
HAL Id: hal-04252174
https://hal.science/hal-04252174v1

Submitted on 26 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Unified Framework for Manipulating N-dimensional
Astronomical Data and Coordinate Transformations in
Python: The NDCube 2 and Astropy APE-14 World

Coordinate System APIs
Daniel Ryan, Stuart Mumford, Will Barnes, Ankit Kumar Baruah, Adwait

Bhope, Éric Buchlin, Nabil Freij, Adam Ginsburg, Laura Hayes, Derek
Homeier, et al.

To cite this version:
Daniel Ryan, Stuart Mumford, Will Barnes, Ankit Kumar Baruah, Adwait Bhope, et al.. A Unified
Framework for Manipulating N-dimensional Astronomical Data and Coordinate Transformations in
Python: The NDCube 2 and Astropy APE-14 World Coordinate System APIs. The Astrophysical
Journal, 2023, 956 (1), pp.44. �10.3847/1538-4357/ace0bd�. �hal-04252174�

https://hal.science/hal-04252174v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Unified Framework for Manipulating N-dimensional Astronomical Data and
Coordinate Transformations in Python: The NDCube 2 and Astropy APE-14 World

Coordinate System APIs

Daniel F. Ryan1,2,19 , Stuart Mumford3,19 , Will T. Barnes2,4 , Ankit Kumar Baruah5, Adwait Bhope6 , Éric Buchlin7 ,
Nabil Freij8,9 , Adam Ginsburg10 , Laura A. Hayes11 , Derek Homeier3 , J. Marcus Hughes12 , Chris Lowder12 ,
Richard O’Steen13 , Baptiste Pellorce14,15, Thomas Robitaille3 , Yash Sharma16, David Stansby17 , Albert Y. Shih4 ,

Erik Tollerud13 , Micah J. Weberg18 , and Matthew J. West12
1 University of Applied Sciences Northwest Switzerland, Bahnhofstrasse 6, 5210 Windisch, Switzerland; ryand5@tcd.ie

2 American University, 4400 Massachusetts Avenue NW, Washington, DC 20016, USA
3 Aperio Software Ltd., UK

4 NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA
5Workato Gmbh, WestendStrasse 28, D-60325 Frankfurt/Main, Germany

6 Uptycs India Pvt. Ltd., Aundh IT Park, Pune, MH411020,India
7 Université Paris-Saclay, CNRS, Institut d’Astrophysique Spatiale, F-91405, Orsay, France

8 Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA
9 Bay Area Environmental Research Institute, Moffett Field, CA 94035, USA

10 Department of Astronomy, University of Florida, Bryant Space Science Center, Gainesville, FL 32611, USA
11 European Space Agency, ESTEC, Keplerlaan 1—2201 AZ, Noordwijk, The Netherlands
12 Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, USA
13 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

14 Claude Bernard Lyon 1 University, 43 Bd du 11 Novembre 1918, F-69100 Villeurbanne, France
15 Institute of Theoretical Astrophysics, Sem Sælands vei 13, NO-0371 Oslo, Norway

16 Meta Platforms Inc., 10 Brock Street, Regents Place, London, NW1 3FG, UK
17 Advanced Research Computing Centre, University College London, Gower Street, London, WC1E 6BT, UK

18 George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
Received 2023 March 7; revised 2023 June 9; accepted 2023 June 20; published 2023 October 6

Abstract

The NDCube 2 API is a Python application programming interface (API) for storing and manipulating
N-dimensional coordinate-aware astronomical data. While there are Python packages for handling astronomical
data and coordinate transformations separately and for handling specific combinations of dimensions and
transformations, none provide a unified and agnostic way of handling them simultaneously. This leads to a
proliferation of different APIs for conducting the same analysis tasks on similar types of observations and
introduces technical barriers between multi-instrument studies and cross-community collaboration. In this paper,
we outline how the NDCube 2 API and its implementation in the open-source, community-developed ndcube
package, together with the AstroPy WCS API, help to solve this problem. We discuss the guiding principles
underpinning the API design and provide examples of how it is already being used to serve broad sections of the
astronomy community, including agency-funded missions. The aim of this paper is to help users better understand
the purpose and potential of the NDCube 2 API and ndcube package and hence how to more effectively deploy
them in scientific analyses and software development.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Astronomical coordinate systems (82);
Astronomy software (1855); Open source software (1866); Distributed computing (1971); GPU computing (1969)

1. Introduction

The analysis of N-dimensional (ND) data and the physical
coordinates their dimensions represent is a fundamental pillar
of astronomy. 2D frequency–time radio spectrograms, 3D
time–space–space ultraviolet (UV) image stacks, and 4D time–
space–space–stokes cubes produced by polarimetric imagers
are just three examples. In computer analysis, these data are
stored and manipulated in ND arrays. The value in each array
element represents a measurement of a physical property
(e.g., intensity), the index of the element represents the location

in the universe being sampled, and the array axes represent the
physical types that define that location (e.g., time, space,
wavelength, etc.).
In astronomy, the relationship between array indices and real

world coordinates is typically represented via the World
Coordinate System (WCS). WCS is a broad framework with
multiple implementations. The most common is Flexible Image
Transport System (FITS)-WCS (Calabretta & Greisen 2002;
Greisen & Calabretta 2002; Greisen et al. 2006; Rots et al.
2015) designed for use in FITS files (Wells et al. 1981; Hanisch
et al. 2001; Pence et al. 2010), but others include generalized
WCS designed for the James Webb Space Telescope (JWST)
and LSST-WCS designed for the Legacy Survey of Space and
Time (Ivezić et al. 2019). Due to the importance of WCS, the
AstroPy project (Astropy Collaboration et al. 2013, 2018) has
developed tools in the Python programming language to store,
inspect, and execute WCS transformations, e.g., the gWCS

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 https://doi.org/10.3847/1538-4357/ace0bd
© 2023. The Author(s). Published by the American Astronomical Society.

19 Daniel F. Ryan and Stuart Mumford contributed equally to this work.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

Software reviewed by the Journal of Open Source Software

https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0001-9642-6089
https://orcid.org/0000-0001-9642-6089
https://orcid.org/0000-0001-9642-6089
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0003-4290-1897
https://orcid.org/0000-0003-4290-1897
https://orcid.org/0000-0003-4290-1897
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0001-6431-9633
https://orcid.org/0000-0001-6431-9633
https://orcid.org/0000-0001-6431-9633
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0001-8318-8229
https://orcid.org/0000-0001-8318-8229
https://orcid.org/0000-0001-8318-8229
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-8642-1329
https://orcid.org/0000-0002-8642-1329
https://orcid.org/0000-0002-8642-1329
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-4433-4841
https://orcid.org/0000-0002-4433-4841
https://orcid.org/0000-0002-4433-4841
https://orcid.org/0000-0002-0631-2393
https://orcid.org/0000-0002-0631-2393
https://orcid.org/0000-0002-0631-2393
mailto:ryand5@tcd.ie
http://astrothesaurus.org/uat/1858
http://astrothesaurus.org/uat/82
http://astrothesaurus.org/uat/1855
http://astrothesaurus.org/uat/1866
http://astrothesaurus.org/uat/1971
http://astrothesaurus.org/uat/1969
https://doi.org/10.3847/1538-4357/ace0bd
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ace0bd&domain=pdf&date_stamp=2023-10-06
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ace0bd&domain=pdf&date_stamp=2023-10-06
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105.joss.05296

package (Dencheva et al.2023) and the WCS module in
astropy package.19 However, the application programming
interfaces (APIs) of these tools differ based on the WCS
implementation for which they were designed. This causes
WCS-based user tools and pipelines to become implementa-
tion-specific and limits their broader utility.

There are mature Python packages that support ND array
manipulation, such as numpy (Harris et al. 2020) and dask.20

However, neither they nor the above-mentioned WCS tools are
suited to treating data and WCS coordinate transformations in a
combined way. The closest preexisting candidate is xarray
(Hoyer & Hamman 2017). However, xarray has been
developed for the requirements and conventions of the
geosciences, which, although similar to those of astronomy in
concept, are sufficiently different in construction to cause
significant friction. Crucially, xarray does not support WCS
coordinate transformations but rather stores coordinates as
lookup tables. The tools that do support a WCS-based
coordinate-aware data analysis, such as the SunPy (Mumford
et al. 2020) Map class for 2D images of the Sun, tend to have
APIs specific to particular combinations of dimensions,
physical types, coordinate systems, and WCS implementations.
This limits their broader utility and makes the combined
analysis of different types of data more difficult. It also inhibits
collaboration by putting technical barriers between subfields of
astronomy.

In this paper, we outline how the NDCube 2 API addresses
the above challenges. It provides a generalized WCS-based
coordinate-aware framework for ND Python data analysis. It is
agnostic to the number of dimensions, combination of physical
coordinate types, and the underlying WCS implementation.
Note that the goal of this paper is not to provide detailed user
instructions or an exhaustive list of functionalities offered by
the NDCube 2 API or the ndcube package. For this, we refer
readers to API’s defining document (Mumford & Ryan 2020)
in addition to the ndcube package publication in JOSS (Ryan
et al. 2023a) and the ndcube documentation.21 Instead, this
paper aims to reveal the philosophies and capabilities of these
tools. It is hoped this will help users and developers understand
the role that the NDCube 2 API plays in the scientific Python
ecosystem and how it can be applied to their use-cases. In
Section 2, we discuss the benefits of WCS to astronomy over
simple coordinate lookup tables. We then outline one of the
pillars of the NDCube 2 API, the AstroPy WCS API, a
standardized API that can be wrapped around specific WCS
implementations. In Section 3, we outline the NDCube 2 API
itself and highlight some challenges and philosophies that led
to specific API designs. In Section 4, we discuss the ndcube
package,22 which implements the NDCube 2 API as well as
some additional tools. In Section 5, we give an example of how
the NDCube class can be used to analyze real 4D observations
with spatial, spectral, and temporal axes. In Section 6, we
demonstrate the usefulness of the NDCube 2 API by high-
lighting its deployment by packages that serve broad subsec-
tions of the astronomy community as well as specific agency-
funded missions. In Section 7, we discuss the the future of the

ndcube package before finally providing a summary and
conclusion in Section 8. Note that in the Appendices we clarify
some terminology used throughout this paper. Readers not
intimately familiar with Python, Astropy, and WCS are
encouraged to read this section before continuing as it will
make the discussion that follows easier to understand.

2. The World Coordinate System

2.1. Why WCS?

The WCS, is a framework for representing astronomical
transformations between pixel indices23 and real world
coordinates. Although pervasive throughout astronomy, WCS
can seem esoteric when first encountered. Because of this,
some scientists prefer to convert the WCS information to
lookup tables giving the coordinate values of each element in
their data array. This enables subsequent analysis to be done in
a simpler array-based way. While this approach is valid, it has
drawbacks.
WCS is a functional framework meaning it can preserve the

underlying mathematics of the transformations and execute
them on-demand. This makes WCS well-suited to describing
observations that smoothly sample a contiguous region of a
coordinate space, e.g., an image of the sky. WCS transforma-
tions can be applied continuously throughout and beyond the
data grid. They can be evaluated for subregions within pixels
by using noninteger pixel indices, or beyond the field of view
by using indices beyond the extent of the array. This makes it
easier to combine and compare observations with different
plate scales and fields of view. Finally, functional coordinate
transformations can be highly memory-efficient as they can
often be fully described by only a few parameters. This
contrasts with coordinate lookup tables that give the discrete
values of the coordinates for each element in the data array, like
those used by xarray.
Although coordinate lookup tables are conceptually simpler,

their memory inefficiency scales with the size of the data.
Moreover, they do not preserve the mathematics of the
transformations. Therefore, resampling the data requires the
lookup table to be interpolated, which may only approximate
the true transformations. However, coordinate lookup tables are
necessary when there are discontinuities in the transformations,
e.g., irregular time steps. In such cases, the WCS framework
can still be used by making the functional transformations refer
to or interpolate lookup tables. However, if all your coordinate
transformations are discontinuous, the WCS and NDCube 2
API frameworks provide fewer advantages over lookup tables
and xarray, except when users want to employ tools that
depend on those frameworks. Nonetheless, in the cases
involving continuous coordinate transformations, WCS pro-
vides greater flexibility and utility over lookup tables.

2.2. The Astropy WCS API

There are multiple implementations of the WCS framework
each with a different, incompatible API, which can signifi-
cantly hinder interoperability and collaboration. The AstroPy
WCS API (often referred to as the APE 14 API due of its origin
in the 14th Astropy Proposal for Enhancement; Robitaille et al.19 https://gwcs.readthedocs.io/en/stable/

20 https://dask.org
21 https://docs.sunpy.org/projects/ndcube/en/stable/
22 Version (1) of the ndcube package predates the Astropy WCS and the
NDCube 2 APIs and is not compatible with them. Therefore all discussion in
this paper will refer to version (2) and later.

23 Although the term pixel indices is used by WCS for historical reasons, it can
refer to the indices of any data array irrespective of whether the observing
instrument uses pixels or not. See Appendix A.1 for further details and the
distinction between pixel and array indices.

2

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

https://gwcs.readthedocs.io/en/stable/
https://dask.org
https://docs.sunpy.org/projects/ndcube/en/stable/

2018) solves this problem by defining a standardized API for
inspecting and executing WCS transformations. Instead of
simply proliferating the number of incompatible WCS APIs,
the AstroPy WCS API allows different implementations to
hook into it, effectively acting as a translation layer from a
standardized user-facing API to any underlying WCS imple-
mentation. The creation of the AstroPy WCS API was partly
motivated by the need for a compatible interface to both the
FITS-WCS (Calabretta 2011) and generalized WCS (Dencheva
& Greenfield 2019) implementations. Its success in that role
has demonstrated the APIʼs ability to encourage and facilitate
interoperability by liberating users and developers from caring
about the specific underlying implementation of their WCS
object.

The AstroPy WCS API is composed of two tiers: low-level and
high-level. Both provide methods for executing the transforma-
tions, but the low-level API also provides access to important
information about the transformations such as the axis correlation
matrix and the physical types of the world axes. The low-level
API accepts and returns basic Python objects like scalars, arrays,
and strings, making it simpler to implement. As such, the methods
that execute the transformations tend to return raw output, i.e.,
values without important context information such as units,
coordinate frame, epoch, etc. Instead, this information is available
elsewhere in the low-level API. While this more closely maps to
how the underlying information is stored, most end users would
be better served if the raw output and relevant context information
were combined. This is the role of the high-level API, which
accepts and returns high-level objects—e.g., astropy Time,
SkyCoord, etc.—based on the information available in the low-
level API. To facilitate development, AstroPy provides an object
that can wrap any low-level-API-compliant object and expose the
high-level API. This means developers need only define the
translation between their underlying WCS implementation and the
simpler low-level API, thus reducing development duplication.
Moreover, the AstroPy WCS API is package-independent,24 thus
facilitating interoperability between packages outside of
AstroPy, even non-Python packages.

The original proposed AstroPy WCS API and the motivation
behind it are discussed in Robitaille et al. (2018), and its
official definition can be found in the BaseLowLevelWCS
and BaseHighLevelWCS classes in the astropy Code-
base (Astropy Development Team 2023). We therefore refer
readers to the above references for more detail. But the above
summary reveals that the two-tiered AstroPy WCS API
provides an intuitive and dependable WCS API for users and
developers, and encourages interoperability between WCS
implementations. Such an API is a crucial component of a
generalized API for analyzing WCS-based, coordinate-aware,
ND data, namely, the NDCube 2 API.

3. The NDCube 2 API

The NDCube 2 API is a standarized framework for
inspecting and manipulating coordinate-aware ND data. It is
defined by Mumford & Ryan (2020) and is split over three
abstract base classes (ABCs): NDCubeABC, ExtraCoord-
sABC, and GlobalCoordsABC. It relies on two foundational
assumptions. First, the data are stored in a single array object,
and second, the primary set of coordinates is stored in an object

that complies with the AstroPy WCS API(for cases where the
data are split over multiple arrays, see discussions of the
NDCubeSequence and NDCollection classes in
Sections 4.2 and 4.3). From these assumptions flow a set of
functionalities that are independent of the number of dimen-
sions and physical coordinate types they represent. The
resulting API allows users and developers to intuitively interact
with coordinate-aware ND data analogous to how they use
arrays to interact with coordinate-agnostic ND data.
The NDCube 2 API is agnostic to the type of underlying

array infrastructure. Therefore, while it can be used with
numpy arrays, the NDCube 2 API is valid for cupy arrays for
GPU-enabled computation (Okuta et al. 2017) as well as dask
arrays for parallel and out-of-core processing. In the case of
dask arrays, this means that the arrays that exceed or are
comparable to a single computer’s RAM can be inspected and
sliced using the NDCube 2 API without actually bringing that
array into memory. Furthermore, coordinate-aware computa-
tion can be performed on the underlying array in a similar
manner and can be parallelized across multiple cores or even
multiple machines using dask.
The versatility and standardization of the NDCube 2 API

facilitates and encourages interoperability between different
analysis tools. Users can perform the same tasks in the same
ways whether they represent different physical types—e.g.,
images versus spectra—or rely on different underlying
infrastructure—e.g., numpy versus dask arrays. This stream-
lines the user experience and provides a dependable foundation
upon which developers can build more specialized tools.

3.1. ExtraCoordsABC and GlobalCoordsABC

As well as NDCubeABC (Section 3.2), the NDCube 2 API
includes two supplemental coordinate classes, ExtraCoord-
sABC and GlobalCoordsABC. ExtraCoordsABC allows
users to store an alternative or complimentary set of
coordinates to the primary WCS. We shall see in Section 3.2
that the NDCubeABC allows users to utilize the primary WCS
or ExtraCoords transformations alternately so long as
transformations for all array axes are contained in the
ExtraCoords object. This is a requirement of the WCS
framework. However, ExtraCoordsABC also supports
transformations for as few array axes as desired in either
functional or lookup table form. This means ExtraCoord-
sABC can store partial sets of discontinuous coordinate
transformations that are supplemental, rather than an alter-
native, to the primary WCS object. To clarify this, consider a
stack of images at different wavelengths where each wave-
length image is taken at a different time. The array axes have
physical types of space, space, and wavelength–time. However,
say the primary WCS only describes the celestial and spectral
world axes. This could be because the time intervals are
irregular, and the underlying WCS implementation is FITS-
WCS, which is not well-suited to storing discontinuous
transformations. Such cases are common in solar physics.
Including the timestamps in the primary WCS would require
the user to build a new WCS object from scratch and may
require them to abandon the FITS-WCS standard for one better
suited to tabular transformations. This can be a difficult and
complicated task, even for expert users. An easier solution
would be to store the timestamps in the ExtraCoords object.
Thus, because the ExtraCoords object stores transforma-
tions for only a subset (one) of the array axes, it is supplemental

24 astropy implements the WCS API for both FITS-WCS and generalized
WCS, demonstrating that the standard is implementable and useful.

3

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

to the primary WCS object. However, if it contained
transformations for all array axes, it could be supplemental or
an alternative to the primary WCS object.

The GlobalCoordsABC serves a subtly different purpose.
It facilitates scalar coordinates that apply to the data cube as a
whole rather than any subset of its axes. Consider a 3D image-
time cube from which we extract a single 2D image. The image
is now associated with a scalar timestamp that is still a valid
coordinate as it indicates where in the universe (in time) the
image corresponds. However, the WCS framework cannot
support it as it no longer corresponds to an axis of the data
array. Therefore, the GlobalCoordsABC was developed to
store and track such information. Slicing is an obvious case
where global coordinates can be generated and tracked. Hence,
the slicing infrastructure of the NDCubeBase class in the
ndcube package, which implements the NDCube 2 API,
automatically adds sliced scalar coordinates to its associated
GlobalCoords class as required (Section 3.2.2). However,
because users may need to manipulate global coordinates
outside of slicing operations, an NDCubeBase instance is
always expected to have an associated GlobalCoords—
even if empty—to which users can manually add and remove
global coordinates as needed.

3.2. NDCubeABC

3.2.1. Structure

NDCubeABC is the primary class of the NDCube 2 API. It
inherits from astropy.nddata.NDDataBase and so stores
its core information in the same way. Figure 1(a) shows a
schematic of the NDCubeABC class. The blue squares represent
the array-based properties, .data, .uncertainty, .mask.
These hold the data array, the uncertainty of each data element, and
a boolean array denoting which elements are reliable (i.e., a mask
array). The .uncertainty and .mask attributes must have the
same dimensions as .data unless they are set to None(.mask
can also be set to a boolean if all elements have the same mask
value). Metadata attributes are shown in green. .meta contains
general metadata such as the instrument used to make the
observations while .unit gives the unit of .data. Coordinate
attributes are shown in red. .wcs stores the primary WCS object,
.extra_coords holds an ExtraCoordsABC-compliant
object, and .global_coords holds a GlobalCoordsABC-

compliant object. The only components required to instantiate an
NDCube 2 API-compliant object are a data array and an AstroPy-
WCS-API-compliant object. By default, .extra_coords and .
global_coords are empty while other attributes can be set
to None.
NDCubeABC provides convenience methods that make

exploring and analyzing coordinate-aware data more powerful
and straightforward. The guiding philosophy behind the scope of
the NDCube 2 API is that all functionalities should depend on
information from multiple components of the NDCubeABC and
be independent of the number of dimensions and the physical
types they represent. This is demonstrated by the .array_ax-
is_physical_types property, which returns the physical
types associated with each array axis. This is different from the
world_axis_physical_types property on the low-level
AstroPy WCS API, which returns the single physical type
associated with each world axis. By contrast, .array_axi-
s_physical_types may return multiple physical types per
array axis, and the same world axis may be associated with
multiple array axes. This is because multiple world axes can be
associated with a single pixel axis via the axis correlation matrix
and vice versa(see Appendix A.1 for explanations of the
differences between array, pixel, and world axes and
Appendix A.2 for discussion of the axis correlation matrix).
Moreover, because coordinate transformations can be stored in
the .wcs and .extra_coords attributes, determining the
complete set of physical types associated with each array axis
requires knowledge of both components and so is within the
scope of the NDCube 2 API.
Another example is the .axis_world_coords method,

which returns the coordinate values for every element in the
data grid. While the coordinates for user-defined array indices
can be calculated directly via the primary WCS or Extra-
CoordsABC objects, .axis_world_coords derives the
grid of array indices for the whole data array and passes them
to the relevant transformation object. It then returns the world
coordinates in array order, so they can be easily compared to
the data array. This liberates users from a confusing and tedious
process, thus enhancing their productivity. That said, if the
coordinates of only a few array elements are required, directly
executing the transformations via the WCS object can be more
efficient. NDCubeABC provides a very similar method called .
axis_world_coords_values, which differs only in the

Figure 1. (a) Components of a basic NDCube 2 API-compliant object. Array-based components are blue, coordinate components red, metadata components green,
and inspection, analysis, and visualization methods are yellow. (b) The effect of slicing an NDCubeBase instance by array indices via the standard Python slicing API
or by world coordinates via the .crop method. The array components have been cropped in accordance with the input slice item, and the coordinate objects have
been altered so that array elements correspond to the same world coordinates as before. This is achieved with a single line of code making extracting regions of interest
easier and less prone to error.

4

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

types of objects returned. Whereas .axis_world_coords
returns high-level objects like astropy.time.Time,
astropy.coordinates.SkyCoord, etc., .axis_
world_coords_values returns arrays of raw values with-
out context information like the coordinate frame. This can be
more efficient and useful for developers, but most end users
will be better served by .axis_world_coords. This is
analogous to the division of low-level and high-level APIs
within the Astropy WCS API.

The .axis_world_coords/.axis_world_coords_
values methods also demonstrate how the NDCube 2 API
facilitates the interplay between the .wcs and .extra_
coords objects. The methods enable users to select which set
of transformations to use by setting the wcs= kwarg to the
desired transformation object. This option is available for all
NDCube 2 API methods where users might want to alternate
between the primary WCS and ExtraCoords transforma-
tions. Users can also set the wcs= kwarg to a WCS object that
combines the primary WCS and the ExtraCoords, provided
by the NDCubeABC.combined_wcs property.

For a full definition of all methods and properties available
via the NDCube 2 API, see Mumford & Ryan (2020). In the
following subsection, we will demonstrate the power of the
NDCube 2 API by focusing on a specific analysis task:
extracting regions of interest.

3.2.2. Slicing and Cropping: Extracting Regions of Interest

One of the most powerful consequences of combining data
and coordinates in a single NDCube 2 API-compliant object is
the ability to extract regions of interest. Let us assume without
loss of generality that Figure 1(a) represents a 3D time-image
cube. We can extract a region of interest over a certain time
period by simply applying the standard Python slicing API,

1. sliced_cube = my_cube[z1:z2, y1:y2,
x1:x2]

where z1, z2, y1, y2, x1, and x2 are integers representing
indices along the array axes. To help remind themselves which
array axes correspond to which world axes, users can call the .
array_axis_physical_types that returns the physical
coordinate type(s) associated with each array axis, as discussed
in Section 3.2.1. For the above 3D time-image cube the
example, the result might be something like

1. my_cube.array_axis_physical_types
2. [(’time’,), (’pos.eq.ra’, ’pos.eq.dec), (’pos.eq.ra’, ’pos.

eq.dec)]

Each tuple corresponds to an array axis and the string(s) within
gives the associated physical type(s). From this, we can see that
the first array axis corresponds to time, while the second and third
correspond to the spatial coordinate types of right ascension
(R.A.) and declination(decl.). This API immediately shows that
the first axis is independent as its physical coordinate types are not
associated with any other axes. Meanwhile, the second and third
array axes are dependent as they both correspond to both spatial
coordinate types. This API also identifies the spatial coordinate
system, namely, R.A. and decl. A different spatial coordinate
system, e.g., helioprojective, would cause .array_axis_
physical_types to output different spatial coordinate types.

Figure 1(b) shows the result of the slicing operation
demonstrated above. The data, uncertainty, and mask arrays
have been cropped in accordance with the slice item. The

coordinate objects are typically functional rather than array-
based and so are not cropped. Instead, the WCS is modified via
Astropy’s SlicedLowLevelWCS wrapper class while the
ExtraCoords instance has been altered by its own internal
slicing infrastructure. Thus, the same array elements corre-
spond to the same real world coordinates, even though their
indices have been changed by the slicing process. If the data
dimensionality is reduced by the slicing, the coordinate values
corresponding to relevant locations along the dropped axes are
added to the GlobalCoords instance. For example, if we
slice out the fourth 2D image in the image-time cube, the fourth
timestamp will be added to .global_coords. If each of the
NDCubeABC components were stored separately, the arrays
would have to be sliced individually, and the coordinate objects
would have to be altered to reflect the new shape of the arrays.
This can be a time-consuming and error-prone process. The
NDCubeABC slicing API makes this simple and reliable.
A region of interest can also be extracted using world

coordinates via the NDCubeABC.crop API. This method
takes tuples of high-level scalar astropy coordinate objects that
describe individual locations within the cube. An example of
this is shown by the cyan points in the left panel of Figure 2,
which represents an image of the sky stored in a 2D
NDCubeABC instance. The method crops the instance to the
smallest bounding box in array-index space containing all the
locations (red dashed box, left panel Figure 2). This ensures a
cube-like data shape is maintained, but does mean that some
array elements outside the region of interest may be kept if the
pixel and world coordinate grids are not aligned. Also note that
redundant locations can be provided that do not alter the
bounding box, as shown by the cyan point inside the red
dashed bounding box in the left panel of Figure 2. The right
panel of Figure 2 shows the resultant cropped image, which
was achieved via the following command:

1. my_cube.crop((celestial1,), (celes-
tial2,), (celestial3,), (celestial4,))

Each celestial variable is an astropy.coordinates.
SkyCoord object. Note that, because Figure 2 shows a 2D
celestial NDCube, each location is uniquely described by a
single SkyCoord. However, higher dimensional cubes
may also require an instance of astropy.time.Time,
astropy.coordinates.SpectralCoord, etc. Note
that there is also a .crop_by_values version of the method
that accepts low-level coordinate objects, analogous to
.axis_world_coords_values. Also akin to .axis_
world_coords/.axis_world_coords_values, .
crop and .crop_by_values enable users to use the
primary WCS object, ExtraCoords, or a WCS combining
them via a wcs= kwarg.
The crop API is simple and intuitive in light of how flexible

and powerful it is. However, it may appear cumbersome when
applied to a simple data type, e.g., a 2D image. This highlights
the trade-off between generality and simplicity when designing
the NDCube 2 API. For example, we initially tried to develop an
API that did not require users to provide inputs for real world
coordinate types if the region’s limits were not defined by them.
We hoped that missing objects could be inferred by comparing
the input objects with the coordinate types listed in the WCS
object. This would have meant that, if, for example, a user
wanted to crop in space but not in time, they would only have to
provide SkyCoord objects. However, it was discovered that

5

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

this cannot be implemented in a generalized way without
prohibitive complexity. Hence, the crop API requires an object
to be provided in place of each coordinate type for each input
point. That said, if a user’s region of interest is independent of a
coordinate type, e.g., time, None can be provided in place of the
Time objects. This saves the user pointlessly working out the
extremities of the time range of their data. Another example was
our attempt to design the API to accept one instance of each
coordinate type giving the lower and upper limits of the
bounding box in each world axis. However, it was quickly
realized that a region of interest can only be uniquely defined in
this way when the pixel grid is aligned with the world coordinate
grid, or the axis correlation matrix is diagonal.

The resulting complexities in the API are therefore
unavoidable consequences of the NDCube 2 API’s guiding
principle that all functionalities must be independent of the
number of dimensions and combination of physical types.
However, if developers are working on a less generalized class,
they can adopt the NDCube 2 API and supplement it with
additional, more user-friendly APIs. In such cases, the
NDCube 2 API can still be leveraged. For example, a new
crop method with an API better suited to a specific number of
axes and combination of physical types only needs to translate
between the generalized NDCubeABC.crop API and the
more specialized one. The cropping itself can then still be done
by the underlying NDCubeABC.crop method. Furthermore,
by supporting the NDCube 2 API as well as more specialized
ones, developers can simultaneously make their objects more
user-friendly and compatible with tools from other packages
that rely on the NDCube 2 API. This encourages interoper-
ability and greater productivity of users and developers.

4. The ndcube Package

The ndcube package (Ryan et al. 2023a; ndcube Development
Team2023) is an open-source Python package that serves three
purposes.25 First, it formalizes the NDCube 2 API via ABCs in
its code-base. This provides a simple way for developers to

ensure their classes adhere to the NDCube 2 API by having
their classes inherit the ABCs. It also enables users to check
whether an object is NDCube 2 API-compliant by checking
whether it is an instance of one of the ABCs, e.g.,

1. from ndcube import NDCubeABC
2.  if isinstance(my_obj, NDCubeABC):
3.  ... print(’’my_obj is NDCube-2-API-

compliant!’’)

Second, the ndcube package implements the NDCube 2
API in corresponding data and coordinate classes, NDCube-
Base, ExtraCoords, and GlobalCoords. Unlike the
ABCs, these classes are viable off-the-shelf tools for end users
and serve as ideal parent classes for more specialized data
objects. This has the advantage of centralizing the development
and maintenance of functionalities common to all WCS-based,
coordinate-aware ND data analysis in one open-source
package. It aids discoverability and prevents wastage of
resources on developing and maintaining the same function-
alities in multiple packages. This can free developers to focus
on specialized functionalities, enhancing their productivity.
Third, the ndcube package provides additional support for

coordinate-aware manipulation and visualization of ND
astronomical data. This is achieved through three high-level
data classes, NDCube, NDCubeSequenceBase/NDCube-
Sequence, and NDCollection. NDCube combines
NDCubeBase with a visualization suite and some additional
features and so complies with the NDCube 2 API. The other
classes are designed to handle multiple NDCube instances
simultaneously. They do not comply with the NDCube 2 API
but do follow the principle that all functionalities must be
independent of the number of dimensions and combination of
physical types.

4.1. NDCubeBase, NDCube, and Visualization

NDCubeBase implements the NDCube 2 API. It is in an
off-the-shelf class that can be imported and immediately
employed by users. This is ideal for users and developers who
do not want to reimplement the NDCube 2 API themselves.

Figure 2. Demonstration of cropping a 2D celestial NDCube via the .crop method. Left: the uncropped image. The cyan dots represent the locations input to .crop
while the dashed red line represents the minimal array-index-space bounding box. The point within the bounding box is redundant. Right: the resultant cropped image
corresponding to the bounding box.

25 https://docs.sunpy.org/projects/ndcube/en/stable/

6

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

https://docs.sunpy.org/projects/ndcube/en/stable/

NDCubeBase is valid for any type of array that exposes
shape and dtype attributes and can be indexed using the
Python slicing API. It therefore supports a wide variety of array
infrastructures including numpy, dask, etc. It is conceivable
that a user with highly specific needs may prefer to implement
their own NDCube 2 API-compliant class from scratch.
However, it is expected that the vast majority of users will
be well-served by NDCubeBase or its slightly more advanced
derivate, NDCube.

NDCube combines NDCubeBase with the default visuali-
zation suite and a limited number of additional features.
NDCube is targeted at end users who want to access all
NDCube functionalities with one easy import. By contrast, it is
anticipated that developers are more likely to write their own
visualization suites. Custom visualization suites can be easily
registered with NDCube objects via a descriptor provided by
the ndcube package. This enhances the versatility of NDCube
objects.

The default visualization suite used by NDCube is called
MatplotlibPlotter, which, as its name suggests,
leverages the matplotlib package (Hunter 2007). It is not
designed as a set of additional methods on NDCube but as a
Plotter class that is registered via a descriptor provided by
the ndcube package. Once a Plotter class is registered, it
can be accessed via the .plotter attribute. This design has a
number of advantages. First, it separates the APIs of the core
data class and the visualization suite. Second, it makes the
visualization suite pluggable, thus enabling users to register
their own Plotter. Both these advantages are particularly
important as visualization can be highly dependent on the type
of data and the users’ needs. Third, it enables Matplotlib-
Plotter to be registered with any NDCube 2 API-compliant
class, not just NDCube. Fourth, multiple visualization algo-
rithms can be provided by the same instance as the Plotter
can have any number of methods, e.g., NDCube.plotter.
viz_method1(), NDCube.plotter.viz_method2(),
etc. Fifth, it avoids the ndcube package having a required
dependency on matplotlib. Instead, MatplotlibPlot-
ter will only work if matplotlib is already installed. This
enables developers to depend on ndcube without being forced
to depend on such a heavyweight package as matplotlib.
MatplotlibPlotter has a .plot() method that returns
a plot or animation depending on the dimensionality of the
cube and inputs of the user. By default, 2D image plots and
animations are returned if the NDCube instance has more than
1D. However, line plots and animations can be returned instead
if the user prefers. The plot axes are automatically labeled with
the physical types and coordinates found in the coordinate
transformations. As in the case of methods discussed in
Section 3.2, users can select whether to use the primary WCS,
ExtraCoords, or a combined WCS, by setting the wcs=
kwarg.

Although MatplotlibPlotter does not fulfill all
visualization needs, it is not anticipated that the ndcube
package will provide more plotter classes for NDCube 2 API-
compliant objects. This is because visualization needs can be so
specific to the type of data that not all cases can be anticipated
or supported. Instead, MatplotlibPlotter acts as an
example for developers on how to write their own Plotter
class and as a default visualization suite for end users who just
want to quick-look their data.

4.2. NDCubeSequence

NDCubeSequence combines multiple NDCube 2 API-
compliant instances as if they were one contiguous data set.
The constituent cubes must be arranged in some order, have the
same shape, and have the same physical types associated with
each axis. It is also assumed that their data represent the same
physical property. As an example, consider a sequence of
images of the same region of the sky taken with the same
instrument. Due to slight differences in the pointing jitter, each
image has its own WCS. We could reproject these images to
the same celestial WCS, add a time axis, and stack the images
in a single NDCube object. However, if we want to avoid
altering the data by reprojection or building a complex new
WCS object, we could put each image in its own cube with its
original WCS object and arrange them chronologically in an
NDCubeSequence. The axis along which the constituent
cubes are ordered is called the sequence axis. The NDCube-
Sequence API is designed so the sequence axis appears like
an extra array axis to the user. So, in the example above, the
user can interact with NDCubeSequence as if it were a 3D
NDCube with almost the same API. For example, NDCube-
Sequence has its own slicing and cropping APIs that mimic
those of NDCube. It enables the constituent cubes to be
simultaneously cropped with a single command at the
NDCubeSequence level.
In the above example, the cubes were ordered in time, which is

a physical type not included among the world axes of their WCS
transformations. In this case, the sequence axis acts as an
additional perpendicular axis of the data set (Figure 3(a)).
However, if the images were part of a horizontal mosaic, they
would be ordered along the x-axis of the cubes. In this case, the
sequence axis is said to be parallel to the x-axis (Figure 3(b)). The
x-axis is referred to as the common axis because it is shared by the
cubes. NDCubeSequence provides a set of methods and
properties (prefixed with cube_like_) to allow users to interact
with the sequence in this extended ND format. Say, as in Figure 3,
we have four images each with a shape of (2, 3) where the axes
are ordered (y, x). Normally we would interact with this
NDCubeSequence as if it were a single cube with a shape
of (4,2, 3). However, if we set the common axis to the x-axis
of the constituent cubes (common_axis=1 in this example),
NDCubeSequenceʼs cube_like_ API allows us to interact
with it as if it were a cube of the shape (2, 12). Because the
regular and cube_like_ APIs are separate, users can switch
between them as required without any penalty. This is because the
cube_like_ API simply translates between the (N+1)-D and
extended ND frameworks without altering the underlying data.
This can be very useful if, for example, the images in the mosaic
were taken sequentially in time, and users wanted to think of them
as time-ordered in some cases and space-ordered in others.
Like NDCube, NDCubeSequence is actually composed

of a base class, NDCubeSequenceBase, and a plotter
class, MatplotlibSequencePlotter. Matplotlib-
SequencePlotter is much simpler than Matplotlib-
Plotter. It returns animations along the sequence axis and
delegates the details of the animation to the .plot method of
the constituent NDCube instances. If users or developers wish
to dispense with visualization, they can use NDCubeSequen-
ceBase instead of NDCubeSequence. Alternatively, they
can use the sequence descriptor class provided by the ndcube
package to register their own sequence plotter class with
NDCubeSequenceBase.

7

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

4.3. NDCollection

NDCollection is a class for grouping NDCube 2 API-
compliant or NDCubeSequence(Base) instances. It differs
from NDCubeSequence in that the objects contained are not
ordered, are not assumed to represent measurements of the same
physical property, and can have different dimensions. One
application of NDCollection is linking observations with
derived data products. Consider a 3D spectral image cube and a
2D Doppler velocity map derived from a spectral line in each
pixel. These objects are clearly related. They share the same
spatial axes. But they have different dimensionalities (3D and
2D), represent different physical properties (intensity and
velocity), and do not have an order in their common coordinate
space. They are therefore well-suited to being stored in an
NDCollection. Each cube is referenced by its name, making
NDCollection similar to a Python dictionary. However, it is
more powerful than a dictionary in that it allows certain axes to be
marked as aligned. While this is not required, it does facilitate
simultaneous slicing of the collection’s components along those
axes. In the above example, we could mark the spatial axes of
cubes as aligned and then extract a spatial subregion by slicing the
NDCollection rather than the two data objects separately
(Figure 4). Thus, NDCollection enables easier and more
reliable manipulation of ND astronomical data sets.

5. NDCube in Action

Figure 5 demonstrates the power of NDCube for handling
real life high-dimensional data. The observations are of a solar
active region taken by the Swedish Solar Telescope (SST;

Scharmer et al. 2003; Scharmer 2017; Löfdahl et al. 2021).
SST is a ground-based telescope that can take spectroscopic
imaging observations at different polarization states as a
function of time. Its observations are therefore often
represented as 5D data cubes with axes of time, Stokes
polarization parameter, wavelength, space, and space.
Figure 5 shows observations at a single polarization state
and so is only 4D. Other WCS-coordinate-aware data classes
are designed to handle such data in limited ways, e.g., SunPy
Map can only handle 2D spatial slices. However, NDCube
can handle the entire data cube.
Figure 5(a) shows a single frame in an animation produced

by the standard visualization suite. Although the visualization
suite is not part of the NDCube 2 API, it is available via the
NDCubeclass and is useful here in demonstrating the utility of
an NDCube 2 API-compliant object. If the name of the
NDCubeinstance is sst_cube, Figure 5(a) would be
produced via the following:

1. sst_cube.plot()

This defaults to a 2D animation with the last two axes plotted
and the others represented by sliders below the plot. These can
be used interactively to animate along unplotted axes. In this
case, the last two axes are spatial, so an image animation is
produced with sliders for wavelength and time. All the tick and
axis labels are automatically generated by the visualization
suite from the WCS object. This immediately orients the viewer
and removes confusion as to which axis is which.
The animation frame shows a sunspot with its dark umbra

and fibril-like penumbra. To explore the spectral or temporal

Figure 3. Diagram of an NDCubeSequence with its sequence axis in the perpendicular (a) and parallel (b) configurations. The sequence axis is the axis along which
the constituent cubes are ordered. In the perpendicular configuration, the sequence axis represents an additional axis to those of the cubes, e.g., a sequence 2D images
ordered in time. In the parallel configuration, the cubes are ordered along one of their array axes, known as the common axis. An example would be a mosaic of images
representing adjacent regions of the sky. NDCubeSequence provides APIs for interacting with the data in both configurations interchangeably.

8

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

evolution of the sunspot at the location marked by the red dot,
we extract that pixel via the standard slicing API:

1. sst_spectrogram = sst_cube[:, :, y, x]

where y and x are the array indices of the pixel. We could also
have achieved the same result with NDCube.crop if we
wanted to input real world coordinates instead. The above
operation extracts a 2D NDCubewith axes of time and
wavelength. Plotting this via

1. sst_spectrogram.plot()

produces the spectrogram seen in Figure 5(b). As both dimensions
are already represented in the plot, no animation sliders are
produced. Each row of the spectrogram represents a spectrum at a
certain time while each column represents a timeseries at a certain
wavelength. To more easily inspect the temporal evolution at a
certain wavelength (red vertical line, Figure 5(b)), we can again
slice the cube and plot the result (Figure 5(c)):

1. sst_timeseries = sst_spectrogram[:, w]
2. ?> sst_timeseries.plot()

where w is the array index corresponding to the chosen
wavelength. In this case, the result is a 1D NDCube, so the
resulting plot is a line. It shows that the intensity at that
wavelength continually increases during the observations.
Similarly, we can inspect the spectrum at a given time (red
horizontal line Figure 5(b)) by slicing and plotting the other
dimension of the spectrogram:

1. sst_spectrum = sst_spectrogram[t]
2. ?> sst_spectrum.plot()

where t is the array index of the chosen time. The resulting
spectrum in Figure 5(d) appears to show a broad absorption
feature punctuated by smaller emission and/or absorption
features. Note that we could also have produced a line animation
of the spectrum as a function of time by using the plot_axes
keyword argument when plotting sst_spectrogram:

1. sst_spectrogram.plot(plot_axes=
[None, ‘x’])

This tells the visualization suite to assign the second cube axis to
the x-axis on the plot but not to assign the first cube axis. As a
result, a 1D line plot is produced with the time axis represented
by an animation slider. This allows the user to dynamically view

how the spectrum changes with time, which may be more
intuitive to some users than looking at a 2D spectrogram.
As already alluded to, the NDCube class provides several

analysis tools in addition to the visualization suite, which are
beyond the scope of the NDCube 2 API. For example, at the
time of writing (ndcube v2.1.1), NDCube supports unit
conversation similar to astropy Quantityʼs .to method
and basic arithmetic operations (negation, addition, subtraction,
multiplication, and division) with scalars, arrays, and Quan-
tity objects. NDCube.rebin can combine contiguous ND
rectangles of array elements via various aggregation functions
including sum and mean. This enables users to sacrifice
resolution in 1D to boost signal-to-noise in another, a common
practice in solar imaging spectroscopy. Additionally, the
NDCube.reproject_to method enables reprojection to
another set of valid WCS transformations. This can be used to
convert observations from the different instruments onto the
same pixel grid, or project the observations to the viewpoint of
another observer. The latter is particularly helpful in the age of
beyond-Earth-orbit satellite observatories such as STEREO and
Solar Orbiter. Readers interested in learning more about these
tools are encouraged to consult the ndcube documentation.26

6. Applications in the Community

The value of the NDCube 2 API and its implementation by
the ndcube package is evidenced by the number of Python
packages already depending on them. Some of these provide
general analysis tools that support broad subsections of the
astronomy community, while others support specific missions
in the processing and analysis of their observations.
The Astropy coordinated package, specutils, provides

tools for the manipulation and analysis of astronomical spectral
observations (Astropy-Specutils Development Team 2019). Its
fundamental data container, Spectrum1D, inherits from
NDCube. The 1D in its name refers to the fact that, by design,
it supports data with a single spectral dimension. However, it
can support any number of additional nonspectral dimensions
and inherits functionalitiesfrom NDCube such as slicing.
Throughspecutils, NDCube also supports the data cube
handling in Jdaviz, a data analysis and visualization package
for JWST (JDADF Developers et al. 2023).

Figure 4. (a) An NDCollection containing 3D and 2D NDCube instances. The x- and y-axes are aligned, while the z-axis of the 3D NDCubeBase is not. (b) The
result of applying the standard Python slicing API to the NDCollection in (a). Both cubes have been cropped along the x- and y-axes, while the 3D cube remains
uncropped along the z-axis.

26 https://docs.sunpy.org/projects/ndcube/en/stable/

9

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

https://docs.sunpy.org/projects/ndcube/en/stable/

SunPy’s sunraster package is designed to manipulate,
analyze, and visualize observations from rastering slit spectro-
graphs (Ryan et al. 2023b). These instruments disperse light
through a slit and build up spectral image cubes by scanning the
slit over a region of interest and taking sequential spectra. This is
known as rastering. The resulting data cubes have dimensions of
time–wavelength–space–space/time. One spatial dimension is
coupled with time due to the rastering process while a related time
dimension represents repeated raster scans. The sunraster data
containers inherit NDCube and NDCubeSequence. The

NDCubeSequence.cube_like_ APIs (Section 4.2) can be
used to seamlessly switch between different dimensional
representations, namely, time–wavelength–space and time–wave-
length–space–space. In addition, the ExtraCoords API enables
the time coordinates to be kept separate from, or combined with,
the primary WCS transformations as desired. While most of its
tools are instrument-agnostic, sunraster provides specific
support for Solar Orbiter/SPectral Imaging for the Coronal
Environment (SPICE; SPICE Consortium et al. 2020). SPICE, in
combination with other instruments on board Solar Orbiter, aims

Figure 5. Visualizations of different slices of an NDCube holding 4D time–wavelength–space–space observations of a sunspot taken by the Swedish Solar Telescope.
Each panel was produced with two simple commands, one to slice the NDCube and another to plot the result. (a) A frame from an animation of the 4D cube with the
spatial axes plotted and time and wavelength represented by animation sliders. (b) 2D spectrogram produced by extracting the pixel marked by the red dot in panel (a).
(c) The timeseries corresponding to the vertical red line in panel (b). (d) The spectrum corresponding to the horizontal red line in panel (b).

10

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

to improve our understanding of the complex connection between
the Sun and the inner heliosphere by observing various EUV
spectral lines. The SPICE instrument team uses sunraster to
read, manipulate, and visualize their data.

Other solar UV–EUV slit spectrographs currently in operation
include the Hinode/EUV Imaging Spectrograph (EIS; Culhane
et al. 2007) and the Interface Region Imaging Spectrograph (IRIS;
De Pontieu et al. 2014). These instruments are improving our
understanding of the complex mechanisms that drive and sustain
the solar chromosphere and low corona by inferring bulk flows,
thermodynamics, and plasma composition from UV and EUV
imaging and spectroscopy. The IRIS Python user tools
(irispy-lmsal: irispy-lmsal Development Team 2023) and
the EIS Python Analysis Code (EISPAC: Weberget al. 2023)27

depend heavily on sunraster and ndcube. In addition to
the plotting and coordinate capabilities, the flexible .meta
dictionary and subclass extendibility of ndcube objects enable
EISPAC to conveniently and efficiently store EIS-specific
ancillary data and functions. This improves the general
accessibility and analysis capability for the current database
of over 430,000 EIS observations.

The NDCube 2 API is not only suited to spectral observa-
tions. The Polarimeter to UNify the Corona and Heliosphere
(PUNCH; Deforest et al. 2022), scheduled for launch in 2025,
is a constellation mission that will reveal how the solar corona
influences the environment throughout the heliosphere via
polarimetric observations. The core data container of its
processing pipeline is NDCube, bundling a data array with
uncertainties and a WCS object. NDCube provides a base
framework for a PUNCH data object that supports the
complexity of multiple spacecraft observations, while interfa-
cing with SunPy and Astropy libraries, such as reproject.

The Daniel K. Inouye Solar Telescope (DKIST; Rimmele
et al. 2020) is one of the solar community’s flagship ground-
based observatories. Its user tools depend on the NDCube 2
API and facilitate analysis of its spectral, polarmetric, and
imaging observations. Due to the vast amounts of data
produced by DKIST, one of the attractions of the NDCube 2
API to the DKIST team is its implicit support for dask arrays.
Unlike more traditional array packages like numpy, dask
supports lazy data loading and operations, which enable
analysis workflows to be developed before data is read into
memory. Once the time comes to execute, dask supportspar-
allelization of the workflow in a user-friendly way. The
combination of dask and the NDCube 2 API enables users to
manipulate this vast amount of data in almost the same way as
they would small-data observations in their laptops’ RAM.

The NDCube 2 API and ndcube package are expected to
support more packages in the future. For example, the sunpy
(Mumford et al. 2020) and spectral_cube (Ginsburg
et al.2019)28 packages are currently planning to refactor their
flagship data containers to depend on NDCube, namely, Map
for 2D solar images and SpectralCube for space–space–
spectral cubes with an optional additional Stokes dimension,
respectively. This will make their APIs compatible with other
NDCube 2 API-compliant classes serving different types of
data. It will also enable support for additional nonspatial
dimensions similar to how specutilʼs Spectrum1D
supports additional nonspectral dimensions. This opens the

possibility of merging the roles of Map with SunPy’s
MapSequence class for chronologically ordered image
stacks. Alternatively, MapSequence could inherit from
NDCubeSequence, which provides a more powerful suite
of analysis methods than does MapSequence currently.
The continued proliferation of the NDCube 2 API will make

it simpler for scientists to jointly analyze different types of
coordinate-aware data as common tasks will be performed in
the same way. This will lower the barriers to multiinstrument,
interdisciplinary studies and boost scientific output of the
broader community and agency-funded missions.

7. Future of the ndcube Package

The release of ndcube v2.1.1 marks the attainment of many
goals on the ndcube roadmap. However, there is plenty of
scope for further development. Arithmetic support could be
expanded to include NDCubeSequence, raising NDCube
instances to scalar powers, and operations between NDCube
and coordinate-less astropy NDData instances. Support
between NDCube and coordinate-aware classes is considered a
longer term goal due to the ambiguity of combining data with
potentially different coordinate transformations.
A new NDCubeSequence method could be developed to

reproject its constituent cubes to a common WCS, then stack
them into an NDCube instance. This would make it much
easier for users to combine cubes with slightly different WCS
transformations and access the benefits of storing and
manipulating data in a single NDCube.
Conversion methods between ndcube and xarray classes

would enhance interoperability between scientific fields and
use-cases that do and do not require WCS coordinate
transformations. The ndcube and xarray teams have
already held discussions on this topic.
Support for functional uncertainties and masks could greatly

help memory efficiency for large data sets. A more speculative
concept is the development of a functional or array-based mask
collection class, which would enable users to simultaneously
store multiple masks. These could be used to represent different
phenomena, e.g., cosmic ray hits, detector artifacts, celestial
features of scientific interest, etc., and could be applied to the
data individually or in combination as the user desired.
Development of methods to write ndcube data classes to

file would greatly help to preserve the output of computation-
ally demanding workflows and make sharingpartially com-
pleted analysis easier, thereby facilitating collaborations.
Better handling of axis-specific metadata is an important future

development for ndcube. Axis-specific metadata—e.g., variable
exposure time of images in an image cube—do not necessarily
vary monotonically along the array axis. They are therefore not
coordinates and cannot be stored in a WCS or ExtraCoords
object. However, storing them in the metadata attribute can lead
them to becoming inconsistent with the cube’s dimensionality
since the metadata object is currently not sliced by the data class’
slicing infrastructure. A sliceable metadata object would greatly
aid the storage and manipulation of such information.
These ideas and more are currently being considered for the

next iteration of the ndcube roadmap. Readers who feel
strongly about any of these features, or others not listed here,
are invited to contact the ndcube community via the channels
outlined in the ndcube documentation29 or our GitHub Issue

27 https://irispy-lmsal.readthedocs.io/en/stable/
28 https://spectral-cube.readthedocs.io/en/latest/

29 https://docs.sunpy.org/projects/ndcube/en/stable/index.html

11

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

https://irispy-lmsal.readthedocs.io/en/stable/
https://spectral-cube.readthedocs.io/en/latest/
https://docs.sunpy.org/projects/ndcube/en/stable/index.html

Tracker.30 We are always interested in hearing more about the
needs of users, and we particularly welcome those interested in
contributing to the next version of ndcube.

8. Summary

The NDCube 2 API enables users to store, manipulate, and
inspect astronomical coordinate-aware data in a standarized
way, analogous to how coordinate-agnostic data is treated in
arrays. It depends heavily on the AstroPy WCS API
(Section 2), which provides a standarized way to interact with
WCS transformations, regardless of their underlying imple-
mentation. Together, these APIs lead to more intuitive and
reliable analysis workflows. This enables scientists to move
closer to the speed of thought and boost their scientific output.

The ndcube package (Section 4) formalizes the NDCube 2
API (Section 3) as defined by Mumford & Ryan (2020) via its
ABCs NDCubeABC, ExtraCoordsABC, and Global-
CoordsABC. This API is implemented in a directly usable
form by the NDCubeBase, ExtraCoords, and Global-
Coords classes. The NDCube class inherits from NDCube-
Base and provides some additional API features including a
pluggable visualization suite. Additional classes, NDCubeSe-
quence and NDCollection, provide ways of linking and
jointly manipulating multiple objects that comply with the
NDCube 2 API. While these classes are powerful end-user
tools in their own right (Section 5), they are also ideal as parent
classes for building more targeted tools. This is evident from
the number of Python packages that now depend on the
NDCube 2 API and the classes in the ndcube package
(Section 6). These packages serve broad sections of the
astronomy community as well as specific flagship missions
such as JWST and Solar Orbiter. For highly specific use-cases,
the same benefits can be provided to the end user by
developing classes with their own underlying implementation
but that still adhere to the NDCube 2 API. This is currently the
case for the DKIST user tools.

With the release of version (2.1.1), the ndcube package has
reached a level of stability upon which users can depend. That
said, the ndcube package continues to be enhanced
(Section 7). Readers who have ideas about how the ndcube
package can better meet users’ needs and/or those who would
like to contribute to the next versions of the package are
encouraged to contact the ndcube community via the
channels listed in the documentation(see footnotes (5)
and (6)).

The continuing proliferation of NDCube 2 API and the
ndcube package is due to their power and versatility. They
liberate users and developers from executing common, well-
defined but tedious and error-prone tasks, in a way that is valid
for any type of ND data described by an AstroPy-WCS-API-
compliant set of coordinate transformations. This promotes
scientific output and more efficient software development.
Moreover, they promote API convergence across packages,
which reduces technical barriers and promotes multiinstrument
studies and cross-community collaborations.

Acknowledgments

We thank NASA’s Heliophysics Data Environment
Enhancement program, the Daniel K. Inouye Solar Telescope,

and Solar Orbiter/SPICE (grant No. 80NSSC19K1000) for
financial support. We also thank the SunPy, AstroPy, and
Python in Heliophysics communities for their support and
engagement. The SST observations are thanks to Tiago Pereira,
Reetika Joshi, Kilian Krikova, Ana Belen Griñón Marin, and
Luc Rouppe van der Voort. The Swedish 1 m Solar Telescope
is operated on the island of La Palma by the Institute for Solar
Physics of Stockholm University in the Spanish Observatorio
del Roque de los Muchachos of the Instituto de Astrofísica de
Canarias. The Institute for Solar Physics is supported by a grant
for research infrastructures of national importance from the
Swedish Research Council (registration No. 2017-00625).

Appendix A
Terminology

A.1. World, Pixel, and Array Axes

Throughout this paper, we use the terms world, pixel, and
array to describe coordinates, axes, and axis ordering. A set of
WCS transformations can describe any number of physical
types, e.g., time, latitude, longitude, location along the
electromagnetic spectrum, etc. These are referred to as world
axes, and the order in which they are stored in the WCS object
is referred to as world order (or world axis order). These
physical types are mapped through the WCS to one or more
pixel axes. Although this name is taken from the pixels of a
camera detector, the term pixel axes refers more generally to
the axes of the array in which the data is stored, irrespective of
the type of instrument that generated them. Hence, an element
in a timeseries or spectrum array can be referred to as a pixel,
even if no real pixels were used in making the measurement.
Although, in the simplest case, one world axis would

uniquely map to one pixel axis, it is possible that world axes be
associated with multiple pixel axes and vice versa. This is
especially common when dealing with projections of the sky
onto 2D image planes. For example, consider an image of the
Earth taken from space. There is not one pixel axis for latitude
and another for longitude. Instead, as we move vertically or
horizontally across the image, both latitude and longitude will
vary, no matter how we orient the Earth in the image. In this
case, latitude and longitude are referred to as dependent world
axes, or simply dependent.
Due to historical precedent, WCS pixel axes are column-

major. However, numpy arrays are row-major. This leads to
the confusing scenario where the first WCS pixel axis
corresponds to the last numpy array axis, the second pixel
axis corresponds to the second to last numpy array axis, and so
on. We therefore use the term array axes to refer to the pixel
axes that have been reversed to reflect the axis order of the
numpy data array.

A.2. Axis Correlation Matrix

In a WCS object, the mapping between pixel and world axes
is described by the axis correlation matrix, a 2D boolean array
whose columns represent pixel axes and rows represent world
axes. The True/False value at a specific row-column index
states whether that world axis maps to that pixel axis. Thus, the
axis correlation matrix can represent simple mappings where
each world axis uniquely maps to one pixel axis (e.g., a
diagonal matrix), or a more complex case where world axes
map to multiple pixels axes and/or vice versa (multiple true
values in each row and/or column). While many users will not30 https://github.com/sunpy/ndcube/issues

12

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

https://github.com/sunpy/ndcube/issues

have to deal directly with the axis correlation matrix, it is
crucial to the underlying WCS infrastructure and its advanced
usage.

ORCID iDs

Daniel F. Ryan https://orcid.org/0000-0001-8661-3825
Stuart Mumford https://orcid.org/0000-0003-4217-4642
Will T. Barnes https://orcid.org/0000-0001-9642-6089
Adwait Bhope https://orcid.org/0000-0002-7133-8776
Éric Buchlin https://orcid.org/0000-0003-4290-1897
Nabil Freij https://orcid.org/0000-0002-6253-082X
Adam Ginsburg https://orcid.org/0000-0001-6431-9633
Laura A. Hayes https://orcid.org/0000-0002-6835-2390
Derek Homeier https://orcid.org/0000-0002-8546-9128
J. Marcus Hughes https://orcid.org/0000-0003-3410-7650
Chris Lowder https://orcid.org/0000-0001-8318-8229
Richard O’Steen https://orcid.org/0000-0002-2432-8946
Thomas Robitaille https://orcid.org/0000-0002-8642-1329
David Stansby https://orcid.org/0000-0002-1365-1908
Albert Y. Shih https://orcid.org/0000-0001-6874-2594
Erik Tollerud https://orcid.org/0000-0002-9599-310X
Micah J. Weberg https://orcid.org/0000-0002-4433-4841
Matthew J. West https://orcid.org/0000-0002-0631-2393

References

Astropy Development Team (2023) The astropy Code-base, GitHub, https://
github.com/astropy/astropy

Astropy-Specutils Development Team (2019) Specutils: Spectroscopic analysis
and reduction, Astrophysics Source Code Library, ascl:1902.012

Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ,
156, 123

Astropy Collaboration, Robitaille, T. P., Tollerud, E., et al. 2013, A&A,
558, A33

Calabretta, M. R. (2011) Wcslib and Pgsbox, Astrophysics Source Code
Library, ascl:1108.003

Calabretta, M. R., & Greisen, E. W. 2002, A&A, 395, 1077
Culhane, J. L., Harra, L. K., James, A. M., et al. 2007, SoPh, 243, 19
De Pontieu, B., Title, A. M., Lemen, J. R., et al. 2014, SoPh, 289, 2733
Deforest, C., Killough, R., Gibson, S., et al. 2022, in 2022 IEEE Aerospace

Conf. (Piscataway, NJ: IEEE), 1

Dencheva, N., & Greenfield, P. 2019, in ASP Conf. Ser. 523, Astronomical
Data Analysis Software and Systems XXVII, ed. P. J. Teuben et al. (San
Francisco, CA: ASP), 535

Dencheva, N., Mumford, S., Cara, M., et al. 2023, spacetelescope/gwcs:
GWCS v 0.18.3 v0.18.3, Zenodo, doi:10.5281/zenodo.7478201

Ginsburg, A., Koch, K., Robitaille, T., et al. 2019, radio-astro-tools/spectral-
cube: Release v0.4.5 v0.4.5, Zenodo, doi:10.5281/zenodo.3558614

Greisen, E. W., & Calabretta, M. R. 2002, A&A, 395, 1061
Greisen, E. W., Calabretta, M. R., Valdes, F. G., & Allen, S. L. 2006, A&A,

446, 747
Hanisch, R. J., Farris, A., Greisen, E. W., et al. 2001, A&A, 376, 359
Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur,

585, 357
Hoyer, S., & Hamman, J. 2017, JORS, 5, 10
Hunter, J. D. 2007, CSE, 9, 90
irispy-lmsal Development Team 2023, The irispy-lmsal Code-base, GitHub,

https://github.com/LM-SAL/irispy-lmsal
Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111
JDADF Developers, Averbukh, J., Bradley, L., et al. 2023, Jdaviz, v3.3.0,

Zenodo, 10.5281/zenodo.7625637
Löfdahl, M. G., Hillberg, T., de la Cruz Rodríguez, J., et al. 2021, A&A,

653, A68
Mumford, S., Freij, N., Christe, S., et al. 2020, JOSS, 5, 1832
Mumford, S., & Ryan, D. F. 2020, SunPy Proposal for Enhancement 12:

NDCube 2 (SEP 0012), v1, Zenodo, doi:10.5281/zenodo.7020103
ndcube Development Team 2023, The ndcube Code-base, GitHub, https://

github.com/sunpy/ndcube
Okuta, R., Unno, Y., Nishino, D., Hido, S., & Loomis, C. 2017, in Proc.

Workshop on Machine Learning Systems (LearningSys) in the Thirty-First
Annual Conf. Neural Information Processing Systems (NIPS) http://
learningsys.org/nips17/assets/papers/paper_16.pdf

Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., & Stobie, E. 2010,
A&A, 524, A42

Rimmele, T. R., Warner, M., Keil, S. L., et al. 2020, SoPh, 295, 172
Robitaille, T., Tollerud, E., Mumford, S., & Ginsburg, A. 2018, Astropy

Proposal for Enhancement 14: A shared Python interface for World
Coordinate Systems (APE 14) v1, Zenodo, doi:10.5281/zenodo.1188875

Rots, A. H., Bunclark, P. S., Calabretta, M. R., et al. 2015, A&A,
574, A36

Ryan, D. F., Freij, N., Mumford, S., et al. 2023b, JOSS, submitted
Ryan, D. F., Mumford, S., Sharma, Y., et al. 2023a, JOSS, 8, 5296
Scharmer, G. 2017, SOLARNET IV: The Physics of the Sun from the Interior

to the Outer Atmosphere, 85
Scharmer, G. B., Bjelksjo, K., & Korhonen, T. K. 2003, Proc. SPIE, 4853, 341
SPICE Consortium, Anderson, M., Appourchaux, T., et al. 2020, A&A,

642, A14
Weberg, M., Warren, H., Crump, N., & Barnes, W. 2023, JOSS, 8, 4914
Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 363

13

The Astrophysical Journal, 956:44 (13pp), 2023 October 10 Ryan et al.

https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0001-8661-3825
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0003-4217-4642
https://orcid.org/0000-0001-9642-6089
https://orcid.org/0000-0001-9642-6089
https://orcid.org/0000-0001-9642-6089
https://orcid.org/0000-0001-9642-6089
https://orcid.org/0000-0001-9642-6089
https://orcid.org/0000-0001-9642-6089
https://orcid.org/0000-0001-9642-6089
https://orcid.org/0000-0001-9642-6089
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0002-7133-8776
https://orcid.org/0000-0003-4290-1897
https://orcid.org/0000-0003-4290-1897
https://orcid.org/0000-0003-4290-1897
https://orcid.org/0000-0003-4290-1897
https://orcid.org/0000-0003-4290-1897
https://orcid.org/0000-0003-4290-1897
https://orcid.org/0000-0003-4290-1897
https://orcid.org/0000-0003-4290-1897
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0002-6253-082X
https://orcid.org/0000-0001-6431-9633
https://orcid.org/0000-0001-6431-9633
https://orcid.org/0000-0001-6431-9633
https://orcid.org/0000-0001-6431-9633
https://orcid.org/0000-0001-6431-9633
https://orcid.org/0000-0001-6431-9633
https://orcid.org/0000-0001-6431-9633
https://orcid.org/0000-0001-6431-9633
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0002-6835-2390
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0002-8546-9128
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0003-3410-7650
https://orcid.org/0000-0001-8318-8229
https://orcid.org/0000-0001-8318-8229
https://orcid.org/0000-0001-8318-8229
https://orcid.org/0000-0001-8318-8229
https://orcid.org/0000-0001-8318-8229
https://orcid.org/0000-0001-8318-8229
https://orcid.org/0000-0001-8318-8229
https://orcid.org/0000-0001-8318-8229
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-2432-8946
https://orcid.org/0000-0002-8642-1329
https://orcid.org/0000-0002-8642-1329
https://orcid.org/0000-0002-8642-1329
https://orcid.org/0000-0002-8642-1329
https://orcid.org/0000-0002-8642-1329
https://orcid.org/0000-0002-8642-1329
https://orcid.org/0000-0002-8642-1329
https://orcid.org/0000-0002-8642-1329
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0002-1365-1908
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0001-6874-2594
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-4433-4841
https://orcid.org/0000-0002-4433-4841
https://orcid.org/0000-0002-4433-4841
https://orcid.org/0000-0002-4433-4841
https://orcid.org/0000-0002-4433-4841
https://orcid.org/0000-0002-4433-4841
https://orcid.org/0000-0002-4433-4841
https://orcid.org/0000-0002-4433-4841
https://orcid.org/0000-0002-0631-2393
https://orcid.org/0000-0002-0631-2393
https://orcid.org/0000-0002-0631-2393
https://orcid.org/0000-0002-0631-2393
https://orcid.org/0000-0002-0631-2393
https://orcid.org/0000-0002-0631-2393
https://orcid.org/0000-0002-0631-2393
https://orcid.org/0000-0002-0631-2393
https://github.com/astropy/astropy
https://github.com/astropy/astropy
http://www.ascl.net/1902.012
https://doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
http://www.ascl.net/1108.003
https://doi.org/10.1051/0004-6361:20021327
https://ui.adsabs.harvard.edu/abs/2002A&A...395.1077C/abstract
https://doi.org/10.1007/s01007-007-0293-1
https://ui.adsabs.harvard.edu/abs/2007SoPh..243...19C/abstract
https://doi.org/10.1007/s11207-014-0485-y
https://ui.adsabs.harvard.edu/abs/2014SoPh..289.2733D/abstract
https://ui.adsabs.harvard.edu/abs/2022aero.confE...1D/abstract
https://ui.adsabs.harvard.edu/abs/2019ASPC..523..535D/abstract
http://doi.org/10.5281/zenodo.7478201
http://doi.org/10.5281/zenodo.3558614
https://doi.org/10.1051/0004-6361:20021326
https://ui.adsabs.harvard.edu/abs/2002A&A...395.1061G/abstract
https://doi.org/10.1051/0004-6361:20053818
https://ui.adsabs.harvard.edu/abs/2006A&A...446..747G/abstract
https://ui.adsabs.harvard.edu/abs/2006A&A...446..747G/abstract
https://doi.org/10.1051/0004-6361:20010923
https://ui.adsabs.harvard.edu/abs/2001A&A...376..359H/abstract
https://doi.org/10.1038/s41586-020-2649-2
https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H/abstract
https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H/abstract
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://github.com/LM-SAL/irispy-lmsal
https://doi.org/10.3847/1538-4357/ab042c
https://ui.adsabs.harvard.edu/abs/2019ApJ...873..111I/abstract
http://10.5281/zenodo.7625637
https://doi.org/10.1051/0004-6361/202141326
https://ui.adsabs.harvard.edu/abs/2021A&A...653A..68L/abstract
https://ui.adsabs.harvard.edu/abs/2021A&A...653A..68L/abstract
https://doi.org/10.21105/joss.01832
https://ui.adsabs.harvard.edu/abs/2020JOSS....5.1832M/abstract
http://doi.org/10.5281/zenodo.7020103
https://github.com/sunpy/ndcube
https://github.com/sunpy/ndcube
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.1051/0004-6361/201015362
https://ui.adsabs.harvard.edu/abs/2010A&A...524A..42P/abstract
https://doi.org/10.1007/s11207-020-01736-7
https://ui.adsabs.harvard.edu/abs/2020SoPh..295..172R/abstract
http://doi.org/10.5281/zenodo.1188875
https://doi.org/10.1051/0004-6361/201424653
https://ui.adsabs.harvard.edu/abs/2015A&A...574A..36R/abstract
https://ui.adsabs.harvard.edu/abs/2015A&A...574A..36R/abstract
https://doi.org/10.21105/joss.05296
https://ui.adsabs.harvard.edu/abs/2017psio.confE..85S/abstract
https://doi.org/10.1117/12.460377
https://ui.adsabs.harvard.edu/abs/2003SPIE.4853..341S/abstract
https://doi.org/10.1051/0004-6361/201935574
https://ui.adsabs.harvard.edu/abs/2020A&A...642A..14S/abstract
https://ui.adsabs.harvard.edu/abs/2020A&A...642A..14S/abstract
https://doi.org/10.21105/joss.04914
https://ui.adsabs.harvard.edu/abs/2023JOSS....8.4914W/abstract
https://ui.adsabs.harvard.edu/abs/1981A&AS...44..363W/abstract

	1. Introduction
	2. The World Coordinate System
	2.1. Why WCS?
	2.2. The Astropy WCS API

	3. The NDCube 2 API
	3.1. ExtraCoordsABC and GlobalCoordsABC
	3.2. NDCubeABC
	3.2.1. Structure
	3.2.2. Slicing and Cropping: Extracting Regions of Interest

	4. The ndcube Package
	4.1. NDCubeBase, NDCube, and Visualization
	4.2. NDCubeSequence
	4.3. NDCollection

	5. NDCube in Action
	6. Applications in the Community
	7. Future of the ndcube Package
	8. Summary
	Appendix ATerminology
	A.1. World, Pixel, and Array Axes
	A.2. Axis Correlation Matrix

	References

