

Dynamic Flux Balance Analysis with Metamodels

Clémence Frioux, Sylvie Huet, Simon Labarthe, Julien Martinelli, Thibault Malou, David James Sherman, Marie-Luce Taupin, Pablo Ugalde-Salas

▶ To cite this version:

Clémence Frioux, Sylvie Huet, Simon Labarthe, Julien Martinelli, Thibault Malou, et al.. Dynamic Flux Balance Analysis with Metamodels. Microbial communities: current approaches and open challenges, Oct 2022, Cambridge, United Kingdom. . hal-04252041

HAL Id: hal-04252041 https://hal.science/hal-04252041v1

Submitted on 20 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Íncia

Dynamic Flux Balance Analysis with Metamodels

Clémence Frioux¹, Sylvie Huet², Simon Labarthe ^{1,3}, Julien Martinelli^{4.5}, Thibault Malou⁶, David Sherman¹, Marie-Luce Taupin⁷, Pablo Ugalde-Salas ¹

¹Inria - INRAE - Université de Bordeaux, 33400 Talence || ²Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France || ³INRAE, Univ. Bordeaux, BIOGECO, F-33610 Cestas || ⁴INSERM U900, Saint-Cloud, France, Institut Curie, Saint Cloud, France, Paris Saclay University, France, MINES ParisTech, CBIO - Centre for Computational Biology, PSL Research University, Paris, France || ⁵Lifeware Group, Inria Saclay IIe-de-France, Palaiseau 91120, France || ⁶INSA - Institut de Mathématique de Toulouse, Toulouse, France || ⁷Laboratoire LaMME, UEVE and UMR 8071, Université Paris Saclay, Evry, France

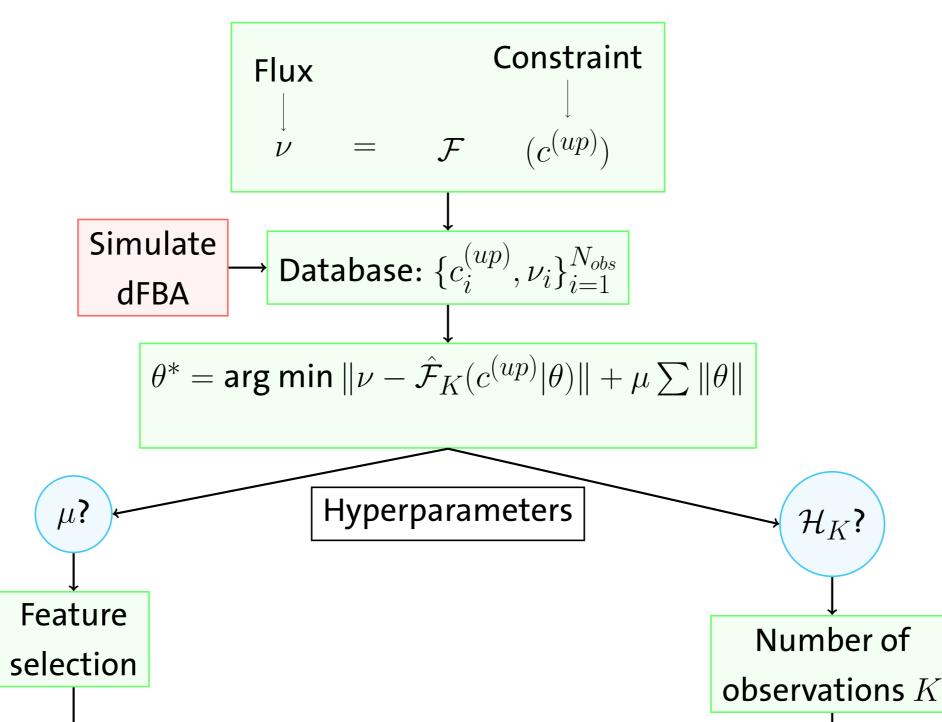
(FBA)

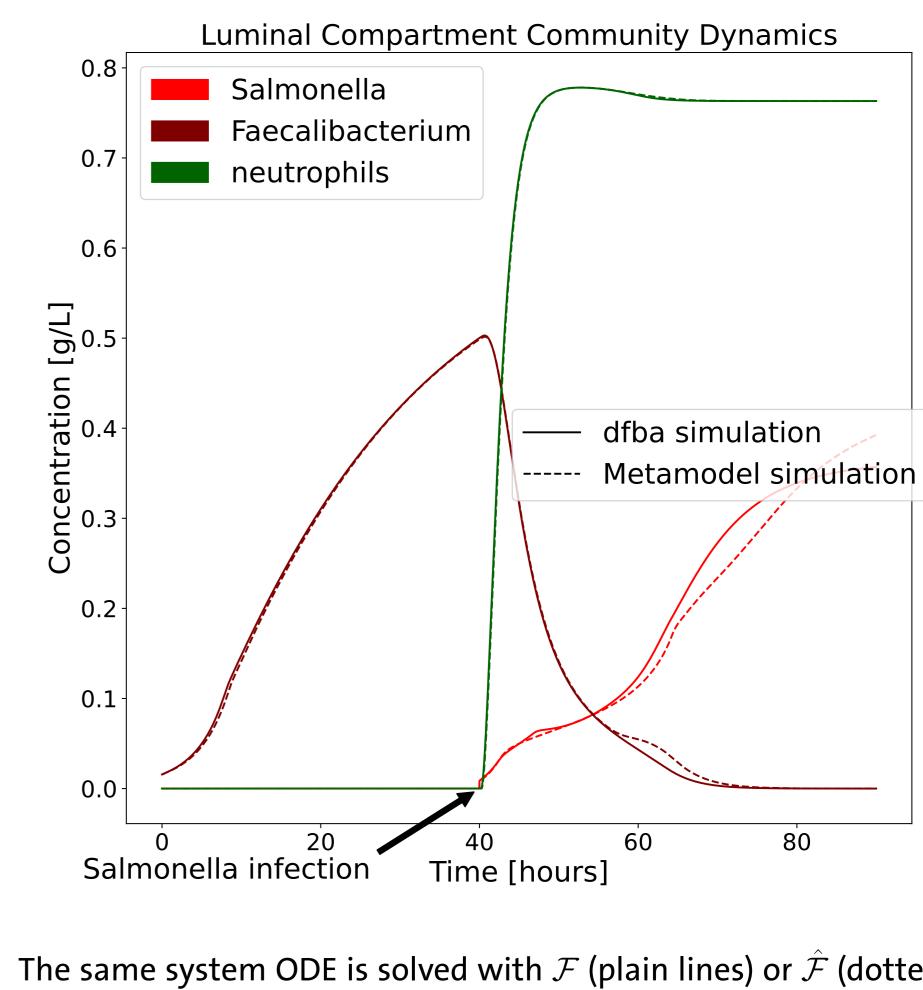
About the presenter: Mathematical Engineer (U. de Chile), Ph.D in Microbiology and Biotechnology at INRAE Laboratoire de Biotechnologie de L'Environnement (U. de Montpellier). Postdoctoral fellow at INRIA Bordeaux at the team unit PLEIADE. Interested in the interplay and integration between bioprocess, microbial ecology, bioenergetics and genetic sequencing from a dynamic modelling stance. Contact: pablo.ugalde-salas@inria.fr

Figure 2: The ecological dynamics of both dFBA and the accelerated model

1. Modeling of microbial metabolism through time

1.1 FBA models


Genome sequencing allows us to reconstruct the set of **possible reactions** within a cell. Deciding at which **rate** (ν) to produce or consume **metabolites** can be formalized in **Flux Balance Analysis** (FBA) [3].


> $\nu^* := \arg \max \quad \nu_b$ $s.t.A\nu = 0$ $\nu \in [c_{\min}, c_{\max}]$ $\nu_{up} \in [c^{(up)}, c_{\max}]$

- ν_b represents the **biomass flux**. A **working hypothesis** is that cells maximize biomass formation.
- $A\nu = 0$ reflects the **mass balance** of genome-based reactions.
- The bounds $[c_{\min}, c_{\max}]$ are **fixed physical limits** to the flux ν .
- The environmental conditions are reflected on the variable uptake bounds $c^{(up)}$ for the case of the N^{up} extracellular metabo-

2. Metamodel of FBA

FBA is approximated using an ANOVA-Reproducing Kernel Hilbert Space techniques (RKHS) [2]. This method allows to perform **simultaneously feature selection and model approximation** to focus the computational budget on sensitive variables.

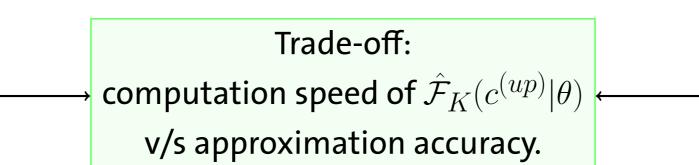
The same system ODE is solved with ${\mathcal F}$ (plain lines) or $\hat{{\mathcal F}}$ (dotted lines).

Figure 3: Trade-off between speed-up and relative error.

lites. They depend on the availability of metabolites.

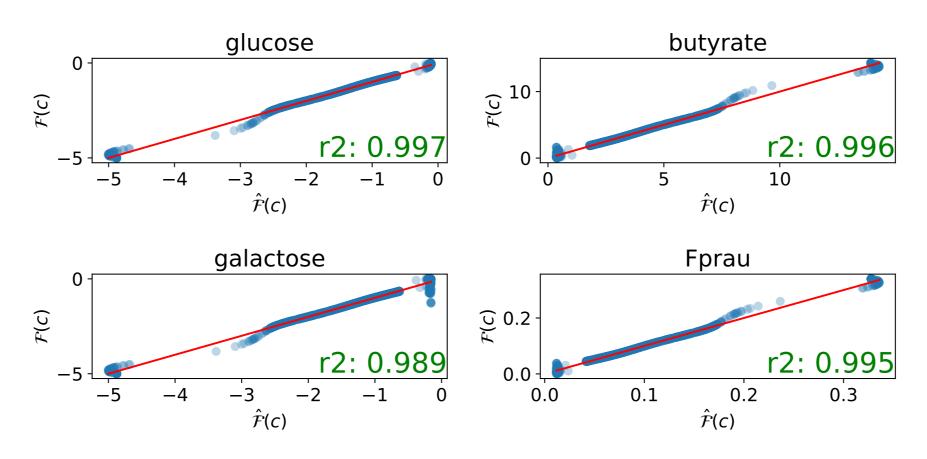
Let $\mathcal F$ be the function that maps the **constraints** $c^{(up)}$ to the optimal **flux** v^* obtained by (FBA)

 $\mathcal{F}: \quad \mathbb{R}^{N^{up}} \longrightarrow \mathbb{R}^{N_r}$ $c^{(up)} \mapsto \nu^*$

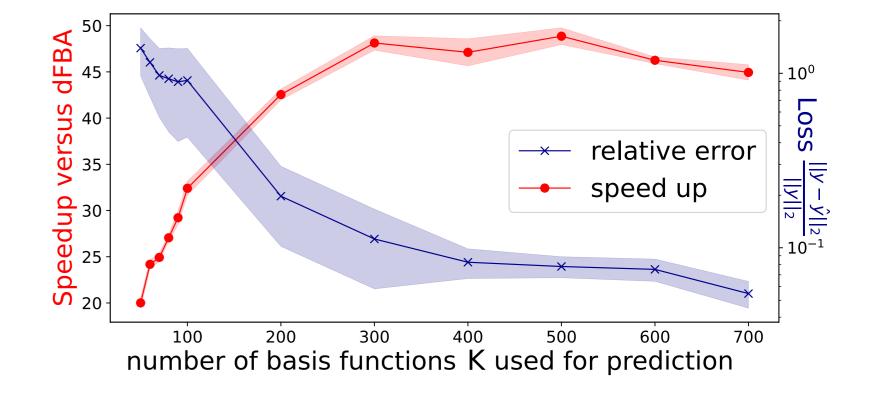

1.2 dFBA: FBA models through time

Extracellular metabolites change through time: One can include function ${\cal F}$ in a dynamic setting.

- If x is the state variable representing the concentrations of extracellular metabolites varying in time, one can write $c^{(up)} = c^{(up)}(x)$.
- Abusing notation then $\mathcal{F}(c^{(up)}(x))=\mathcal{F}(x).$
- Time evolution is described by the system $\dot{x}=f\left(x,\mathcal{F}(x)\right)$ (see diagram below).


1.3 Main goal

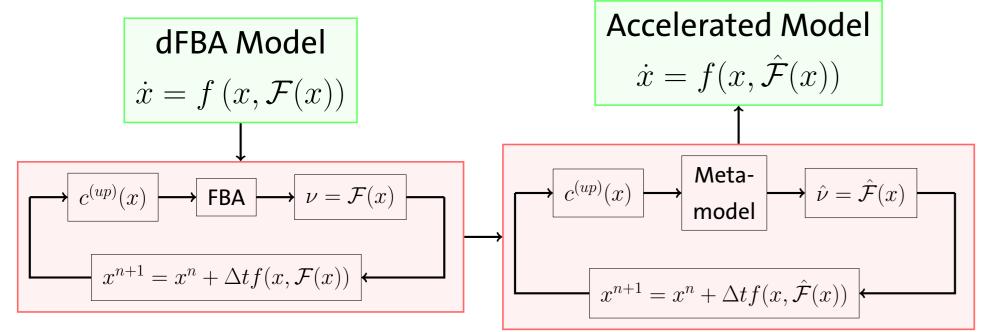
Evaluation of dFBA models can represent a high computational cost in various situations (large microbial community, parameter inferecence, sensitivity analysis, PDE resolution). It is then of in-



Hyperparameter μ selection performed on unseen points and \mathcal{H}_K on new dFBA computations. For the selected parameters, the metamodel of FBA presents a good fit.

Figure 1: Comparison of the metamodel $\hat{\mathcal{F}}$ and \mathcal{F}

The metamodel outputs are plotted against the FBA model outputs on unseen constraints $c^{(up)}$.


The trade-off "speed-up/accuracy" is tuned by K, but also by μ : for low K and fixed μ , a higher number of features are retained \Rightarrow impaired speed-up.

4. Take-Home Message

• dFBA models can be accelerated by a metamodel with a speed-up of 47 and satisfactory accuracy (7%).

- ANOVA-RKHS allows at the same time to accurately estimate the problem and select feature.
- Perspective: Other dimensional reduction techniques are being studied to improve speed-up.

terest to provide a low-computational-cost approximate model.

In a usual dFBA, an optimization problem (FBA) must be solved at each time step of the numerical integration. The idea is to replace it (right diagram) with a metamodel at the price of accuracy. The problem becomes a **trade-off** between **speed-up** and **accuracy**.

3. dFBA case study

We use a dynamical system that models the infection of Salmonella in a host. It includes two different FBA, one for *Salmonella* and another one for commensal bacteria represented by *Faecalibacterium Prauznitzii*. For a more detailed view on the model we refer to the **poster 161** entitled "Modelling the dynamics of Salmonella infection in the gut at the bacterial and host levels" and to our article [1].

References

[1] Clémence Frioux, Sylvie Huet, Simon Labarthe, Julien Martinelli, Thibault Malou, David James Sherman, Marie-Luce Taupin, and Pablo Ugalde-Salas. Accelerating metabolic models evaluation with statistical metamodels: application to Salmonella infection models. working paper or preprint, April 2022.

[2] Sylvie Huet and Marie-Luce Taupin. Metamodel construction for sensitivity analysis. *ESAIM: Proceedings and Surveys*, 60:27–69, 2017.

[3] Jeffrey D Orth, Ines Thiele, and Bernhard Ø Palsson. What is flux balance analysis? *Nature Biotechnology*, 28(3):245–248, 2010.