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The choice of decision structure with a more or lesser degree of (de-)centralisation is important since it affects the operation and decision-making process of enterprises in uncertain situations. The Emergency Department (ED) is the critical and main part of the hospital. There are various crucial decisions to be taken quickly under uncertainty and constraints in EDs, including resource scheduling. The exploration of the decision structure for this decision is required to improve the patients' pathway. This article explores the (de-)centralisation of decision, i.e., centralised and decentralised models of nurse-to-patient scheduling in EDs. We base our centralised scheduling on a Mixed Integer Linear Program (MILP), and our decentralised scheduling makes a multi-agent system run a Contract Net Protocol (CNP) in which the agents locally optimise a variant of this MILP. We assess and compare both models. The result shows that both models generate similar patients' schedules.

Introduction

Enterprises nowadays face various challenges and are required to take decisions in an uncertain situation [START_REF] Cardin | Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges[END_REF]. The operation and decision-making processes of such an enterprise are greatly affected by the choice of its decision structure or organisation [START_REF] Moyaux | Cost of selfishness in the allocation of cities in the multiple travelling salesmen problem[END_REF]. An enterprise may have a centralised organisation capable of taking optimal decisions by optimising the entire system, or a decentralised organisation with local decision-making and good reactivity [START_REF] Das | Comparative study of centralized and decentralized scenarios of a three-tiered green supply chain in two-period using the game theoretical approach[END_REF][START_REF] Pach | Orca-fms: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling[END_REF]. The enterprise may also apply a hybrid structure that combines the strengths of both organisations: the optimality of centralisation and the reactivity of decentralisation in order to operate in both normal and disturbed situations [START_REF] Cardin | Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges[END_REF][START_REF] Pach | Orca-fms: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling[END_REF].

We study this (de-)centralisation of decisions in the context of the control of an Emergency Department (ED). An ED is a main and complex part in the healthcare system as it provides first-level and immediate care to patients. The decision-making process in EDs for managing operations is complex due into limited resource availability, dynamic and uncertain patient entry flow to ED, and stochastic and multi-stage patient treatment [START_REF] Bouleux | Requirements for a digital twin for an emergency department[END_REF][START_REF] Duma | Real-time resource allocation in the emergency department: A case study[END_REF][START_REF] Chaabane | Toward a proactive and reactive simulation-based emergency department control system to cope with strain situations[END_REF]. The decisionmakers have to make sure that the decisions guarantee good quality of care for patients and improve their pathway [START_REF] Luscombe | Dynamic resource allocation to improve emergency department efficiency in real time[END_REF][START_REF] Chaabane | Toward a proactive and reactive simulation-based emergency department control system to cope with strain situations[END_REF].

The exploration of (de-)centralised decision structures to a more or lesser degree is needed in order to improve decision-making by making a trade-off between optimality (which favours centralisation) and reactivity (which is provided by decentralisation). Among all decisions in EDs, one of the most crucial is resource allocation or scheduling (we use the terms "allocation" and "scheduling" interchangeably in this paper) [START_REF] He | Data-driven patient scheduling in emergency departments: A hybrid robust-stochastic approach[END_REF][START_REF] Luscombe | Dynamic resource allocation to improve emergency department efficiency in real time[END_REF]. The contribution of this article is to propose and compare two models of resource scheduling. The first model has a single decision maker who schedules the jobs (patients) to resources (nurses) with a Mixed Integer Linear Program (MILP). The decentralised model makes the nurses solve a decentralised version of this MILP in order to study the two models as closely as possible. We apply this comparison to the Paediatric ED of Saint-Étienne University Hospital, France.

The outline of the paper is as follows. Section 2 presents the related research on dynamic resource scheduling and centralised and decentralised organisation. Section 3 explains our two models with different levels of (de-)centralisation for resource scheduling. Section 4 discusses the experimental results of both models. Section 5 concludes.

Related research

Centralisation and decentralisation

The discussion on whether to implement more centralised or decentralised organisations has emerged in many fields [START_REF] Davidsson | On the integration of agent-based and mathematical optimization techniques[END_REF][START_REF] Moyaux | Cost of selfishness in the allocation of cities in the multiple travelling salesmen problem[END_REF]. This decision on which organisation to be applied is important as it affects the efficiency of the enterprise [START_REF] Moyaux | Cost of selfishness in the allocation of cities in the multiple travelling salesmen problem[END_REF]. A Centralised Organisation (CO) has and utilises global information to make optimal decisions and optimise the system globally [START_REF] Das | Comparative study of centralized and decentralized scenarios of a three-tiered green supply chain in two-period using the game theoretical approach[END_REF]. It performs better in a deterministic environment and for predictive purposes. However, it lacks adaptability and reactivity to the changes or disturbances which happen in the system [START_REF] Cardin | Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges[END_REF][START_REF] Pach | Orca-fms: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling[END_REF]. In contrast, Decentralised Organisations (DOs) involve agents who use their local information in order to make locally applicable decisions [START_REF] Das | Comparative study of centralized and decentralized scenarios of a three-tiered green supply chain in two-period using the game theoretical approach[END_REF]. A DO has good reactivity to adapt to disturbances. However, it has minimum global present and future information which leads to a loss of global long-term performance [START_REF] Cardin | Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges[END_REF]. Creating a hybrid of both CO and DO emerge to get advantages and minimize the drawbacks of both organisations. This approach combines CO and DO to achieve a globally optimised solution with good reactivity [START_REF] Cardin | Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges[END_REF][START_REF] Pach | Orca-fms: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling[END_REF].

Many previous studies compare CO and DO quantitatively [START_REF] Das | Comparative study of centralized and decentralized scenarios of a three-tiered green supply chain in two-period using the game theoretical approach[END_REF][START_REF] Moyaux | Cost of selfishness in the allocation of cities in the multiple travelling salesmen problem[END_REF] or qualitatively to find which one performs the best in their fields of application. For example, such a comparison is based on measuring the efficiency of seven mechanisms with different levels of (de-)centralisation to solve a modified multiple travelling salesmen problem [START_REF] Moyaux | Cost of selfishness in the allocation of cities in the multiple travelling salesmen problem[END_REF]. The results show that CO produces results with better quality as DO has a longer median total route length than CO.

The previous researches demonstrate that the performance of CO and DO depends on the problem. CO performs better in static and deterministic situations, while DO is the best in dynamic problems. In addition, the hybrid of both actually shows better results compared to pure CO or DO [START_REF] Cardin | Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges[END_REF][START_REF] Davidsson | On the integration of agent-based and mathematical optimization techniques[END_REF][START_REF] Pach | Orca-fms: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling[END_REF]]. Another noticeable aspect is that most comparisons are done in the manufacturing or logistics field. To our knowledge, little to no comparative studies were performed in healthcare management, hence, the novelty of our work. Our research develops the centralised and decentralised decision-making models, similar to [START_REF] Moyaux | Cost of selfishness in the allocation of cities in the multiple travelling salesmen problem[END_REF] for nurse-to-patient scheduling in an ED.

Resource scheduling in an ED

The ED is an important part of the healthcare system because it provides initial, immediate and essential medical care to patients. It has the difficult task of providing 24-hour emergency services, offering good quality service and ensuring that valuable resources are well-utilised [START_REF] Bouleux | Requirements for a digital twin for an emergency department[END_REF][START_REF] Chaabane | Toward a proactive and reactive simulation-based emergency department control system to cope with strain situations[END_REF]. However, at the same time, it is the most overcrowded component because it faces a dynamic and large number of visits of patients, but has limited manpower [START_REF] Duma | Real-time resource allocation in the emergency department: A case study[END_REF][START_REF] He | Data-driven patient scheduling in emergency departments: A hybrid robust-stochastic approach[END_REF]. Therefore, manpower planning and scheduling is a crucial decision to be made in EDs. Resources such as physicians and nurses have to be properly allocated to patients such that these patients receive good quality care [START_REF] Chaabane | Toward a proactive and reactive simulation-based emergency department control system to cope with strain situations[END_REF][START_REF] Luscombe | Dynamic resource allocation to improve emergency department efficiency in real time[END_REF].

Many previous studies explore various resource planning approaches for EDs, ranging from static and predictive to dynamic and online scheduling. Harzi et al. [START_REF] Harzi | Scheduling patients in emergency department by considering material resources[END_REF] develop predictive patient scheduling in ED using Mixed Integer Linear Programming (MILP) that significantly reduces the patients' waiting time. Luscombe et al. [START_REF] Luscombe | Dynamic resource allocation to improve emergency department efficiency in real time[END_REF] propose a dynamic scheduling framework that provides real-time support for managing the scarce resources of an ED. The proposed framework has two layers of scheduling to minimize the patients' response and treatment times. It optimises patient-to-bed allocation with parallel machine scheduling and resource task allocation using flexible flow shop scheduling. Duma et al. [START_REF] Duma | Real-time resource allocation in the emergency department: A case study[END_REF] reduce the care process duration and make an ED less crowded by utilising real-time resource allocation.

Our CO model mostly relies on the model by Luscombe et al. [START_REF] Luscombe | Dynamic resource allocation to improve emergency department efficiency in real time[END_REF] and Cao et al. [START_REF] Cao | Parallel machine selection and job scheduling to minimize machine cost and job tardiness[END_REF] for the centralised dynamic nurse allocation model with MILP. The MILP model is mostly taken from the model of parallel machine scheduling because nurse scheduling has a similar model to parallel machine scheduling. Our DO model is mostly adapted from Moyaux and Marcon [START_REF] Moyaux | Cost of selfishness in the allocation of cities in the multiple travelling salesmen problem[END_REF] that combines MILPs and a multi-agent system. Our DO also uses the principle of resource self-scheduling similar to Traub et al.'s [START_REF] Traub | Emergency department rotational patient assignment[END_REF]. This combination allows nurses in our DO to schedule their patients using a MILP similar to our CO, and interact with other nurses to exchange patients and find locally optimised scheduling of patients between agents.

Two (de-)centralised models of resource scheduling

Resource allocation, specifically nurse-to-patient scheduling, is one of the crucial decisions identified in EDs. It is a complicated decision because it needs to be made under several constraints, including limited resource availability and dynamic patients flowing into the ED. The patients' arrival time in ED is difficult to predict. Moreover, these arriving patients have different levels of criticality, which are characterised by the triage nurse on a scale from one to five, as shown in Table 1. On the other hand, the decision maker has to take the nurse-to-patient scheduling decision quickly to ensure that the patients receive high-quality care. Therefore, the optimisation of the resource scheduling decision is required to improve the performance of the ED and its patients' pathway. In order to optimise the scheduling in both normal and disturbed conditions, we propose two nurse-to-patient scheduling models with different (de-)centralisation levels, as briefly summarized in Figure 1.

Centralised model

The centralised model aims to optimise the nurse-to-patient scheduling decision globally by solving a dynamic version of a scheduling MILP. This model captures all patients' data and considers nurses' availability as input. Then, it solves the MILP presented in this subsection. This MILP of nurse allocation minimises the total waiting time of the patients as the objective function to generate the best scheduling. In order to cope with dynamic patient flow Fig. 1: Brief presentation of the (de-)centralisation models in the ED, this MILP is re-optimised every time a new patient arrives. The patient schedule is adjusted dynamically with a constraint modelling the fact that the treatment process must not be stopped, that is, the patients currently receiving treatment cannot be rescheduled later.

The main part of the dynamic allocation algorithm is the MILP model of nurse scheduling adapted from [START_REF] Cao | Parallel machine selection and job scheduling to minimize machine cost and job tardiness[END_REF][START_REF] Luscombe | Dynamic resource allocation to improve emergency department efficiency in real time[END_REF] 

min w = J j=1 u j (s j -a j ) (1) 
s.t.:

s j + p j = c j ∀j ∈ J (2) 
s j ≥ a j ∀j ∈ J (3) N n=0 x jn = 1 ∀j ∈ J (4) c j -s k ≤ M (1 -z jkn ) ∀j ∈ J, ∀k ∈ J, ∀n ∈ N (5) J j=0,j̸ =k z jkn = x kn ∀k ∈ J, ∀n ∈ N (6) 
J k=1,j̸ =k

z jkn ≤ x jn ∀j ∈ J, ∀n ∈ N (7) 
J k=0 z 0kn ≥ 1 ∀n ∈ N (8) 
z jkn = zt jkn ∀j ∈ J * = {j|ct j < t}, ∀k ∈ J, ∀n ∈ N (9)

s j ≥ 0 ∀j ∈ J (10) 
c j ≥ 0 ∀j ∈ J (11) 
x jn ∈ {0, 1} ∀j ∈ J, ∀n ∈ N (12)

z jkn ∈ {0, 1} ∀j ∈ J, ∀k ∈ K, ∀n ∈ N (13) 
Eq. 1 is the objective function of the model that minimises the total weighted waiting time over all patients. The waiting time is acquired from the difference between the patient's arrival time a j and treatment start time s j . The constraint in Eq. 2 defines the completion time of each patient as the sum of the patients' treatment start time and treatment duration. Eq. 3 ensures that the treatment starts after the arrival time. Eq. 4 ensures that each patient is treated by only one nurse. Eq. 5 is the treatment sequence constraint. Eq. 6 sets that each patient has a direct predecessor and Eq. 7 ensures each patient has no more than one direct successor in the patient sequence. Eq. 8 lets each nurse have only one dummy patient (j=0) so that each other patient has a direct predecessor. Eq. 9 sets the current z jkn value to be equal to the value from the previous run (zt jkn ) if the completion time of the last run (ct j ) is larger than the current scheduling time t. In other words, Eq. 9 makes sure that all ongoing treatments are not stopped, that is, not rescheduled.

In every run, the dynamic allocation algorithm is triggered by the arrival of one patient at the triage nurse. The algorithm receives the arrival time and triage (urgency) level of the patient after the triage process was performed by the triage nurse. The algorithm sets the scheduling time t equal to the arrival time of this last patient. Next, it solves the allocation problem in Eq. 1-13 in order to generate the nurse-to-patient allocation. Then, the algorithm stores the completion time to variable ct j and the patient order variable to zt jkn for the next run. This schedule is used until the next patient arrives; such an arrival triggers a new run of this algorithm.

Decentralised model

The decentralised model is a multi-agent system in which each nurse is modelled as an agent who possesses local information and is able to make local decisions. Each nurse agent has the capability to interact with the other nurse agents according to the Contract Net Protocol (CNP). In a few words, our version of CNP is a decentralised auction in which the role of the auctioneer is played by a nurse, who is referred to as host in this article. This protocol is decentralised because the host may be different in every round of CNP. Scheduling has two subproblems, namely, allocating patients to nurses and sequencing the patients of every nurse, and the CNP solves the allocation subproblem. Every nurse saves the patients currently allocated to them in their variable patientList and the CNP manages the exchange of patients between nurses.

Our CNP has several interaction rounds in which each nurse agent becomes either a host or a guest. Each interaction round is executed after a nurse has finished treating a patient and must decide which patient to be treated next. This nurse becomes a host who takes the role of an auctioneer and broadcasts a patient to be proposed for exchange to all other nurses. The other nurses (guests) reply to the broadcast by proposing and sending one of their patients to be given to the host. The host calculates the allocation of the patients and sends the allocation results to the guest nurses. The next interaction round occurs when another nurse completes a treatment process and becomes the host of this round. This model also involves a triage nurse agent whose role is to generate patient information and send the patient to the waiting room.

We now detail our implementation of CNP by explaining the three state charts in Figure 2. The number in the names of the states and transitions in the host and guest state charts indicates their order of activation, As the first nurse host treated the first patient, other patients arrive and other nurses are aware, fire transitions, take, and treat their first patients. After the nurses acquire their first patients, if new patients arrive, the triage nurse sends different messages which trigger Transition sB_nurse_receive_notification in the nurse system. The nurses check the waiting room in branch sC_check_ patient_availability. The first nurse who fires Transition sD1_nurse_take _patient, takes and keeps the patient on the patientList using the system. The nurse who has just taken the patient waits in sF_time_interval to prevent the same nurse from taking all newly arrived patients.

After one of the nurses finishes treating her first patient, this nurse gets back to state CNP5_host_aware_of_patient. This nurse fires Transition CNP9_ host_next_patients because now the nurse is going to treat the next patients. Instead of treating directly the patient in the patientList, the nurse performs scheduling and interaction with other nurses to find and treat the patient that optimizes the local weighted waiting time. In order to do this, first, the nurse who is in State CNP10_host_send_proposal uses the solver CPLEX to locally solve a modified version of the above MILP. More precisely, this MILP is the same class of model with Eq. 1-13, except that there are some adjustments explained now. The nurse n index, decision variable x jn , and some constraints (Eq. 8 and 9) are removed. A new binary decision variable kept j is added to find the patient with the largest weighted waiting time to be proposed. The variable kept j also replaces the x jn in Eq. 6 and 7 to ensure that each patient, except the one proposed, has one direct predecessor and has no more than one successor. After solving the patient proposal problem, the host nurse broadcasts the obtained patient to other nurses who become guests.

This broadcast fires all guests' Transition CNP11_guest_receive_proposal. The guest also solves the modified MILP explained in the previous paragraph to find the patient to be proposed back to the host in State CNP12_guest_reply_ proposal. The guest also calculates the weighted waiting time for several cases: Case 1: All the patients in the patientList without the host's proposal Case 2: All the patients in the patientList with the host's proposed patient Case 3: All the patients in the patientList, including the host's proposal, and excluding the patients to be proposed

The calculation is done by making CPLEX solve another version of the MILP in Eq. 1-13 with the following adjustments. The nurse n index, decision variable x jn , and some constraints (Eq. 8 and 9) are removed. After the calculation is performed, these weighted waiting times and the proposed patient are sent back to the host.

The host nurse fires Transition CNP13_host_receive_proposal after receiving the first reply from a guest and waits for the replies of the other guests in State CNP14_host_wait_for_all_replies. Meanwhile, the host also saves the waiting time received in these replies in a matrix for allocation. This matrix for allocation contains the weighted waiting time of all scheduling cases from the nurses involved in the exchange. It is used later for allocating the patient bundle to the respective nurse. After that, the host nurse fires Transition CNP15_host_received_all_proposals and executes the allocation in state CNP16_host_allocate_and_send_allocation. First, the host nurse calculates the weighted waiting time for all the following cases: The host then inserts these weighted waiting times into the matrix for allocation. The host then solves the allocation problem with CPLEX and sends the result to the guests. The message from the host triggers Transition CNP16_host_ receive_allocation, which allows the guest to update its patientList based on the allocation result. The host also modifies the pa-tientList based on the result and determines the next patients to be treated. After that, the host fires Transition CNP17_host_proceed_to_treat and begins to treat the next patient in State CNP7_host_treat_patient. The next rounds of scheduling and interaction take place after another nurse finishes the treatment of a patient. In the meantime, the nurses still run the system state chart to add patients to their patientList whenever the triage nurse sends another.

Experimental results and discussion

This section compares the schedule obtained by our (de-)centralised models on the same test set. The test aims to assess whether the proposed models generate appropriate and expected results. The models are assessed from their objective function values of total weighted waiting time and by seeing the patient schedule generated. The test set contains the data of 15 patients with various triage levels and interarrival times, as well as three nurses (plus the triage nurse). Both proposed models are built in AnyLogic 8.5.2 and IBM ILOG CPLEX 22.1.1.

The latest re-scheduling generated by each model at time t = 55 is shown in the Gantt charts in Figure 3. The x-axis is the time and the bold vertical line shows the current time point t = 55. This is the time when the rescheduling happens in the decentralised model. The value on each block represents the patient's index j=1. . . 15. The colour on each patient block represents the triage level of the corresponding patient, as described in Table 1. The solid colour patient blocks mean that these patients' treatment is either finished or ongoing at scheduling time t, hence these patients are not involved in the rescheduling process. On the contrary, the shaded blocks mean that these patients' treatment has not started yet and may thus be rescheduled.

From the scheduling result in Figure 3, it can be seen that both models generate proper schedules for the patients. In general, the three patients (Patient j = 1, 2, 3) who arrived first are scheduled first to the three nurses. Then, the schedules prioritize all the patients with triage level one (patients j = 1, 4, 7, 8, 11). After that, they are followed by patients of triage levels two to five, respectively. The patients are distributed almost evenly among the three nurses.

The schedules generated for centralised and decentralised models are slightly different. The differences are in the patient whose treatment is not Fig. 3: Generated Schedule of Centralised and Decentralised Model started yet. On the other hand, both schedules generated for all the patients whose treatment is finished or ongoing at time t are the same. The differences in the schedules occur as the result of the interaction and patient exchange that happened in the decentralised model. In spite of the differences in the patient sequence generated in the schedules, both schedules produced similar objective functions. The objective value difference between the two models is relatively small, less than 0.1%.

Conclusion

The exploration of different (de-)centralisation levels of decision structure in resource scheduling for Emergency Departments (EDs) is crucial to manage and improve ED performance and patients' pathways. This article has proposed and compared one decentralised and one centralised structure. The centralised model has a dynamic allocation algorithm relying on a MILP that minimises the total weighted waiting time of patients. The decentralised model is a multi-agent system in which each nurse is an agent solving a variant of the centralised MILP to generate her own schedule, and interacting with other nurses to exchange patients. Both models are assessed and compared using the same test sets, and the result shows that both models generate appropriate patient schedules with slight differences. The difference in objective function generated from both models is also relatively small (less than 0.1%). Overall, the centralised model provides a slightly better solution compared to the decentralised one.

This paper explores two different decision structures on resource scheduling and compares them to a small-sized test set. In future works, both models will be modified in order to generate each reschedule in five steps: patients with triage level 1 will be scheduled in Step 1, next patients with triage level 2 will be added without modifying the patients already scheduled in Step 2, and so on. This change may solve the problem described above on the centralised model by removing the use of weight to model the triage level. In addition, this will allow for scheduling more patients since fewer patients will be scheduled in each of the 5 steps. Besides, we will test both our models on real datasets from the ED in Saint-Étienne, France. The exploration and comparison of the developed models with the real patient-taking process done in the ED will also be performed.

  . The followings are the mathematical model notations and equations (Eq. 1-13) for the dynamic nurse allocation MILP model: Indices and sets: j patient j = 0, 1, . . . J. Patient j = 0 is the "dummy" patient (j ∈ J) n nurse n = 0, 1, . . . N (n ∈ N ) J Set of patients N Set of nurses Decision variables: s j Treatment start time of Patient j c j Treatment completion time of Patient j x jn 1 if Patient j treated by nurse n, 0 otherwise z jkn 1 if Patient k treated immediately after Patient j by Nurse n, 0 otherwise Parameters: a j Arrival time of Patient j p j Treatment duration of Patient j u j Weight of triage level of Patient j (see

Fig. 2 :

 2 Fig. 2: Decentralised model e.g., the message sent in State CNP10_host_send_proposal fires Transition CNP11_guest_ receive_proposal. Initially, all nurses start in State CNP0_initialization for the host where they put the dummy patient (j = 0) into their patientList. All nurses are also in State CNP1_guest_wait_for_ Proposal of their guest state chart and State sA_wait_for_notification for the storingPatient state chart because we use Anylogic which always executes the first state in all state charts. Then, Transition CNP2_host_start in the host state chart fires when decentralisation is chosen as the mode of decision. The host nurses are waiting for a patient from the guest in their State CNP3_host_wait_for_patient. After the triage nurse has generated the patient's information and sent this patient to the waiting room, the triage nurse sends a message to all nurses to trigger their Transition CNP4_patient_arrive. The nurses are now in State CNP5_host_aware_of_ patient. All nurses then fire Transition CNP6_host_1st_ patient if they are going to treat their first patient. The first nurse to fire Transition CNP7_host_take_ patient takes and removes the patient from the waiting room, while the other nurses go back to State CNP3_host_wait_for_patient as there are no patients in the waiting room. The nurse who takes the patient continues to state CNP8_host_treat_patient to treat the patient during p j .As the first nurse host treated the first patient, other patients arrive and other nurses are aware, fire transitions, take, and treat their first patients. After the nurses acquire their first patients, if new patients arrive, the triage nurse sends different messages which trigger Transition sB_nurse_receive_notification in the nurse system. The nurses check the waiting room in branch sC_check_ patient_availability. The first nurse who fires Transition sD1_nurse_take _patient, takes and keeps the patient on the patientList using the system. The nurse who has just taken the patient waits in sF_time_interval to prevent the same nurse from taking all newly arrived patients.

Case 1 :

 1 All the patients in the patientList without the guests' proposals Case 2: Patients in the patientList of host with each of guest's proposed patient Case 3: All the patients in the patientList, including each of the guest's proposal, and excluding the patients proposed to host

Table 1 :

 1 Triage levels of patients

	Level	Status	Weight in our MILP Colour in Figure 3
	1 Resuscitation/acute	10 8	Red
	2	Very urgent	10 6	Orange
	3	Urgent	10 4	Yellow
	4	Less urgent	10 2	Green
	5	Not urgent	1	Blue

Table 1 )

 1 zt jkn Treatment order decision variable of Patient j in the previous run of scheduling, i.e., 1 if Patient k was treated immediately after Patient j by Nurse n in the previous run ct j Completion time of Patient j in the previous run t Time of the current run of scheduling
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