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Digital Twin for decision-support: An
insight into the integration of simulation
models into Digital Twin architecture

Farah ABDOUNE!, Vincent CHEUTET?, Maroua NOUIRI', and Olivier
CARDIN!

Abstract The fourth industrial revolution aims to achieve greater flexibility
and adaptability in manufacturing systems through the use of information
and communication technologies. The Digital Twin technology has emerged
as a promising solution to support human-centered decision-making in this
context. Despite growing interest in this area, there is still a lack of appli-
cations that integrate decision-support functionality and emphasize the rela-
tionship between real-time Digital Twin models and what-if simulation mod-
els. Hence, this paper discusses the integration of simulation models into a
Digital Twin architecture to assist operators in making appropriate decisions.
A proof of concept is presented to demonstrate this approach’s feasibility and
open up perspectives for further research in this area.

Keywords: Digital Twin; simulation; integration; decision-support; recon-
figuration; architecture

1 Introduction

Seen as an important pillar of the Industry 4.0 paradigm, the Digital Twin
(DT) has gained a strong following in both the scientific and industrial com-
munities during the last few decades [10]. As it has been expanding to new
sectors and applications, the DT paradigm has known a plethora of defini-
tions, which can demonstrate a lack of maturity on this subject [28]. Although
there is no one-size-fits-all definition of DT, it can be thought of as one or
more simulation models of a real system that are always connected to the
physical counterpart or are only briefly connected, to achieve accurate emu-
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lation and mirroring the operational conditions of the real systems, employing
the best available representations, phys-ical and virtual models, and decision-
making tools [32]. According to NASA'’s literature, three key functions of the
DT can be summarized [9]:

e Prediction is the conduct of research before the system runs.

e Monitoring and control of the system state while the system is running.

e Diagnosis is the investigation of unexpected problems that occur during
the system’s operation.

From a manufacturing perspective, the real-time connection allows for per-
manent updating, monitoring, optimizing, and enhancing industrial produc-
tion system functions [7]. These systems are often characterized by a dynamic
environment where different types of events can occur. Hence, the need for
adaptation and reconfiguration is predominant. To this end, the DT can be a
promising technology to support the decision-making process. For instance,
DT may generate "what-if" scenarios based on the state of the real sys-
tem and, if necessary, send feedback to the human operators to modify the
system behavior [2]. This implies combining DT models known generally as
emulation models with offline simulation models. Following that, ideas from
Boschert and Rosen [12] and/or Schluse and Rossmann [27] can be adopted
to choose an appropriate simulation model from a model data-base coupled
with collected real-time data. Alternatively, automatic simulation model gen-
eration could be used by combining semantic data models and operational
data from the real system [13]. Although the use of DT to steer decision-
making provides advantages, there are limitations to its implementation. [30]
assert that the primary obstacle is ensuring integration, communication, and
synchronicity between the physical and virtual domains, which often neces-
sitates a technological infrastructure comprising sensors, intelligent systems,
databases, and other components.

In this context, a major challenge is having a representation that is as
close as possible to the real system by the simulation model to test different
scenarios. This entails the integration of the relevant data in the simulation
model to initialize it with the current state of the system but also provide
enough information to estimate the future state of the system through the
connection to the information system. While it is acknowledged that there
are numerous additional challenges due to the complexity of decision-support
systems, this research will solely concentrate on the challenge of integrating
the simulation models into a DT architecture to test scenarios, focusing on
the initialization mechanism of these models to best represent the real system.

The remainder of the paper is structured as follows: section 2 provides the
state of the art, section 3 presents the methodology, and section 4 details the
proof of concept. Finally, section 5 gives concluding remarks and perspectives.
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2 State of the art

To achieve a holistic perspective about DT and decision-support, and con-
textualize the scope of this study, different existing DT architectures are ex-
amined in this section for starters. Among the most referenced architecture,
one can find the Grieves architecture [11] based on 3-dimension architecture
including the physical entity, the virtual model, and the connection between
them. Tao et al. [31] proposed a five-dimensional DT architecture that con-
tains, in addition to the three original components, the DT service and data
exchange between entities. According to Kritzinger et al. [17], another per-
spective based on integration level allows for a thorough grasp of how a DT
should be defined. However, this positioning is not consistent with our point
of view on manufacturing systems, with a clear integration of the human in
the decision loop.

In a domain close to the DT paradigm, a Cyber-Physical Production Sys-
tems (CPPS) have been introduced as connected systems enhancing the
decision-making process in real-time. They are systems of systems of au-
tonomous and co-operative elements connecting in situation-dependent ways,
on and across all levels of production, from processes through machines up
to production and logistics networks, enhancing decision-making processes
in real-time, response to unforeseen conditions, and evolution over time [5].
From all existing CPPS architectures, the one from Cardin et al. [6] illustrates
the positioning between the physical part and the cyber (i.e. digital) part,
with a clear integration of the human in the decision loop for reconfiguration
(Fig. 1a). In the same perspective, Bouleux et al. [3] give a clear definition of
what the DT represents in manufacturing (Fig. 1b) by illustrating the con-
nection between the physical system, so-called physical twin (PT) and the
DT that can integrate virtual models, simulation, optimization, etc. where
the human plays a central role in decision-making process.
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Fig. 1: Comparison between two architectures
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In this context, there has been a growing interest in the development of
decision-support systems based on DTs in the manufacturing sector. The
following is a selection of relevant literature on the subject at hand. One
approach discussed in the literature is the use of a tier-based context model
with a generic ontology and model, with a focus on external factors such as
the case study presented in [24]. Another paper presents a simulation-based
decision support tool that analyzes the activities occurring in distribution
and production facilities by developing two simulation models [8]. Some pa-
pers propose the use of DTs to optimize production scheduling, rescheduling,
and order management through the aggregation of several DTs representing
different physical assets [18]. In [22], a DT architecture is used to sched-
ule preventive maintenance interventions, exploiting real-time opportunities
and periodically accessing an updated digital model of the shop floor. Other
studies propose the integration of discrete event simulation and fore-casting
methods for operational planning [25]. Decision-making based on the inter-
linkage of DTs is achieved through the semantic ontology model in [19]. An
architecture combining a real-time DT of logistics systems with simulation
logic is discussed starting with the current state in [16]. To better manage
patient routes in Emergency Departments (EDs), an agent-based architec-
ture of a DT is suggested in [20]. This DT is regularly synchronized with the
IS of the physical system. A comprehensive overview of DTs in the manu-
facturing domain is proposed in [23] which defines a conceptual architecture
that considers simulation capabilities to optimize production processes. An-
other study presents a systematic literature re-view of the use of simulation
as a DT to support decision-making, highlighting various uncertainties and
discussions around the simulation model [26]. While the use of simulation in
DT is a relatively recent phenomenon in production processes [21, 14], other
comparable approaches suggest that this concept has been investigated for
several decades. For instance, Katz and Manivannan [15] and Cardin [4] pro-
posed linking a simulation model to manufacturing equipment for monitoring
purposes, an approach known as "Online Simulation". It is noted that the ob-
jectives of this method are similar to those employed in DT approaches, and
similar designations have been used over the years to refer to this technique
[26].

To conclude, it is observed from these papers that offline simulation mod-
els for decision-support are frequently employed to evaluate static and dy-
namic scenarios coupled with classic control approaches based on operational
research and /or artificial intelligence for instance, or as a DT by often retriev-
ing the necessary information for initializing the simulation model directly
from the actual system. The Manufacturing Execution System (MES) as part
of the information system (IS) can partially provide this information. This
solution has several advantages. The collected data is reliable and represents
the real state of the production system, The simulation initializes relatively
quickly and it requires a minimal hardware architecture to be effective. How-
ever, a significant challenge arises because the MES only possesses partial
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knowledge of the system’s complete state at any given time. This limitation
is due to the placement and characteristics of sensors and detectors within the
production system, leading to uncertainties in the state information provided
by the MES. Thus, the objective of this paper is to integrate the simulation
models with real-time emulation models in the DT architecture for decision
support. More precisely, the study will focus mainly on the link to initialize
the simulation models based on the information captured from the emulation
models and the information systems.

3 3 Integration of simulation into DT architecture

This section presents first the definition of system state and model state to
lay the foundation, then the integration strategy is discussed and finally, the
synchronization levels are detailed.

3.1 Real System vs. virtual model

To be able to save the current state of the physical system with the emulation
model and push it to the simulation model, it is important to understand some
sensitive notions such as the state of the system, the state of the model, and
the model’s properties. A definition of these notions is suggested as follows:

e System state: The state of a system can be defined as a set of data that is
used to describe the system’s behavior at a specific moment and estimate
the future behavior.

e Model properties: Static properties of a model refer to the characteris-
tics of the model that remain constant over time. These properties include
features such as the position and speed of conveyors, the capacity of re-
sources, and the number and types of entities involved in the process. On
the other hand, the dynamic properties of a model are those that change
over time. These properties include variables such as the quantity and type
of products on the conveyor, the utilization of resources, and the status of
entities as they move through the system.

In both emulation and simulation models, static properties remain con-
stant, while dynamic properties are captured from the emulation model and
sent to initialize the simulation model with the current state of the system.
The emulation model can store this data as intermediate data models, which
can be read by the simulation model to reconstruct the current state of the
real system. The emulation model is designed to serve the simulation model
for decision-making purposes, rather than fitting precisely to the real system
for monitoring or anomaly detection purposes for instance. Therefore, the
design of the emulation model is influenced by the simulation model since
it is the one performing the decision-support task. Consequently, careful at-
tention is given to capturing the necessary information that represents the
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system state to be transferred and read by the simulation model during the
design process. For this reason, it can be seen in Fig. 2 that the information
flow comes from the top to the bottom represented in blue arrows: the oper-
ator requests the simulation, the simulation requests the emulation model to
capture the current state; then the data flow represented in red arrow goes
from the emulation to the simulation to deliver the necessary data. Fig. 2
will be further detailed in section 3.2.
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Fig. 2: Integration of simulation with DT real-time models

3.2 Integration strategy

It is important to initialize the simulation model to closely match the initial
state of the real system. An alternative approach is to employ an emulation
model that is connected to the actual system for continuous monitoring.
This model maintains a constant and seamless connection with the system,
enabling prompt adjustment and synchronization of its estimations as soon
as new information becomes avail-able. This approach minimizes uncertainty
in the data by ensuring a continuous stream of reliable data directly from the
real system.

Real-time data captured from the actual system is used to feed the emu-
lation model, which subsequently supplies data to the simulation model. The
controllers of the real system provide sensory information in discrete forms,
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typically represented as binary values (0s and 1s). Nevertheless, the emula-
tion model can maintain continuous synchronization with the real system by
utilizing the collected data to estimate nominal behavior. For example, when
tracking the position of a pallet on a conveyor—a continuous data stream over
time—the controllers report the pallet’s position at each sensor point. This
allows the emulation model to synchronize with the sensor data, bridging the
gap between consecutive sensors. Even in instances where the real system
does not provide information between two sensors, the emulation model esti-
mates the behavior between them and synchronizes this estimation with each
sensor input.

To minimize uncertainty and achieve a high level of resemblance between
the simulation model and the real system, the emulation model conveys a
continuous estimated value for the pallet’s position on the conveyor. Conse-
quently, the information required for initializing the simulation model may
exceed that necessary for control purposes in this scenario.

The emulation model provides the current system state obtained from the
controllers. Additionally, complementary data are required from the informa-
tion system (MES, e.g.) to supply production data to the simulation model.
This enables the simulation model to estimate the system’s future state. Fig. 2
illustrates the integration of simulation models with Digital Twin (DT). The
emulation models operate on a near-real-time horizon, maintaining contin-
uous synchronization with the physical system. In contrast, the simulation
model is triggered only upon operator demand, resulting in asynchronous
requests

The simulation model’s time horizon is referred to as "look-ahead," as it
rapidly tests future scenarios. Further details regarding these two levels of
synchronicity are provided in section 3.3. System data from sensors, actu-
ators, or PLCs are consistently fed to the emulation model to maintain an
up-to-date system state. Meanwhile, production data from the MES are di-
rectly supplied to the simulation model as needed. It’s important to note that
this process can vary depending on the application’s purpose, although an
attempt has been made to consider a generic scenario.

3.3 Synchronization levels

Tao et al. [29] highlight that a crucial component of applying DT is its ca-
pacity for coevolution and synchronization between the physical and virtual
realms. DT facilitates more efficient decision-making in such scenarios and
is envisioned to adapt to the physical system with each improvement step,
leading to a mutually beneficial development of both environments.

Two levels of synchronization can be distinguished in Fig. 2: the first one
is be-tween the physical system and the emulation model and will be referred
to as a “Synchronous update”. In a previous study, the synchronization
mechanism be-tween the physical system and the DT emulation model has
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been detailed and demonstrated in a case study by the authors [1]. This
synchronization is done on events as follows: When an actual process occurs,
it prompts the DT emulation model to generate an event. There are two
scenarios: firstly, if the physical system lags behind the DT then the DT
needs to wait for the physical system, and secondly, if the event occurs in
the physical system before it is in the DT, then the DT should move forward
to be aligned with the physical system. The second level of synchronization
will be denominated as “Asynchronous request” and it represents the link
between the emulation and simulation models. When triggered on demand,
the synchronization is conducted by pushing all the current events happen-ing
in the emulation model representing the current state of the physical system
to the simulation model at once.

4 Proof of concept

For this work, a proof of concept is provided in this section to help the
validation of the discussed integration.

4.1 Experimental setting

To demonstrate the suggested mechanism, a preliminary proof of concept
has been carried out on a conveyor system that is responsible for transport-
ing pallets. The conveyor system is equipped with two position sensors and
RFID tag readers that can read the RFID tags on the pallets and is con-
trolled by a PLC. The conveyor feeds two workstations; the operator would
need to choose where to send the pal-lets depending on parameters like pro-
cessing time. For the sake of this study, the physical system is represented
by a model. We acknowledge that both the case study and the system used
are straightforward. However, our objective is to im-plement the suggested
technique, establish its viability, and illustrate its intricacy.

The emulation model is designed using the discrete simulation software
Flexsim and connected to the real system via an OPC-UA server to collect
data from sensors and RFIDs. Although we tend to believe that the two
models are the same, this is not the case. As explained before in section
3.3, the static properties are the same; however, the dynamic properties are
different. Additionally, the simulation time horizon is different between the
two models. Whereas the emulation model acquires real-time data from the
system and is synchronized each time it gets the data with the real system and
represents only the current state of the system, the simulation model operates
at a much higher speed. Fig. 3 illustrates the implementation framework that
will be detailed next.
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4.2 Implementation

Upon the occurrence of an external event, the operator may request a re-
configuration by defining the scenarios to be tested and sending a request to
the simulation model. The simulation model requests the emulation model
to deliver the necessary information. The emulation model is continuously
updated and synchronized with the physical system. At this stage, the emu-
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lation model records all current events and generates a table to capture the
current state, which is subsequently saved as a CSV file for instance. In this
example, the properties of interest include the pallet number, its position on
the conveyor, and its ID, which is defined as its access path in the model.

The data file containing the current system state is imported into the simu-
lation model, which restores the system to its previous state. The simulation
is then executed for a defined period, during which performance metrics,
such as average time in the process and work in progress, are measured and
recorded. These metrics are presented to the operator as a log of results, and
he can make appropriate decisions or request further testing of alternative
scenarios if deemed necessary. The focus of this case study did not involve the
integration of the MES due to its complexity. Fig. 3 illustrates the implemen-
tation framework with the detailed steps highlighting five layers namely (a)
the physical system (physical device along with the sensors, actuators, and
PLCs), (b) the monitoring made up from the real-time connected emulation
model under Flexsim software along with the synchronization mechanism,
(¢) the initialization which represents the detailed link between the emula-
tion and simulation models and is made up of the intermediate data model
to capture the current state, (d) the exploration which represents the test
of different scenarios under simulation models and finally, (e ) the decision
layer where the operator requests for reconfiguration or take the appropriate
decisions.

5 Conclusion and perspectives

The current phase of Industry 4.0 envisions achieving greater flexibility and
adaptability in manufacturing systems by progressively leveraging informa-
tion and communication technologies. In this regard, the DT technology
shows promise to support the human-centered decision-making process. De-
spite the growing interest of the scientific community in this field, there is
still a dearth of applications that include decision-support functionality em-
phasizing the link between real-time models and what-if simulation models.

In this paper, we focused on integrating simulation models into a DT ar-
chitecture to supplement real-time models and test what-if scenarios, thereby
assisting operators in making appropriate decisions. We shed light on the re-
lationship be-tween real-time and what-if simulation models by discussing
various implications, such as possible integration strategies, synchronization
levels, and system states. We proposed a small proof of concept to demon-
strate these concepts. The paper presents new research opportunities. First,
the case study can be expanded to a more complex case, such as an indus-
trial production system, to aid operators in their daily decision-making. This
will entail integrating more complex infrastructures, such as MES or ERP,
to enhance the functionality of the simulation model. Future work could
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also concentrate on proposing a decision-support-centered DT architecture
by studying decision perimeters and frequencies.
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