f̂2 as observables, using a Maximum likelihood
estimator. (C and D) Validation of naive and full inference models on synthetic data. Model parameters: t2 − t1 = 2 y, � = 1,2,5,10 y, � = 1.11,1.18,1.25, with all
12 combinations tested; number of cells Nc = 1010; initial clone size n0 = 40; the other parameters (number of clones, thymic output) are deduced assuming
steady state (Methods). Sampling model: number of sampled reads Nr = 106; noise model parameters a = 0.7 and b = 1.1. Error bars are standard deviations
over 10 simulations.

We model experimental sampling using a negative binomial
distribution with variance parameters a = 0.7 and b = 1.1.
Sequencing depth was set to Nr = 106 reads at both time points
(we checked that asymmetric numbers of reads at each time
point did not affect the results, SI Appendix, Fig. S2), resulting
in∼105 sampled distinct clonotypes. For each set of parameters,
we generated 10 longitudinal datasets to assess errors. We then
performed the naive and full inference methods on these datasets,
restricted to clones with f̂1 ≥ f̂th and f̂2 > 0, and compared the
inferred values of τ and θ to the true ones (Fig. 3 C and D and
SI Appendix, Table S2).

While the full inference (blue points) works for all values
of the parameters and frequency threshold, the naive inference
(red points) performs poorly for large values of the parameters.
Increasing the cutoff frequency to fth = 10−4 improves the
naive inference by limiting the effect of the sampling noise,
which is relatively smaller in large clones. For lower values of
the threshold, the more numerous small clones dominate the

inference, yielding an erroneous estimate, underestimating large
values and overestimating low values of the parameters. However,
since the naive inference does not require replicates or a noise
model, and is faster to implement, it provides a practical solution
for learning τ and θ for large clones.

E. Analysis of Repertoires. We applied the full inference to
longitudinal data sets of healthy individual TCR repertoires
presented in Fig. 1 for which replicates were available, focusing
on large enough clones (f̂1 ≥ fth = 10−5). With this cutoff,
we limit experimental noise and focus mainly on memory clones
since large clones are more likely to be have arisen from expansion
and belong to the memory pool (14).

For all individuals, the inferred values of τ and θ broadly
follow the line defined by τ ≈ 2θ (Fig. 4A) corresponding to
a predicted exponent of α ≈ 2θ/τ = 1 in the power law of
the clone size distribution. This result is in agreement with the
empirical observations of Fig. 1D. A more refined comparison

PNAS 2023 Vol. 120 No. 4 e2207516120 https://doi.org/10.1073/pnas.2207516120 5 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
1.

16
8.

18
1.

25
1 

on
 S

ep
te

m
be

r 
6,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
91

.1
68

.1
81

.2
51

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2207516120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207516120#supplementary-materials


A B

C D

Fig. 4. Dynamical parameters of healthy TCR repertoires. (A) Typical decay rate �−1, and inverse fluctuation amplitude �−1 for the five donors for whom
replicates were available, as obtained using the full inference procedure with fth = 10−5. All donors but one are consistent with the relation 2� = �,
corresponding to � = 1. Error bars are standard deviations over all combinations of the replicates at each time point. (B) Direct test of the prediction � = 2�/�.
Most values of � fall close to one, allowing for only a narrow range of tested values. Error bars on � show standard deviations across time points. (C) Turnover
parameter � as a function of donor age. (D) Probability for a clone detected at some time point with frequency f̂ ≥ 10−5 to be detected again at a later time point
(with the experimental dataset size). Symbols are empirical estimates. The model predictions show excellent agreement. Error bars in (B–D) are propagated
from (A)

of the predicted exponent, 2θ/τ , with the one directly inferred
from the distribution of clone sizes, α, gives consistent but noisy
results (Fig. 4B), primarily because of the narrow range of values
of α (0.9 to 1.2) and the small number of individuals.

We emphasize that the two inferred values of α use completely
independent pieces of information. On the one hand, the expo-
nent α describing the TCR frequency power-law distribution
was learned using NoisET (34) from biological replicates taken
at the same time point. On the other hand, the timescales
forming the ratio 2θ/τ were learned using changes in individual
clonal frequencies of TCR between RepSeq samples taken at
two different time points, without assumptions about their
distribution (except to calibrate the noise model, which has
only a minor effect on the full inference and none on the naive
inference).

Since our approach is probabilistic, it provides as a byproduct
the posterior distribution of the fold change of individual clones
(Methods). The average of this posterior over clones gives a
direct visualization of the distribution of fold-changes in clonal
frequencies, and agrees very well with the model propagator Eq. 4
(SI Appendix, Fig. S3), validating its consistency with the data.

The decay time τ increases with age, from a few years at
age 21 to ∼50 y at age 57 (Fig. 4C , Pearson’s ρ = 0.95,
p = 0.047, on the mean τ vs age of each individual). Since
the ratio 2θ/τ is constrained to be ≈1, this implies that the
amplitude of the stochastic stimulations, θ−1, decreases with age.
The TCR repertoire is more dynamic, with faster clonal decay
and thus turnover, for young individuals, who also have a larger
rate of introduction of new TCR clones from the thymus than
older individuals. At the same time, a decay time of ∼20 years

at the age of 40 suggests that the repertoires of adults remain
dynamic despite greatly reduced thymic output. Despite good
concordance between results obtained across replicates, as well
as between the α and β chain for P6 and between twins P3
and P4, these results rely only on four individuals and should be
confirmed with a larger cohort.

For individual P6, both TCRα and TCRβ RepSeq samples
were available. We recover very similar dynamic parameters
for both receptor chains (Fig. 4 A and B). This justifies our
hypothesis that the bulk sequencing of single chains captures
well the dynamics of αβ clonotypes.

For comparison, we also applied the naive inference procedure,
which allows us to include all nine patients even when replicates
are not available. This inference generally gave much larger rates
τ−1 and θ−1 (SI Appendix, Fig. S4A), suggesting confounding
effects of the noise on both parameters (reversion to the mean for
τ−1 and larger variance for θ−1). Indeed, results obtained for a
larger value of the frequency threshold (fth = 10−4, SI Appendix,
Fig. S4B) gave smaller values, and in better agreement with the
age dependence.

To ask whether the clonal dynamics depended on the cell type,
we separately analyzed the longitudinally sampled CD4 and CD8
repertoires of P6, the only individual for which such data were
available. The clone size distribution of CD4 falls off with a larger
exponent than that of CD8, meaning that its largest expanded
clones are relatively smaller (SI Appendix, Fig. S5A), as already
noted (28). We then applied the naive inference procedure with
fth = 10−4 (since we did not have replicates for the CD4
and CD8 repertoires). The inference (SI Appendix, Fig. S5B)
reveals that CD4 clones turn over more slowly than CD8 cells
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(smaller τ−1) but also have much smaller fluctuations in their
sizes (smaller θ−1). This result is consistent with a shorter tail of
large clones and a larger α in CD4 than in CD8 (SI Appendix,
Fig. S5C). The proximity of the bulk and CD8 results also
suggests that the analysis of the full repertoire is dominated by the
CD8 subpopulation thanks to its longer large-clone tail, although
this should be confirmed on more individuals.

The inference results can be used to predict the persistence
of clones, whose turnover has been discussed in the context of
aging (28, 29, 35). For a given individual, we define persistence
as the probability that a clone initially observed at frequency
≥ f̂th = 10−5 is resampled at a later time. This probability
strongly depends on the rate of change of the TCR repertoire,
and therefore on the age of the individual, as well as on the time
interval between the two samples (Fig. 4D). We can estimate
this persistence probability directly from data and compare it
to the predictions of our inferred dynamics, showing excellent
agreement. This analysis shows that even moderately large clones
persist for many years and even decades in older individuals.

Our model assumes that clones have unique trajectories but
that the statistical properties of these trajectories are uniform.
However, because of their distinct histories and phenotypical
compositions, clones may differ in those dynamical properties.
To investigate that possibility, we asked whether the inferred time
scales τ and θ depended on the value of the clone size threshold
f̂th. Low values of f̂th mean that all clones are taken into account
in the inference, while high values mean that we focus on the
largest clones only. We found that the values of both τ−1 and
θ−1 increase with the threshold (Fig. 5 A and B) for the younger
individuals P3 and P4, suggesting that their large clones tend to
be more dynamic, with a faster turnover. Therefore, while the
overall trends reported in Fig. 4 are still correct, these results

imply that the model should be revisited to allow for frequency-
dependent dynamics.

To measure the frequency dependence of the dynamic param-
eters more finely, we separately inferred τ and θ for clones sorted
into contiguous intervals according to their initial count n̂(t1).
Both time scales showed an approximately linear dependency on
the logarithm of the initial frequency (Fig. 5 C and D), although
this dependency is visible only in the younger individuals P3 and
P4. This confirms the observation that their large clones tend to
have faster dynamics than small ones. Longitudinal samples
from more donors would be needed to assess the individual
heterogeneity and age dependence of these observations. The two
time scales τ and θ vary in concert, so that their ratio remains
approximately constant across frequencies (SI Appendix, Fig. S6).
As we have argued before, this ratio is linked to the power-
law exponent of the distribution of clone sizes at steady state.
This exponent can be read off as the slope of that distribution
on a double logarithmic scale, which is consistently observed
to be constant in the data (Fig. 1D). Finally, we applied the
naive inference procedure to learn the frequency-dependent
dynamics of clones in all nine individuals. As expected, this
inference yielded more noisy and less stable results than the full
inference, especially at low frequencies for which noise is largest
(SI Appendix, Fig. S7). The dependence of the inferred parameters
on clonal frequency varies across individuals but confirms a
picture in which older individuals have more stable large clones.

3. Discussion

The sizes of T cell clones change constantly throughout the
lifetime of an individual, not only due to specific stimulation.
Large clones have been reported in aging individuals (39) as well
as in laboratory mice with no active exposure to pathogens (27).

A B

C D

Fig. 5. Clonal dynamics are frequency dependent. (A and B) Results of the full inference as a function of the minimal frequency threshold f̂th for �−1 and �−1.
(C and D) Dynamical parameters as a function of clone frequency. The inference was performed on separate subsets of clones sorted by their frequency in
intervals nmin < n̂ ≤ nmax, with nmin,max consecutive numbers in (2,5,10,20,100,∞). Error bars are estimated as in Fig. 4.
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We used data sampled on timescales of the order of a year from
individuals who did not undergo any strong identified antigenic
stimulations to learn the repertoire turnover dynamics. These
dynamics include both random unstimulated T cell proliferation
and death as well as asymptomatic or weakly symptomatic
antigenic stimulation. We showed that a geometric Brownian
motion correctly captures the clone dynamics. This model
imposes strict relations that link the exponent of the TCR
clone size distribution at steady state, α, with the parameters
of the dynamics, τ , and θ . We showed that, for all individuals,
we were able to predict the measured exponent α ≈ 1 from
the inferred dynamical parameters, suggesting that geometric
Brownian motion is a good description of the process. Although
the actual timescales vary between individuals, with younger
individuals having faster clone turnover dynamics than older
individuals, their ratio is fixed. Indeed, as already noted on a larger
cohort of individuals in ref. 35, the exponent of the power-law
distribution of clone sizes does not depend on age. A limitation of
this study is that the dependence between age and dynamics was
shown on only four individuals. The naive inference, which does
not correct for noise and is therefore less reliable, but allows for
including all nine individuals, shows only a weaker correlation.
In addition, some features appear to be individual-specific, such
as the way the abundance of a clone affects its dynamics (Fig. 5
C and D).

The faster turnover in younger individuals is uncovered but
not explained by our analysis. It can be linked to a larger thymic
output rate (1), imposing a faster turnover. It could also be
linked to more a rapid formation of new immune memories
at a young age. We did not attempt to separately learn the
dynamics of memory and naive pools since we did not have
sorted longitudinal data for which abundance information could
be trusted. While it is sometimes assumed that larger clones
have a memory phenotype because they must have expanded, a
recent study in mice has shown that naive clones can be large as
well (14). It will be interesting to perform a separate analysis of
carefully sorted naive and memory repertoires in the future using
the method described here, especially for individuals of different
ages. Our mathematical model assumes proliferation as a result
of antigenic stimulations, which is the hallmark of the memory
pool. Since naive cells are not supposed to proliferate in response
to stimuli, we may expect its repertoire to be described by neutral
ecological dynamics, where differences between clones are due to
stochastic divisions and deaths (5, 14, 38). A difficulty for future
analyses is that these dynamics lead to exponentially decaying
clone size distributions, with very small clonal frequencies, which
cannot be easily measured in human blood samples.

More generally, we expect clonal dynamics to be linked to
the cellular phenotype, as our preliminary analysis showed for
CD4 and CD8 cells. Phenotypes can be characterized with
increasing resolution using single-cell expression data (40), which
also provides paired TCR information (41). Future work com-
bining longitudinal sampling with single-cell techniques could
help explore the relationship between neutral clonal dynamics
and cell type. Additionally, we know that TCRs with similar
sequences form clusters that often respond to similar stimulants
(17, 42), and methods are being developed to annotate repertoire
with cluster membership (43) or specificity (44–48). As these
annotations become comprehensive, one will be able to study the
dynamics of specificity clusters and to assess the persistence of
specific immune memories across different immune challenges.

Our current model is based on two effective parameters that
describe the timescale for clone decay, τ , and the timescale of

random changes, θ . Two major assumptions underlie this model.
First, it assumes that antigenic stimulation happens repeatedly on
short time scales, so that its cumulated effects on longer time scales
look like random fluctuations of the net growth rate. Testing
this assumption would require longer time traces of the clonal
dynamics, to look for memory effects in the clonal growth rates.
Second, it assumes that dynamical properties do not depend on
the clone size. As observed in Fig. 5, this assumption is only
partially verified, with clear violations for 2 of the youngest
donors, in which the larger clones display much faster dynamics
than the smaller ones. While it might suggest that those large,
dynamic clones are involved in some immune response, repertoire
studies of vaccinations or infections have shown that responsive
clones are typically not among the largest ones (31, 49). In
addition, we checked that the top 100 β-chain clones of donors
P3, P4, P6, and P9 had little overlap in their CDR3 with the
VDJdb database of pathogen-associated TCRs (50) (Methods),
with 15 matches in total (compared to 12.0 ± 3.4 for a random
choice of 100 clones with at least five reads from each donor).
The longitudinal analysis of larger cohorts with a broad age
distribution would be required to investigate this effect in detail.

The decay time scales we infer range from a few years to 50 y,
depending on the age of the individual. It has been shown that
even sparsely sampled T cell repertoires can provide a fingerprint
that uniquely identifies individuals (51). The stability of this
immune fingerprint is guaranteed for tens of years, provided that
the decay rate is of the order of years or more, as we showed here.

Direct measurements of T cell lifetimes using heavy water (10)
give lifetimes of months for memory cells, to a few years for naive
cells. These estimates are consistent with our findings: Our time
scale τ is linked to the inverse of the net growth rate of the
clone, which results from the balance between cell proliferation
and death, while experiments based on heavy water measure the
turnover of individual cells. For instance, memory cells are short
lived but also divide rapidly to compensate for death, so that
the size of memory clones remains stable. One may also want
to compare our estimate with the previously reported persistence
time of clonotypes believed to be of fetal origin, ≈37 y (52).
This persistence time is not directly comparable to τ , which is
the decay rate of the abundance of each clone, but it is similar to
the characteristic decay of the persistence probability (Fig. 4D),
which may be slower. Another caveat is that fetal clonotypes
are also primarily naive and take up only a few percent of the
repertoire, so that they may not be representative of the overall
properties of the clonal dynamics.

Deciphering the baseline dynamics is an important step
toward interpreting TCR dynamics in the presence of antigenic
stimuli. The expectation based on the model can be useful
in identifying clones that have unusual dynamics, quantified
as being significantly different from the TCR bulk repertoire.
More precisely, for any given clonal trajectory, we can use the
model to compute a P-value corresponding to the posterior
probability that the frequency fold change s falls outside a
certain number of standard deviations relative to the rest of
the repertoire (|s − t/τ |/

√
t/θ ). This can allow us to identify

candidate clones associated with a response to an infection or an
immune challenge.

Our work was possible because we were able to calibrate
the noise using replicate samples. However, replicates are not
always available. In this case, the dynamics can still be learned for
large clones: We showed using simulations that above a certain
frequency threshold, the sampling error becomes small and we
can use empirical observations to learn TCR repertoire dynamics
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directly from read counts. This allows us to correctly estimate
the dynamics of large clones without a noise model if the clone
sizes are large at both time points. However, since the repertoire
is described by a power law distribution, the role of small clones
is far from negligible. An alternative to replicates may be to use
close-by time points (relative to the time scales of the dynamics)
as surrogate replicates. While we had such time points separated
by 1 mo for P1, P2, and P7, we did not attempt a full inference on
these samples: We did not manage to learn a reliable noise model
for these donors because we lacked both the raw sequencing reads
and details about the processing procedure (PCR amplification,
error correction, etc). In particular, unlike uniquely barcoded
cDNA sequencing, PCR amplification of gDNA used for these
donors inflates rare clonotypes (as suggested by the low-frequency
plateau in the clone size distributions, Fig. 1D), potentially
confounding the analysis.

One of the main conclusions of our work is that repertoires are
very dynamic systems, with clone frequencies changing by orders
of magnitude on timescales of years, even in the absence of strong
known stimulation. This observation challenges our ability to
identify responding clonotypes to direct immune stimulation,
such as vaccination or diseases. This work builds the ground for
inference procedures that are not only correct for experimental
and biological noise but also for the natural repertoire dynamics.
The methods we designed are general and can be used on larger
cohorts of individuals presenting different health statuses, ages,
and immunodeficiency features. They provide a promising tool
to better understand the maintenance and efficiency of T cells,
enabling to quantify immunosenescence (53), which plays an
important role in vaccine performance and cancer research.

Methods

A. Longitudinal Data. The datasets analyzed in this study are summarized in
SI Appendix, Table S1, along with accession number and links to databases.

Data were collected from four different studies, which use two different
techniques for repertoire sequencing. Data from refs. 28, 30–32 were generated
by sequencing TCR mRNA of PBMCs from healthy individuals, while data from
ref. 29 were obtained by directly sequencing genomic DNA (gDNA), as described
in detail in each original study.

Briefly, mRNA sequencing was done through cDNA synthesis with template
switch allowing for the addition of a unique molecular identifier (UMI), followed
by 2-step PCR amplification of the TCR loci (alpha and/or beta), multiplexing,
sequencing on an Illumina platform, and processing using the MiXCR software
package(54)toobtainlistsofclonotypes(VandJsegmentsandComplementarity
Determining Region 3 nucleotide sequence) corrected for UMI multiplicity and
sequencing errors. gDNA sequencing was done by extracting genomic DNA and
performing multiplex PCR to amplify the TCR beta gene before sequencing on
an Illumina HiSeq system. Raw data processing was performed using closed
software. Since the raw data are not available, we used the processed data
provided on the ImmuneAccess platform.

B. Naive Inference. The naive inference method directly uses the observed TCR
clonal frequencies to learn τ and θ parameters, assuming that they represent
exactly the true frequencies: f = f̂ = n̂/Nr . We aim here at maximizing directly
the log-likelihood L(τ , θ) = log P({(fi(t1), fi(t2))})|τ , θ), which can be
expressed by integrating Eq.1:

P({(ln fi(t1), ln fi(t2))})|τ , θ)

=

Nc∏
i

G(ln fi(t2)| ln fi(t1); τ , θ)P(ln fi(t1)),
[4]

where

G(x|y; τ , θ) =

√
θ

2π1t
exp−

θ(x − y −1tτ−1)2

21t
, [5]

is the propagator of the Brownian motion, 1t = t2 − t1 the time interval
between the two time points, and where we have assumed that Ncell is a
constant of time. Maximizing the log-likelihood with respect to τ and θ is
equivalent to performing a linear regression of ln f(t2)− ln f(t1) against1t.

C. Full Inference. Using same-day replicates at time tj, we jointly learn the

parameters (α, fmin, a, b) of the clone-size distribution ρ(f) = Cf−1−α

(for fmin ≤ f ≤ 1) and the noise model P(n̂|f) = NegBin(n̂; Nr f, Nr f +

a(Nr f)b) using NoiSET software (34), where NegBin(n; x, σ ) is a negative
binomial of mean x and variance σ . The learned parameters are reported in
SI Appendix, Fig. S1.

We then learn the parameters of the dynamics by maximizing the likelihood
of samples taken at two different time points, using the noise model to account
for the discrepancy between true frequencies and sequence counts: For one
clone, the full model likelihood reads

P(n̂i(t1) = n̂1, n̂i(t2) = n̂2)|τ , θ)

=

∫
[fmin ,1]2

df1ρ(f1)
df2
f2

G(ln f2| ln f1; τ , θ)P(n̂1|f1)P(n̂2|f2),

[6]

where the noise models are specific to each time point.
The maximum likelihood estimator is given by:

(
τ∗, θ∗

)
= argmax

(τ ,θ)

Nc∏
i=1

P(n̂i(t1), n̂i(t2)|τ , θ)
P(n̂i(t1) ≥ Nr fth, n̂i(t2) > 0|τ , θ)

, [7]

where the denominator accounts for the condition that the clone be included in
the analysis: f̂i(t) ≥ fth and n̂2 > 0. The choice to impose a threshold on the
first time point is justified by the fact we are learning the forward propagator
of the dynamics, which is conditioned on the initial frequency. Typically around
50 to 70% of clones above the threshold on the first time point remain above
the threshold in the second time point. Likewise, similar percentages (40 to
80%) of clones above the threshold in the second time point were also seen in
the first time point. This loss is expected since the frequencies follow stochastic
trajectories, many of which are likely to cross the threshold between the two
time points.

The persistence probability of Fig. 4D is linked to that normalization and is
computed as follows:

Ppers(τ , θ) =
P(n̂i(t1) ≥ Nr fth, n̂i(t2) > 0|τ , θ)

P(n̂i(t1) ≥ Nr fth|τ , θ)
. [8]

Once the model is learned, the posterior distribution of fold changes
si ≡ ln fi(t2)− ln fi(t1) of each clone i is computed through

P(si = s|n̂1, n̂2, τ∗, θ∗)

=

∫ 1
fmin

df1ρ(f1)G(ln f1 + s| ln f1; τ
∗, θ∗)P(n̂1|f1)P(n̂2|f1es)

P(n̂1, n̂2|τ
∗, θ∗)

.

[9]

The overall posterior distribution over all clones (solid lines in SI Appendix,
Fig. S3) is then given by Ppost(s) = (1/Nc)

∑Nc
i=1 P(si = s|n̂1, n̂2, τ∗, θ∗).

The prior distribution (dashed line), by contrast, is directly given by
G(ln f1 + s, ln f1|τ

∗, θ∗), which is independent of f1.
When performing inference in each frequency bin, the product in Eq. 7

runs over clones that fall in the bin, and the normalization in the denominator
is replaced by the probability to observe n̂i(t1) in the bin of interest, and
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n̂i(t2) > 0. The maximization is performed using the minimize function
from the Scipy package, with the Sequential Least Squares Programming
(SLSQP) method (55) with parameters tol=1e-8 and maxiter=300 and
initial condition τ = 2, θ = .5 and constraint θ−1 > 10−3.

D. Synthetic Data. Synthetic data were generated by simulating Eq. 1 with
a source term producing new clones with rate S at initial size n = n0 = 40
and an absorbing boundary condition at n = 1. We work with the x =
ln n variable for convenience. The simulation is initialized at steady state,
which can be computed analytically (5, 9). The analytical solution gives us the
expected number of cells and clones as a function of the model parameters:
Ncell = S(n0− 1)/(τ−1

− θ−1/2) and Nc = Sτ ln n0. Fixing the number
of cells to Ncell = 1010, we then compute the number of clones necessary
to achieve that size, Nc = Ncell(1 − τ/2θ) ln n0/(n0 − 1). We then draw
the size ni(t1) = exi(t1) of each clone i = 1, . . . , Nc from the continuous
steady-state distribution (5):

ρx(x) =

{
Sτ
(

1− e−αx) if x ≤ x0 ≡ ln n0
Sτe−αx (eαx0 − 1) if x > x0,

[10]

with α = 2θ/τ .
Then, the evolution of each clone from time t1 to t2 = t1 +1t is determined

by the modified propagator with the absorbing boundary condition at x = 0:

Gabs(x|y) = G(x|y)− e−αyG(x| − y), [11]

where G(x|y) is defined in Eq. 5. In practice, we kill clone i with probability
1 − Psurv(xi(t1)) ≡ 1 −

∫
∞

0 dxGabs(x|xi(t1)), which can be expressed in
terms of error functions. Otherwise, its new log-size xi(t2) is drawn from the
distribution Gabs(x|xi(t1))/Psurv(xi(t1)).

In addition, new clones are introduced during 1t. We draw their number
from a Poisson distribution of mean S1t and their introduction times t from a
uniform distribution in the interval [t1, t2]. Then, their dynamics are drawn in
the same way as for the initial clones, but with1t = t2 − t instead of t2 − t1.

Once the abundances (ni(t1) = exi(t1), ni(t2) = exi(t2)) have been
determined, the number of reads n̂i(t1), n̂i(t2) from each time point is drawn
from a negative binomial distribution of mean 〈n̂i(t1)〉 = Nr ni(t1)/Ncell and
variance〈n̂i(t1)〉+a〈n̂i(t1)〉

b, and likewise for n̂i(t2), with Nr = 106, a = 0.7
and b = 1.1.

E. Comparison to the VDJdb Database. We downloaded the 2022-03-30
release of VDJdb (50) at https://github.com/antigenomics/vdjdb-db/releases/
download/2022-03-30/vdjdb-2022-03-30.zip and restricted our search to
CDR3s associated with antigens from the following species: CMV, InfluenzaA,
EBV, SARS-CoV-2, HIV-1, HCV, YFV, HTLV-1, DENV1, DENV3/4, HIV, HSV-2,
M.tuberculosis, DENV2, HCoV-HKU1, HPV, MCPyV, StreptomycesKanamyceti-
cus, E.Coli, HIV1, HHV, PseudomonasAeruginosa, PseudomonasFluorescens,
SaccharomycesCerevisiae, SelaginellaMoellendorffii, totaling 65616 CDR3
amino acid sequences.

Data, Materials, and Software Availability. All scripts to produce the figures
can be found at https://github.com/statbiophys/Inferring_TCR_repertoire_
dynamics/. Previously published data were used for this work. O. V. Bri-
tanova, et al., Dynamics of individual T cell repertoires: From cord blood to
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