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ABSTRACT

Context. Due to its physical nature, the solar corona exhibits large spatial variations of intensity that make it difficult to simultaneously
visualize the features present at all levels and scales. Many general-purpose and specialized filters have been proposed to enhance
coronal images. However, most of them require the ad hoc tweaking of parameters to produce subjectively good results.
Aims. Our aim was to develop a general purpose image enhancement technique that would produce equally good results, but based
on an objective criterion.
Methods. The underlying principle of the method is the equalization, or whitening, of power in the à trous wavelet spectrum of the
input image at all scales and locations. An edge-avoiding modification of the à trous transform that uses bilateral weighting by the
local variance in the wavelet planes is used to suppress the undesirable halos otherwise produced by discontinuities in the data.
Results. Results are presented for a variety of extreme ultraviolet (EUV) and white light images of the solar corona. The proposed
filter produces sharp and contrasted output, without requiring the manual adjustment of parameters. Furthermore, the built-in denois-
ing scheme prevents the explosion of high-frequency noise typical of other enhancement methods, without smoothing statistically
significant small-scale features. The standard version of the algorithm is about two times faster than the widely used multiscale
Gaussian normalization (MGN). The bilateral version is slower, but provides significantly better results in the presence of spikes or
edges. Comparisons with other methods suggest that the whitening principle may correspond to the subjective criterion of most users
when adjusting free parameters.

Key words. techniques: image processing – methods: numerical – Sun: corona – Sun: UV radiation – Sun: transition region

1. Introduction

Modern image sensors, like those used in the Extreme
Ultraviolet Imager (EUI, Rochus et al. 2020) on board the Solar
Orbiter mission (Müller 2020), have dynamic ranges (ratio of
the digital range to the read noise) of 212 or more. As long as
the observed scenes use the entire detector range, the typical
28 dynamic of monitors is insufficient to display the recorded
images unmodified without losing information (left panel of
Fig. 1). Therefore, most of the time the intensity values are
rescaled to 8 bits prior to display using a nonlinear function (or
stretch), usually a power 1/γ < 1 (γ-stretch) or a logarithm of the
intensity (middle panel of Fig. 1). It is worth noting that a square
root transformation (γ = 2) is sometimes applied on board (e.g.,
on EUI) for it provides optimum intensity sampling for images
dominated by Poisson statistics (Nicula et al. 2005). Nonlinear
intensity transformations alone, however, are not sufficient to
bring out all the information present in the data. Filtering and
enhancement is a crucial step in the analysis of scientific images
for it can reveal features and phenomena that would otherwise
remain undetected.

As illustrated in the right column of Fig. 1, the Fourier power
spectrum of a typical solar EUV image follows a power-law-
like distribution, with more power at low frequencies and less
power at high frequencies. As per Parseval’s theorem, the mean
power of the Fourier spectrum is equal to the variance of the sig-
nal. Thus, the larger (respectively lower) Fourier power at lower
(respectively higher) frequencies correspond to larger (respec-
? Movies associated to Figs. 3 and 5 are available at
https://www.aanda.org

tively lower) signal variance at larger (respectively smaller) spa-
tial scales. The middle column of Fig. 1, which is remapped
using a logarithm intensity transformation, indeed shows that
the largest intensity variations come from the global scales.
However, while bringing out the faint large-scale features, this
simple intensity remapping produces a washed out image with
poor local contrast. Intensity variations in the active regions are
mapped to a much smaller range of output values than with the
linear scaling of the left column. This is why many enhancement
methods are designed to reduce the signal variance at low fre-
quencies and to increase it at high frequencies.

Specialized background subtraction methods (e.g.,
Morgan et al. 2006; Patel et al. 2022) can be used to this
end, but they are typically limited to the off-disk emission. One
of the earliest general-purpose methods, the unsharp mask, is a
simple high-pass filter that was developed to improve the quality
of photographic prints by analog composition of a negative
with a blurred positive (Yule 1944; Schreiber 1970; Levi 1974).
Numerically, the convolution kernel is generally taken to be
Gaussian, but the frequency response of the filter can be tailored
to arbitrary shapes in the Fourier space. However, Fourier
filtering techniques are limited in that they ignore the local
variations of the image properties, unless the input is segmented
into independent tiles.

On the contrary, multiscale approaches are able to mod-
ify the spectral content differently at different positions in
the input image. The detail layer of the multiscale Gaussian
normalization (MGN, Morgan & Druckmüller 2014) is essen-
tially a weighted sum of unsharp-masked images of increasing
Gaussian kernel widths, normalized to their local standard
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Fig. 1. Dynamic range and spatial scales in a solar EUV image. Left: fifteen-bit image taken by the Full Sun Imager (FSI) channel of EUI at
17.4 nm on 2022 March 17 at 06:00:45 UT, displayed in linear scale. Only the brightest features are visible. The profile is taken along the row
marked by the side ticks. Middle: same image after logarithmic scaling. Faint off-limb details are revealed, but the local contrast is diminished.
Right: Fourier power spectrum of the variance normalized image. The profile is that of the bottom row. The larger the spatial scale, the more power
(and thus variability) in the image.

deviations and remapped to the [−1, 1] range. MGN is success-
ful in equalizing the variances over a range of scales, but also
enhances the high-frequency noise in doing so (see right panel
of Fig. 3 of Morgan & Druckmüller 2014), a common issue with
image sharpening techniques.

The decomposition of images into scales using a
wavelet transform offers the possibility to simultaneously
denoise (Starck & Murtagh 1994; Murtagh et al. 1995) and
modulate the output power spectrum. The wavelet packet equal-
ization scheme of Stenborg & Cobelli (2003), Stenborg et al.
(2008) consists in a two-level à trous wavelet decomposition,
followed by local noise reduction and weighted synthesis.

Enhancement methods typically include free parameters that
need to be adjusted by the user: the kernel width for the unsharp
mask; the kernel widths, variance regularization function, and
synthesis weights in MGN; and the noise threshold and synthe-
sis weights in Stenborg & Cobelli (2003). This provides flexi-
bility in tuning the output, with the drawback of subjectivity in
deciding what good results are.

In the present article we propose a transform that whitens
the power spectrum, resulting in equal variance at all spatial fre-
quencies (Sect. 2). While not the only possible choice of normal-
ization, a comparison of the results (Sect. 3) with other methods
suggests that images considered to be well enhanced tend to have
a white spectrum. We summarize our work in Sect. 4.

2. Method

2.1. À trous transform

We summarize below only those aspects of the à trous
transform necessary to understand the proposed method. We
refer the reader to Holschneider et al. (1989), Shensa (1992),
Starck & Murtagh (2002) and references therein for material on
wavelet theory and the à trous transform in particular. See also

Stenborg & Cobelli (2003) for a concise introduction and appli-
cation to images of the solar corona.

The wavelet transform of a discrete signal f (l) is defined by

ws(k) =
1
√

s

∑
l

ψ∗
(

l − k
s

)
f (l), (1)

where s is a scaling factor. In the case of the à trous transform,
the real-valued wavelet ψ satisfies the relationship

1
2
ψ

( x
2

)
= φ(x) −

1
2
φ
( x
2

)
(2)

with φ(x) a scaling function that obeys the dilation equation

1
2
φ
( x
2

)
=

∑
l

h(l) φ(x − l), (3)

where h is a low-pass filter kernel. We can then demonstrate
(Shensa 1992) that the à trous wavelet transform can be com-
puted by the following iteration, initialized with the input image
I(k) = c0(k):

cs+1(k) =
∑
l∈Ω

cs(k + 2sl) h(l) = hs(k) ∗ cs(k), (4)

ws+1(k) = cs(k) − cs+1(k). (5)

Here Ω denotes the support of the compact kernel h and ∗ the
convolution product. The set {w1(k) . . .wS (k), cS (k)} forms the
wavelet transform of the input image, with S the largest scale
compatible with the data. At scale s, the data values weighted by
h(l) are separated by 2s, which is equivalent to a convolution with
a sparse (with holes, à trous in French) kernel hs(k). We note that
this iteration lends itself naturally to an implementation in which
successive scales are recursively computed by convolutions of
the compact kernel with interleaved subsamplings of one point
out of two on each axis.
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Fig. 2. À trous wavelet transform and coefficients whitening. Two top rows: chained convolutions cs(k) of the input image c0(k) with à trous kernels
dilated by a factor of two at each step. The left half of each panel corresponds to regular convolutions; the right half to bilateral filtering. Two middle
rows: corresponding wavelet coefficients ws+1(k) = cs(k)−cs+1(k), that is the difference between successive convolutions or bilateral filterings. The
last coefficient is the result of the last convolution or bilateral filtering. The original image (c0(k), left) is the sum of all coefficients. The bilateral
transform preserves the edges in the coarse images (top rows). Two bottom rows: whitened coefficients, i.e., normalized to the local power. The
filtered image (left) is the sum of all whitened coefficients. For visualization purposes, the convolutions and the coefficients are displayed using
two different color scales.

The successive convolutions form increasingly smooth rep-
resentations cs(k) of the data (left half images in the first two
rows of Fig. 2). The input image c0(k) used in this example
was acquired with the 17.4 nm high-resolution EUV channel of
EUI (HRIEUV, top left panel of Fig. 3) on 2022 March 17 at
04:02:57 UT, when Solar Orbiter was at 0.38 AU from the Sun.
It is the one closest in time to the FSI image of Fig. 1. Its wavelet
transform with S = 8 is represented in the left half images of
the third and fourth rows. The input image can be synthesized
with

c0(k) = cS (k) +

S∑
s=1

ws(k). (6)

In the remainder of this paper we use a basic cubic spline
for the scaling function φ, which corresponds (Eq. (3)) to the
one-dimensional kernel h = [1, 4, 6, 4, 1] /16, its n-dimensional
counterparts being obtained by iterating hT h. Other choices are
possible, but the B3-spline is smooth, is continuously differ-
entiable, and has minimum curvature and a compact support,
which makes it both robust to oscillations and computationally
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Original image - = 2.4 WOW

Denoised WOW Edge-aware WOW

Fig. 3. Three levels of WOW processing. Top left: original γ-stretched (γ = 2.4) HRIEUV image. The inset (top left quarter) shows an enlargement
of the area within the white square. Top right: output of the WOW algorithm. Bottom right: Same with added denoising. Bottom right: output of
the edge-aware denoised version of the algorithm. For all images the gray scale maps to the central 99.8% of values. An animated version of this
figure is available online.

efficient (see, e.g., Unser 1999). We use mirror boundary condi-
tions so that c(k + N) = c(N − 1− k) with N the number of pixels
on a given axis.

The wavelet coefficients (third and fourth row of Fig. 2) can
be manipulated to achieve a variety of results after synthesis.
Denoising will be treated in Sect. 2.3. In the next section, we
discuss multiscale contrast enhancement.

2.2. Whitening

It is possible to enhance features at a given scale, or more gener-
ally to modify the relative importance of different scales, by mul-

tiplying the corresponding coefficients cs
k with ad hoc weights βs

at the image synthesis stage, so that Eq. (6) becomes

c0(k) = cS (k) +

S∑
s=1

βs ws(k). (7)

It is possible, for example, to suppress large-scale gradients
by setting the last weight to zero. This approach is used in
the wavelet packet equalization method of Stenborg & Cobelli
(2003). While it yields interesting results, it also produces unde-
sirable ringing around sharp and bright features (see, e.g., the
right panel of their Fig. 4). Nonetheless, building on this idea,
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Table 1. Gain g and read noise r for the detectors used in this paper
(Eq. (14)).

Instrument Gain Read noise Reference
[DN/ph] [DN]

FSI304 3.88 1.50 Gissot, priv. comm.
HRIEUV 5.28 1.50 Gissot, priv. comm.
AIA174 1.12 1.15 Boerner et al. (2012)
LASCO C2 0.07 0.3 Brueckner et al. (1995)

we wondered whether the weights, instead of being arbitrary,
could be dictated by the data content to produce an optimal out-
put. Figure 1 suggests that a possible scheme consists in equaliz-
ing the power at all scales (i.e., whitening the power spectrum).
However, using one global weight per scale ignores the informa-
tion contained in the spatial variations of power in the wavelet
spectrum. In order to equalize the spectrum in both the spectral
and spatial dimensions, we normalize the coefficients using an
estimate of the local mean power Ps(k) obtained by convolution
of the wavelet power by the à trous kernel. The whitened coeffi-
cients ws(k) are given by

ws(k) =
ws(k)√

Ps(k)
, with Ps(k) = ws(k)2 ∗ hs(k). (8)

Unweighted synthesis of the whitened coefficients results in the
wavelet-optimized whitening (WOW) enhanced image:

c0(k) = cS (k) +

S∑
s=1

ws(k). (9)

We note the similarity between Eq. (8) and Eqs. (1) and (2)
of Morgan & Druckmüller (2014): both represent convolutions
of the original image by variable-sized kernels normalized to a
quantity analogous to a local standard deviation. However, the
numerator in Eq. (1) of Morgan & Druckmüller (2014) is an
unsharp mask (i.e., the difference between the original image
and its convolution by a Gaussian), while in Eq. (8) it is an à
trous wavelet coefficient (i.e., the difference between two suc-
cessive chained convolutions by a scaling function). As we show
in Sect. 3.2, this difference between the two methods results in
significantly different output.

Figure 3 shows a γ-stretched high-resolution 17.4 nm EUI
image (top left), and the corresponding output of the WOW pro-
cess (top right). Only the brightest regions of the input image
would be visible without γ-stretching, as in the left panel of
Fig. 1. Multiscale whitening tends to equalize the variance at
all spatial frequencies and locations, which attenuates the large-
scale variations and comparatively reinforces the small-scale
structures. The large-scale contrast is reduced, while the small-
scale contrast is increased. The enlargement of the region in the
white square shows that the noise, which behaves like a small-
scale feature, is amplified in the process, especially in the orig-
inally faint regions where the noise contributes the most to the
signal variance. However, the à trous wavelet transform offers a
powerful framework for denoising.

2.3. Denoising

The data can be denoised by attenuation of the wavelet coef-
ficients that are not statistically significant, followed by syn-
thesis (Starck & Murtagh 1994; Murtagh et al. 1995). This is

achieved by comparing the ws(k) with the amplitudes expected
in the presence of noise only. In the case of Gaussian white
noise of unit standard deviation, the amplitudes at scale s are
Gaussian-distributed with standard deviation σ1

s , which can eas-
ily be estimated numerically (Starck & Murtagh 2002). In the
presence of noise of standard deviation σ, the significant coeffi-
cients are those for which

|ws(k)| > ns σs, with σs = σσ1
s , (10)

where ns sets the chosen significance level at scale s. The coeffi-
cients can then be weighted by a function α(ns σs,ws(k)) of their
values relative to ns σs. Hard thresholding corresponds to

α(ns σs,ws(k)) =

{
1 if |ws(k)| > ns σs

0 otherwise
, (11)

but tends to produce ringing in the synthesized image. There are
several possibilities for smooth soft-thresholding functions. We
chose to weight the coefficients by their probability of chance
occurrence, so that

α(ns σs,ws(k)) = erf
(
|ws(k)|
ns σs

)
. (12)

In addition to the Gaussian component corresponding to the read
and thermal noises within the sensor, the data also contains the
Poisson-distributed component of the photon shot noise. The
variance of the Poisson component is proportional to the inten-
sity and is thus variable across the image. In the case of pure
Poisson statistics, the transform

T [I(k)] =

√
I(k) +

3
8

(13)

results in data with Gaussian noise of unit variance (Anscombe
1948) for numbers of counts greater than about ten. It was gen-
eralized by Murtagh et al. (1995) for the presence of additional
Gaussian noise in the input.

Following Starck et al. (1997), Stenborg & Cobelli (2003),
the alternative approach adopted in this paper to account for
the spatial dependence of the noise consists in replacing σs in
Eqs. (10)–(12) by a spatially variable σs(k) = σ(k)σ1

s . The local
standard deviation of the noise σ(k) can be estimated from the
first wavelet coefficients (Starck et al. 1997; Stenborg & Cobelli
2003) or, preferably, if the detector gain g and read noise stan-
dard deviation r are known, with

σ(k) =

√
gI(k) + r2. (14)

In the end, for combined denoising and whitening, Eq. (8)
becomes

ws(k) =
α(ns σs(k),ws(k)) ws(k)√

Ps(k)
; (15)

the expressions for Ps(k) and the synthesis (Eq. (9)) remain
unchanged.

The bottom left panel of Fig. 3 shows the denoised whiten-
ing of the top left input image, to be compared with the regular
whitening (Sect. 2.2) of the top right panel. The detector gain
and read noise (Eq. (14)) for HRIEUV are given in Table 1. Noise
being inherently high-frequency, it is usually significant only in
the first few scales. In this example, we used ns = {5, 2, 1} for
the first three scales and ns = 0 for the others. This choice is
arbitrary; larger values yield smoother output at the expense of
losing fainter details.
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2.4. Edge-aware transform

In the à trous wavelet transform each convolution by the scaling
function (Eq. (4)) produces halos around sharp peaks and edges.
These halos are reinforced as genuine features by the whitening
process, which tends to produce glows and/or gradient reversals.
As proposed by Hanika et al. (2011), this unwanted side effect
can be mitigated by replacing the convolution by bilateral fil-
tering in Eq. (4). Range filtering is analogous to spatial filter-
ing, but instead of being a function of spatial distance, the kernel
weights are a function of the disparity of values. The bilateral fil-
ter (Tomasi & Manduchi 1998) combines both spatial and range
filtering, so that Eq. (4) becomes

cs+1(k) =

∑
l∈Ω cs(k + 2sl) h(l) b(k, k + 2sl))∑

l∈Ω h(l) b(k, k + 2sl)
, (16)

where the denominator ensures unit normalization. A classical
choice for the range filter b is a Gaussian

b(k, k + 2sl) = exp

−1
2

(
cs(k) − cs(k + 2sl)

νs

)2. (17)

Following the idea of equalization, we use for νs(k)2 the local
variance at scale s, so that the range weights do not depend
upon the absolute values of the wavelet coefficients. For com-
putational efficiency, this is approximated by

νs(k)2 = hs(k) ∗ cs(k)2 − (hs(k) ∗ cs(k))2 . (18)

The resulting edge-aware transform is illustrated in the right
halves of the panels of Fig. 2. Compared to the regular transform,
the edges are preserved in the coarse images (top two rows) by
the bilateral filtering, and the power is correspondingly reduced
in the coefficients (middle two rows). For denoising with the
edge-aware transform, the corresponding standard deviations σ1

s
of Gaussian white noise were estimated numerically. The bottom
right panel of Fig. 3 shows the output of the denoised edge-aware
WOW algorithm for the top left input image. With the same
set of significance levels ns as for the regular transform (bot-
tom left panel), the output is sharper, but denoising is less pro-
nounced. An animated version of Fig. 3 containing 899 frames
acquired on 2022 March 17 from 03:18:00 to 04:02:57 UT is
available online.

3. Results

3.1. Three examples

Figure 4 shows three examples of images processed with
the edge-aware version of the WOW algorithm. The original
γ-stretched (γ = 2.4) images are in the left column and the lin-
early stretched processed images, all obtained using the same
denoising significance levels ns = {5, 3, 1}, are in the right col-
umn. The gain and read noise for the different detectors are given
in Table 1. For all images, the black and white points of the lin-
ear grayscale are mapped respectively to the 0.1 and 99.9%. In
the FSI 30.4 nm image (top row) the rapid off-disk intensity fall-
off masks the faint outer coronal structures (see also Fig. 1).
In the top right image, the whitening of the wavelet spectrum
enhances the local contrast and reveals the fainter extensions.
The method also accentuates imperfections in the calibration
(vertical bands and pattern at the top and bottom edges) because
they are spatially correlated, and therefore are not considered
as noise by the algorithm. The Atmospheric Imaging Assembly

(AIA, Lemen et al. 2012) image (middle row) can be compared
to Fig. 2 of Druckmüller (2013) processed with noise adaptive
fuzzy equalization (NAFE, see next section). The two images are
visually similar, with WOW producing as sharp and contrasted
an output without the ad hoc adjustment of parameters nor the
addition of a γ-stretched component. In images from white-
light coronagraphs (like that in the bottom left of Fig. 4, from
LASCO C2, Brueckner et al. 1995), the dust corona and stray
light form a diffuse background that dominates the K-corona. By
equalizing the power across spatial frequencies, this component
is attenuated with respect to smaller-scale features resulting, in
the bottom right image, in the enhancement of the twisted fila-
mentary structure of the erupting prominence. Comparison with
the output of the wavelet packets equalization method (Fig. 4
of Stenborg & Cobelli 2003) shows that WOW avoids the ring-
ing around the bright and sharp features, and also enhances
the disturbances in the surrounding K-corona. As already men-
tioned, the algorithm treats coherent features irrespective of their
solar or instrumental nature. For optimal results, artifacts like the
inner diffraction rings or the long curved streaks should be either
masked or calibrated out (Morgan 2015; Lamy et al. 2020, 2022)
prior to enhancement.

3.2. Comparison with NAFE and MGN

We chose to compare the output of WOW with that of
NAFE (Druckmüller 2013) and MGN (Morgan & Druckmüller
2014), two algorithms commonly used in the solar physics com-
munity. The output O(k) of both NAFE and MGN is the weighted
sum of the γ-stretched input I(k) and of the filtered image F(k)
proper:

O(k) = w
(

I(k) − a0

a1 − a0

)1/γ

+ (1 − w)F(k). (19)

Here a0 and a1 are respectively the minimum and maximum
input values considered, and w is a user-defined weight set by
default to 0.2 for NAFE and 0.7 for MGN. In order to have com-
parable output, we set γ = 2.4 for both NAFE and MGN. The
detail layers F(k) of NAFE and MGN depend on additional arbi-
trary parameters. For NAFE we use the width N of the neighbor-
hood for local histogram equalization and the denoising coef-
ficient σ (set to 129 and 12 respectively in the following). For
MGN we use the scaling parameter k of the arctan function, the
synthesis weights (all set to 1 by default), the number of scales
(6 by default), and the widths of the Gaussian kernels, which by
default follow a geometric progression, similarly to the à trous
transform. Conversely, in WOW, the values of most parameters
are dictated by either the use of the à trous transform (the pro-
gression of scales) or the whitening principle (the number of
scales, the absence of synthesis weights). The only free parame-
ters are the denoising significance levels.

As a test case, we picked an HRIEUV image recorded on
2022 April 2 at 09:30:55 UT while Solar Orbiter was at 0.38 AU
from the Sun. The γ-stretched layer (γ = 2.4) of NAFE
and MGN is shown in the top left panel of Fig. 5. An ani-
mated version containing 450 frames acquired from 09:19:15
to 10:34:05 UT is available online. For NAFE (middle row) and
MGN (bottom row), the output is on the left, and the correspond-
ing detail layer on the right. WOW does not have a γ-stretched
layer, and thus its output (top right panel) must be compared
with the detail layers of NAFE and MGN (right column). For all
images the gray scale maps to the central 99.8% of values.

NAFE and MGN produce a somewhat similar output, with
NAFE being more contrasted and MGN emphasizing the small
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Fig. 4. Examples of WOW processed images. For each row, the left image is the original γ-stretched with γ = 2.4, the right image is the output of
the edge-aware denoised version of the algorithm. Top: Crop of the 30.4 nm FSI image taken on 2022 March 21 at 06:30:15 UT. Middle: 17.1 nm
AIA image taken on 2012 August 31 at 19:44:35 UT. Bottom: LASCO C2 image taken on 1998 June 2 at 13:31:06 UT.
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Original image - = 2.4 Edge-aware WOW

NAFE NAFE detail layer

MGN MGN detail layer

Fig. 5. Comparison of the WOW, NAFE, and MGN algorithms. Top left: original γ-stretched (γ = 2.4) HRIEUV image. The inset (top left quarter)
shows an enlargement of the area within the white square. Top right: output of the edge-aware denoised version of the algorithm. Middle row:
NAFE (left) and corresponding detail layer (right). Bottom row: MGN (left), and corresponding detail layer (right). In NAFE and MGN, the
γ-stretched original image (top left) is added to their respective detail layers (right column). The left column thus corresponds to: no enhancement,
added NAFE detail layer, added MGN detail layer. The standard WOW output does not include an arbitrary γ-stretched component. An animated
version of this figure is available online.
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Table 2. Comparison of execution times (in seconds) for NAFE (on 48 cores), MGN, and WOW, for the images presented in this paper.

WOW
Image Size NAFE MGN Standard Edge-aware Edge-aware (6 scales)

HRIEUV 2022-03-17T04:02:57 2048 × 2048 98.8 7.3 2.4 11.4 7.6
FSI304 2022-03-21T06:30:15 3040 × 3072 936.9 11.4 10.9 37.3 16.9
AIA174 2012-08-31T19:44:35 4096 × 4096 813.3 49.8 13.6 53.1 27.3
LASCO C2 1998-06-02T13:31:06 1024 × 1024 190.7 1.3 0.5 2.3 1.9
HRIEUV 2022-04-02T09:30:55 2048 × 2048 100.4 5.8 2.4 11.3 7.4
FSI174 2022-03-17T06:00:45 3072 × 3072 1330.5 13.8 10.9 37.7 17.0

scales to a greater degree. The detail layer of MGN presents the
typical dark fringes around bright features produced by unsharp
masking. Despite the similarities mentioned in Sect. 2, WOW
produces a significantly more contrasted output than MGN and
no ringing, with notably less noise. Judgment of the merits of
the enhancement methods can be subjective when free parame-
ters are involved. The output of WOW is both as sharp as MGN
and as contrasted as NAFE, which suggests that the whitening
principle may correspond to what is qualitatively considered to
be good results.

3.3. Performance

WOW was implemented in Python using open-cv bindings to
compute the convolutions; the code is available on GitHub1. We
compare the performance to a parallelized NAFE implementa-
tion in Python2 validated by comparison with the original imple-
mentation, and to the sunkit-image3 implementation of MGN.
The results of performance tests on a 2.40 GHz Intel Xeon Silver
4214R CPU are summarized in Table 2. The execution time of
WOW and MGN depends on the number of scales, which is set
to six by default in MGN. In WOW, the number of scales is set
to be ln(N)/ ln(2). For comparison with MGN, we therefore also
include execution times for the edge-aware version of WOW
limited to six scales. The operations required by the two algo-
rithms are very similar, hence the similar performance. However,
the bilateral filter makes the edge-aware version of WOW signif-
icantly slower than the standard one. Compared to NAFE, it is
much faster in all cases while providing equivalent results.

3.4. Back to subjectivity

WOW was developed to identify an objective criterion for image
enhancement that leads to a method free of arbitrary parameters.
While the approach seems successful, the whitening of the power
spectrum is not necessarily the unique viable choice. In addition,
manual adjustment of the output may be desirable. Naturally,
a weighted γ-stretched input image can be added to the WOW
image, as in NAFE and MGN. However, any other transfer func-
tion can be used to rescale the large dynamic range of the input
onto a restricted range of output values. A logarithmic scaling
is commonly used for solar EUV images. Lupton et al. (2004)
proposed to stretch the data using arcsinh(x/β), which is linear
for x � 1 and logarithmic for x � 1, with β a free parameter.

1 https://github.com/frederic-auchere/wavelets/
2 https://git.ias.u-psud.fr/ebuchlin/aia-movie/-/
blob/master/medocimage/nafe.py
3 sunkit-image (https://docs.sunpy.org/projects/sunkit-
image/) is a SunPy (The SunPy Community 2020) affiliated package.

Synthesis weights can also be applied at each scale (Eq. (7)) to
provide enhanced control over the result.

4. Summary

We introduced a new image enhancement algorithm that pro-
duces sharp and contrasted outputs from a variety of images,
without arbitrarily determined coefficients nor the addition of
a γ-stretched image. While it is possible to introduce ad hoc
parameters at both the decomposition and the synthesis stages,
the power spectrum whitening principle at the heart of the
method, although arbitrary in itself, dictates that these param-
eters be set to one, yielding an optimum parameter-free scheme.
The optional denoising step still requires significance levels to
be set manually; however, based on the work of Batson & Royer
(2019), it may be possible to determine optimal values automat-
ically. The regular variant is significantly faster than MGN and
produces more contrasted results. The sensitivity of the nomi-
nal scheme to spikes and edges is mitigated in the edge-aware
variant, which is significantly slower, but remains practical on a
typical laptop computer.
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