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PIC Sparse Grid as a filter

Application of a binary filter inspired from the PIC sparse grid technique to the

XTOR-K code

T. Nicolas,1, a) V. Dubois,1 Q. Fang,1 and H. Lütjens1

CPHT, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau,

France

It is known1,2 that the sparse grid method for Particle-In-Cell (PIC) solvers acts as a filter

to reduce the PIC noise. In this paper, a simple rule to discard or keep modes in Fourier

space (a binary filter with values either 0 or 1) is derived using the sparse grid combination

formula. Its relation to the standard sparse grid filter, which is characterized quantitatively,

is explained. The relations between the sparse grid filters on grids of arbitrary levels are

also outlined. Namely, in two (resp. three) dimensions and for bi-linear (resp. tri-linear)

moment deposition, it is proven rigorously that the sparse grid filter, for a grid of size equal

to an arbitrary power of two, can be expressed in terms of two (resp. three) unique real

valued functions. The advantage of the binary filter over the standard sparse grid filter

is the reduction of signal deformation introduced by the latter, for the same noise reduc-

tion capability. By applying the filter to moments of a marker distribution coming from

the XTOR-K code, it appears the noise could be significantly reduced, with a moderate

overhead in the moment deposition part of the algorithm.

a)Electronic mail: timothee.nicolas@polytechnique.edu.
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PIC Sparse Grid as a filter

I. INTRODUCTION

The Particle-in-cell (PIC) method is one of the basic tools of computational plasma physics.

It is used in purely kinetic codes as well as hybrid kinetic/fluid codes. In a PIC code, markers

representing chunks of the distribution function are evolved in continuous space-time according

to an electro-magnetic field known on a grid. The moments of the marker distribution are period-

ically deposited on the grid in order to evolve said fields according to some subset of Maxwell’s

equations. The time evolution of charged particle in a magnetized plasma usually follows the

Boris-Buneman algorithm3,4. PIC methods are robust, versatile and easily parallelized. In spite of

this, the well known problem common to all PIC codes is the statistical noise associated with the

limited number of markers per grid cell. The noise being inversely proportional to the square root

of the latter, reducing the PIC noise by brute force increasing the total number of markers often

leads to a prohibitive increase of computational complexity.

In the past, different strategies have been deployed in PIC codes in order to address this noise

issue, such as the δ f technique5,6, quiet start7–9, and noise filtering, which can be spatial2,6,10,11

or temporal9,12,13. In ref.1, noise reduction is achieved by applying the sparse grid combination

technique14,15 to the PIC method. The idea is to collect moments of the marker distribution (e.g.

the density) on several grids that are refined in only one direction at a time, and sparse in the other

directions. The result is that the number of markers per cell is significantly increased. The different

results on the different grids can finally be interpolated on the desired fine grid and combined with

the so-called sparse grid combination technique14. The resulting numerical solution is significantly

denoised with a moderate increase in numerical complexity. Although the sparse grid combination

technique had already been used in plasma physics16,17, it was first suggested in reference1 as a

way to reduce the PIC noise. Following this seminal paper, the merits of the sparse grid PIC

technique have been exploited in plasma applications pertaining to radio frequency discharges18

and to the electron drift instability in Hall thrusters19. The mathematical properties of the sparse

grid PIC technique and its parallel implementation have been extensively studied in refs.20,21. In

these references, the numerical error in the sparse grid PIC method is rigorously estimated in terms

of grid based error on the one hand, and particle based error on the other hand.

The present article can be seen as an alternative way to explain the action of the sparse grid

combination technique in the context of the PIC method. Namely, we regard the sparse grid

technique as a filter, and focus on the action of the filter in Fourier space. Before going any further,
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let us note that the sparse grid PIC technique can be applied in two distinct ways, as explained in

ref.1. In the first, the electromagnetic (EM) field is evaluated on the subgrids using the velocity

moments collected on the subgrids. The sparse grid combination technique is then used on the

EM field to reconstruct the fine grid field. In the second, the sparse grid combination technique is

applied to the moment only to reconstruct the denoised moments on the fine grid, which is used

to compute the fine grid EM field. The present paper is limited to the latter case. In this case,

the sparse grid combination technique acts as a sort of filter, as has been fully realized in ref.2.

Nonetheless, ref.2 does not precisely characterize the filter, although estimates for the error caused

by different combination techniques are precisely computed. By characterizing the filter, we mean

specifying how the filter acts in Fourier space, that is, by what coefficient each mode is multiplied.

It turns out to be very simple. The essential idea is that the moment deposition step convolutes the

marker distribution with the deposition shape function. In Fourier space, the different modes of the

signal are then multiplied by the Fourier transform of the shape function. The shape of the filter

results from the combination of these factors using the sparse grid combination technique. In this

paper, we prove that in two (resp. three) dimensions, the shape of the filter can be inferred from

two (resp. three) single real-valued functions, that are independent of the size of the grid. Even

the truncated combination formulæ of ref.2 are strongly connected with these functions. More

importantly, we derive a binary filter, consistent with the combination formula, which has almost

the same action as the sparse grid filter, except that its values are either 0 (the mode is discarded)

or 1 (the mode is kept). The merits of this filter over the standard one are emphasized.

An advantage of the point of view in terms of filters is that the very same denoising effect

as the sparse grid combination technique can now be obtained by applying the filter to the fine

grid moment. This means that the process of collecting the moment on Ng different grids, with a

numerical complexity scaling as NgNP, where NP is the number of markers, can be replaced with

only one deposition step, followed by a forward and backward fast Fourier transform. The issue is

that Ng can be large, especially in three dimensions. Therefore, it can be expected that replacing

the sparse grid combination technique with the sparse grid filter, which has exactly the same action,

could be faster. Note that efficient parallel implementations of the fast Fourier transform, such as

advertized in ref.22, may be required to fully leverage the advantage of the point of view developed

in the present article.

The rest of the manuscript is organized as follows. In section II, the reduction factor of Fourier

modes due to the convolution with the shape function is introduced after prelimary definitions. The
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tent function, corresponding to linear interpolation, is assumed. The filter is then defined using

the spase grid combination technique. In section III, the properties of the filter are detailed. Most

mathematical proofs of these properties are confined in the appendices. In section IV, the action

of the sparse grid combination technique is reinterpreted in the case where moment deposition is

done directly in Fourier space. We obtain a binary filter that has qualitatively the same properties

as the sparse grid filter, but is much simpler to compute and more intuitive to understand. In

section V, the different filters are applied to distributions coming from the hybrid kinetic/fluid

magnetohydrodynamic code XTOR-K, in order to analyze how the PIC noise in the radial direction

can be reduced. The different filters are compared. In section VI, the case of truncated schemes

of ref.2 is analyzed. In section VII, it is shown that the results of the paper for the standard sparse

grid filter easily extend to any order of the shape function, but with some restrictions, namely, the

filter is positive definite only when the order of the shape function is odd. Finally, we conclude in

section VIII.

II. SIGNAL REDUCTION AND ANALYTICAL EXPRESSION OF THE SPARSE GRID

FILTER IN TWO AND THREE DIMENSIONS

A. Preliminary definitions and notations: grid level, degrees of freedom and moment

deposition

We start by giving the framework of our work. We will only use grids with a number of intervals

equal to a power of 2 in all directions. The obvious advantage of such grids is that they can easily

be divided in coarser grids, which naturally combines well with the sparse grid formalism. A

grid that has 2p intervals (hence, 2p + 1 points) will be said to be level p. In d dimensions, the

level is a d-tuple (p1, . . . , pd). If p1 = . . . = pd = p, then we will speak of the grid of level p

without further specification. The coarsest grid considered will be level 1. The d-dimensional

grid is always supposed to describe the [0,1]d volume. The coordinates are denoted X1 to Xd . To

differentiate from this notation, the jth element of the grid for the coordinate Xi is denoted X ( j)
i .

The coordinates of the grid are sampled according to

X ( j)
i = j2−p, j ∈ J0,2pK (1)

that is, the interval size is h = 2−p. We add the restriction that all signals considered have pe-

riodic boundary conditions. The restriction is not as stringent as it seems: in many applica-
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tions of interest, one is interested only in what happens in a region interior to the grid, so that

the perturbations can be assumed to vanish at the boundaries, making periodic boundary con-

ditions suitable. With periodic boundary conditions, a one-dimensional grid of level p has 2p

degrees of freedom (dof). According to the Nyquist theorem, the fastest signal that can be rep-

resented with such a sampling has a mode number of k = kmax ≡ 2p−1, corresponding to a sig-

nal s = cos
(

2π2p−1(X ( j)) j∈J0,2pK

)
=

(
(−1) j)

j∈J0,2pK. The corresponding sine wave identically

vanishes and, therefore, does not contribute any dof. The zero frequency mode also contains

only one dof. Therefore, all modes between k = 1 and k = kmax − 1 contribute two dof (co-

sine and sine), while k = 0 and k = kmax contribute only one dof. The total number of dofs is

Ndof = 2(kmax −1)+1+1 = 2p. Without surprise, it is found that the Fourier representation has

exactly the same number of dofs as the underlying grid, and this statement is true in any dimension.

Finally, we assume the following for the moment deposition method of the PIC algorithm. Un-

less stated otherwise, it is assumed that the markers’ shape function is derived, in any dimension,

from the so-called tent function:

τ1(x) =

 1−|x| if |x| ≤ 1

0 if |x|> 1
(2)

The tent function is the order one of a series of shape functions of any order, built by successive

convolutions of the hat function, which is non zero and equal to one only for −0.5 < x < 0.5. In

the following, we will denote the order of the deposition function by the letter q. The hat function

and tent function correspond respectively to q = 0 and q = 1. The case of shape functions of

arbitrary order q is examined in section VII. For now, the tent function of equation (2) is assumed.

The shape function is then defined by1

S (x) =
d

∏
i=1

τ1 (xi/hi)

hi
, (3)

where hi = 2−pi is the interval size in direction i. Thus, a marker located in phase space at (xℓ,vℓ)

contributes

N
NP

S (x−xℓ)v
m
ℓ (4)

to the velocity moment of order m, where NP is the number of PIC markers and N represents the

total number of physical particles modeled by the PIC algorithm. This is the moment deposition

of the standard PIC method.
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With these notations, we can now investigate the fundamental mechanism behind the sparse

grid PIC method.

B. Signal reduction at moment deposition in one dimension

The whole idea of the present paper comes from the following simple fact. When a sinusoidal

signal with mode number k (integer) is represented by a distribution of markers, if one collects the

moments of that distribution on a grid of level p by linear deposition (using shape function (3)),

then the sinusoidal signal observed on the collected moment is reduced by the factor10

f (k, p) = sinc2
(

k
2p

)
≡
[

sin(πk2−p)

πk2−p

]2

, (5)

which should come as no surprise to the reader familiar with signal processing theory. Note that

we incorporate the π factor in the definition of the the cardinal sine. The reason for equation (5)

is that the grid density is obtained as the convolution between the shape factor and the marker

density. Therefore, in Fourier space, the Fourier coefficients of the marker density are multiplied

by the Fourier transform of the shape function10. As it turns out, the Fourier transform of the

triangular shape function is the square of the cardinal sine function (see also section VII where

other orders of the deposition method are considered).

A less mathematical argument explains qualitatively equation (5) as follows. Assume a physical

density given by ρ(x) = 1+acos(2πkx), where k ∈N and a < 1 (this constraint is necessary only

to obtain a non-negative density). Now, assume that this density is represented by a distribution

of markers, and that one wishes to use the marker distribution to obtain a numerical estimate

of the density ρ on a grid of level p. With the deposition algorithm described in the preceding

section, it is seen that the markers contributing to the reconstructed value of the density at grid

point x( j) are located in the interval I = [x( j)− h,x( j)+ h], where h = 2−p. Therefore, since they

are distributed according to ρ , the density of markers in the interval I varies and is not uniformly

equal to ρ(x( j)). For instance, for the first grid point in x = 0, the density of the markers closest to

x = 0 have a density equal to 1+a, but the density of the markers in x = h is lower. In particular,

when k = kmax = 2p−1, the density approaches 1− a when x approaches h, which explains why

the effect is strongest for fast varying modes.

On a grid of level p, the fastest mode is kmax = 2p−1, for which the reduction factor is equal

to f (2p−1, p) = sinc2(1/2) = 0.405. If k is larger than kmax, the reduction factor is still given by

6



PIC Sparse Grid as a filter

equation (5), tends to zero as 1/k2, and is exactly zero everytime k is a multiple of kmax.

C. Analytical definition of the filter in two and three dimensions

The signal reduction factor of the one dimensional case can be used in a straightforward man-

ner to compute the signal reduction factor in two and three dimensions. Any periodic signal can

be decomposed in products of sine or cosine of each coordinate x, y and z. Therefore, the reduc-

tion factors simply accumulate multiplicatively, so that the reduction factors in two (resp. three)

dimensions, for a grid of level (px, py) (resp (px, py, pz)) write

f2D (kx,ky; px, py) = f (kx, px) f (ky, py) (6)

f3D (kx,ky,kz; px, py, pz) = f (kx, px) f (ky, py) f (kz, pz) (7)

Note that as a result, the standard PIC method already acts as a low-pass filter, especially in

higher dimensions. Indeed, on a grid of level p in a d-dimensional code, the fastest modes (which

combine fast spatial frequencies in all directions) are reduced by a factor of
(
sinc2(1/2)

)d
. This

factor is 0.164 in two dimensions and 0.067 in three dimensions.

Now, let us turn to the sparse grid PIC algorithm, in the case where the finest grid (that on

which the evaluation of the moments is desired) is of level p. To evaluate a moment, such as, for

example, the density, the standard method is replaced with the following sparse grid combination

formula:

ρ
(p)
sg,2D =

p

∑
i=1

i+ j=p+1

ρ
(p)
(i, j)−

p−1

∑
i=1

i+ j=p

ρ
(p)
(i, j) (8)

ρ
(p)
sg,3D =

p

∑
i=1

p+1−i

∑
j=1

i+ j+k=p+2

ρ
(p)
(i, j,k)−2

p−1

∑
i=1

p−i

∑
j=1

i+ j+k=p+1

ρ
(p)
(i, j,k)+

p−2

∑
i=1

p−1−i

∑
j=1

i+ j+k=p

ρ
(p)
(i, j,k) (9)

In these expressions, ρ
(p)
(i, j) is the density evaluated with a grid of level (i, j), and then interpolated

on the grid of level p (and similarly in three dimensions). As explained in ref.1, this estimate

can reduce the PIC noise at a moderate cost in terms of numerical complexity. The increase of

numerical complexity is due to the fact that each term of the sums in equations (8)-(9) requires

a loop over all the markers of the grid. In two (resp. three) dimensions, the number of terms

in the sum is 2p− 1 (resp. 1+ 3p(p− 1)/2). For instance, a 512× 512× 512 (p = 9) three-

dimensional grid requires 109 such loops over the marker distribution, which can represent a large

computational overhead.

7



PIC Sparse Grid as a filter

Here, we show an alternative way of understanding the reason for the reduction of the PIC

noise, which has the advantage of explicitly characterizing the filter. Indeed, the fact that the

sparse grid acts as a filter is explained in ref.2, but the filter is not quantified in Fourier space. In

addition to providing a more precise understanding of the sparse grid PIC method, this provides

an alternative, much more efficient way, of producing the same noise reduction effect. Namely,

this can be done by applying the filter directly to the standard PIC estimate of the moments of

the distribution function. Although Fourier transforms are required, one avoids looping a large

number of times over the marker distribution.

Using the linearity of the Fourier decomposition, we see that a contribution to the total signal

having mode numbers kx,ky (resp. kx,ky,kz in three dimensions) will be reduced by the factors of

equations (6)-(7), when computed on a grid of level (px, py) (resp (px, py, pz)). Also, there will be

some signal deformation and spectrum broadening due to the interpolation step. Indeed, take for

instance a cosine mode at frequency 2i evaluated on the grid of level i+ 1. This frequency is the

fastest compatible with the Nyquist theorem, and it will appear as a triangle signal. Now, when

this signal is interpolated (using linear interpolation) on a grid of level j > i, it will still appear as

a triangle signal. But, on this grid of level j, the triangle at frequency 2i Fourier decomposes into

a spectrum of modes around the dominant frequency 2i. However, in the following discussion, we

completely neglect this spectrum broadening phenomenon. We will see with concrete examples

that it does not play a dominant role.

Therefore, neglecting the spectrum broadening associated with interpolation, in two (resp.

three) dimensions, the mode with mode numbers kx,ky (resp. kx,ky,kz) is filtered by the sparse

grid algorithm according to the following rules:
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Fsg
2D(kx,ky; p) =

p

∑
i=1

i+ j=p+1

f2D (kx,ky; i, j)

−
p−1

∑
i=1

i+ j=p

f2D (kx,ky; i, j) (10)

Fsg
3D(kx,ky,kz; p) = ∑

i+ j+k=p+2
f3D (kx,ky,kz; i, j,k)

−2 ∑
i+ j+k=p+1

f3D (kx,ky,kz; i, j,k)

+ ∑
i+ j+k=p

f3D (kx,ky,kz; i, j,k) (11)

On a given grid of level p, the
(
2p−1 +1

)d different possible values for the mode numbers are

reduced by the sparse grid algorithm, according to equations (10)-(11), which can be computed

analytically using equations (5)-(7).

D. Examples in two dimensions

Figure 1. Sparse grid filter in two dimensions for p = 6 (a) and p = 7 (b)

The two dimensional sparse grid filter is plotted in figure 1 for grids of level p = 6 (a) and p = 7

(b). It is seen clearly that the filter essentially cancels all modes having moderate or high mode
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numbers in both directions. However, modes that vary rapidly in one direction, but are smooth

in the other one, are kept. This property, which is well known to the users of the sparse grid PIC

method, means that the algorithm can reduce a large fraction of the noise, while at the same time

preserving sharp structures, with the condition that they are more or less aligned with the mesh.

At the same time, the quantitative characterization of the filter allows one to immediately see

the downside of the algorithm. One must be cautious not to have physically meaningful modes

present in the blue regions of figure 1. These modes would disappear from the simulation. This

problem is heavily dependent on both the grid size and the geometry, as the following example

shows.

Let us assume that a poloidal plane (small section of the torus) of a toroidal plasma is modeled

using the sparse grid algorithm. The plasma density can exhibit structures that typically have a

well defined angular mode number and a moderate radial extension. Therefore, let us assume that

the density reads

ρ(x,y) = 1+ae−(r(x,y)−r0)
2/(2σ2) cos(mθ(x,y)) (12)

where m = 10, r0 = 0.25, σ = 0.01, and

x =
1
2
+ r cosθ (13)

y =
1
2
+ r sinθ (14)

The spectrum of this density in (r,θ) variables is sharp. However, it is not the case when expressed

in (x,y) variables. Indeed, to produce one single mode with poloidal mode number m, a broad

spectrum of (kx,ky) modes has to be used. Therefore, when the density is collected according

to the sparse grid algorithm, a large part of the signal can be significantly deformed, leading to

artifacts. Fig. 2 shows these artifacts when the level of the grid is p = 6. Fig. 2 a) shows equation

(12), and Fig. 2 b) the expected result once the sparse grid algorithm is applied to collect the

density. To obtain Fig. 2 b), the data of figure Fig. 2 a) is Fourier analyzed (with a value of

kmax = 2p−1 = 32), then each mode is reduced by the factor given by equation (10), and the signal

is reconstructed in real space using this modified spectrum.
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Figure 2. Sparse grid deformation of an island structure. Analytical signal (a), sparse grid filtered analytical

signal (b), density moment collected with NP = 4× 107 markers using standard PIC method on a grid of

level p = 6 (c), and using the sparse grid combination technique with the same level for the finest grid (d).

Fig. 2 c) shows the density collected on the grid of level p = 6 with a sampling of NP = 4×107

markers. Note that in order to draw the markers from this distribution, the Fourier analysis of

equation (12) is also used. Cumulative distribution functions can be obtained analytically from the

Fourier spectrum in order to draw x randomly from the distribution integrated in y, and for each

value of x, the cumulative distribution function in y is used to draw y randomly. Finally, Fig. 2 d)

displays the result of the sparse grid algorithm, equation (8), still with the same grid of level p = 6.

The artifacts predicted by the filter in Fig. 2 b) appear clearly. Note that this confirms our earlier

statement that the spectrum broadening associated with interpolation (not taken into account to

produce Fig. 2 b)) has little influence on the final results.

In the case of Fig. 2, it is seen that the sparse grid algorithm significantly deforms the signal,

instead of reducing its PIC noise. However, let us assume that when the structure of equation (12)

appears, the grid actually used in the simulation is of level 10. With NP = 4× 107, each cell

contains roughly 40 markers only, which is not sufficient to obtain a sufficiently good signal to

noise ratio with the standard PIC algorithm. However, the sparse grid algorithm is, in this case,

very efficient at reducing the noise while at the same time keeping the structure without creating
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artifacts. This is seen in Fig. 3. The absence of artifact generation in this case is due to the larger

grid. In this case, very few mode numbers end up in the region of Fourier space where the modes

are reduced to 0.

Figure 3. Sparse grid PIC sampling of the island structure with NP = 4× 107 markers, on a grid of level

p = 10 (1024×1024).

This illustrates how the sparse grid PIC algorithm can be put to use if one knows the kind of

structure to expect in the problem considered. More precisely, one ought to know whether the

structures are aligned, or not, with the axes of the grid, and what is their characteristic size.

III. PROPERTIES OF THE SPARSE GRID FILTER IN TWO AND THREE

DIMENSIONS

In this section, we present and discuss the main mathematical properties of the filter in two and

three dimensions. The proofs are carried out in the appendices.

First of all, ∀(kx,ky, p) ∈N3 such that p ≥ 2 and kx,ky ≤ 2p−1, we have 0 ≤ Fsg
2D(k; p)≤ 1, and

similarly in three dimensions. This is proven in appendix A 1. The proof is not entirely trivial, and

derives from the fact that ∀x,sinc2(x)> sinc2(2x). As explained in section VII, the property does

not hold for all orders of the shape function. The filters are low-pass filters. In particular, we have
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the following remarkable values in two dimensions

Fsg
2D(2

p−1,2p−1; p) = 0 (15)

Fsg
2D(kx,0; p) = sinc2 (kx2−p) (16)

lim
p→∞

Fsg
2D(k; p) = 1. (17)

In three dimensions, we have

Fsg
3D(2

p−1,2p−1,2p−1; p) = 0 (18)

Fsg
3D(kx,ky,0; p) = Fsg

2D(kx,ky; p) (19)

lim
p→∞

Fsg
3D(k; p) = 1. (20)

Note that properties (16) and (19) are evidently symmetric with respect to the dimension of the

vanishing wave number. Property (15) (resp. property (18)) is true because then, all terms of the

sum in equation (10) (resp. equation (11)) vanish. Equation (16) comes from the observation that

if ky = 0, then f2D(kx,ky, i, j) = f (kx, i). Equations (17) and (19) are proven in appendices A 2

and B, respectively. Equation (20) follows from the same considerations as the two dimensional

case.

At this point, the reader may point out that the formalism is cumbersome, because the filter

depends on the level p of the grid. In fact, we show that the filter can be expressed in terms of d

generic continuous real functions, defined on R⋆d
+ , where d is the dimensionality of the problem.

Figure 4. Comparison between the sparse grid filters for p = 5 (a) and p = 7 (b).
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Figure 4 compares the filter for p = 5 (a) and p = 7 (b). One observes that the filters have a

very similar aspect, although the mode resolution is four times coarser in the p = 5 case compared

to the p = 7 case. In fact, when kx, ky and kz are all non-vanishing integers, we have the following

interesting property in two and three dimensions, ∀m ∈ N:

Fsg
2D(2

mk; p+2m) = Fsg
2D(k; p) (21)

Fsg
3D(2

mk; p+3m) = Fsg
3D(k; p). (22)

This property is proven in appendix A 2 for the two dimensional case. The three dimensional case

follows from identical considerations. Equation (21) explains why figures 4 a) and 4 b) look so

similar. Using this property, in two (resp. three) dimensions, we can define two (resp. three)

functions G(0)
2D and G(1)

2D (resp. G(0)
3D , G(1)

3D and G(2)
3D) in order to express the value of the filter for a

wave vector k, on a grid of any level p ≥ 2. The functions are defined for k ∈ R⋆d
+ as follows:

G(i)
2D(k) = lim

p→∞
Fsg

2D(2
pk;2p+ i), i = 0,1 (23)

G(i)
3D(k) = lim

p→∞
Fsg

3D(2
pk;3p+ i), i = 0,1,2. (24)

It is straightforward to see that the limits of equations (23) and (24) exist when the components

of k are all base 2 decimals or dyadic numbers. Indeed, in such a case there exists a critical value

pc such that the components of 2pk are all integers if p ≥ pc. Using property (21) (resp. (22) in

three dimensions), we see that the limit is well defined, and G(i)
2D(k) = Fsg

2D(2
pck;2pc + i) (resp.

G(i)
3D(k) = Fsg

2D(2
pck;3pc + i) in three dimensions). The continuity of the G functions on R2 is

proven in appendix A 3 for the two dimensional case. The three dimensional case follows from

identical considerations.

The advantage is that once the G functions, which depend only on the dimension but not on the

grid size, are known, the value of the reduction factor of any mode number on a grid of arbitrary

level can be known. Namely, when k, p are non-vanishing integers (with the components of k

being less than 2p−1), then we have

Fsg
2D(k;2p+ i) = G(i)

2D(2
−pk), i = 0,1 (25)

Fsg
3D(k;3p+ i) = G(i)

3D(2
−pk), i = 0,1,2. (26)

Therefore, it is sufficient to tabulate a small number of real valued functions in order to find the

impact of the sparse grid algorithm on a grid of arbitrary level. This is one of the main results of

this paper.
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IV. THE BINARY SPARSE GRID FILTER

In this section, we see how it is possible to considerably simplify (and improve) the filters, by

studying how the sparse grid combination formulæ, equations (8)-(9), work out in Fourier space

directly. A filter, based on the combination formula and taking the values either 0 or 1 in Fourier

space (hence the name binary filter), will be defined.

So far, we have approached the problem by looking at the Fourier content of the moments

collected using standard PIC techniques. Now, let us consider that it is actually possible to collect

directly the Fourier coefficients of a signal represented by PIC markers. Namely, in one dimension

for example, one can collect the mode k cosine and sine coefficients of the mth velocity moment

of the distribution by the following two sums

ac
k = wk

N
NP

NP

∑
ℓ=1

vm
ℓ cos(2πkxℓ) (27)

as
k = wk

N
NP

NP

∑
ℓ=1

vm
ℓ sin(2πkxℓ) , (28)

where

wk =

 1 if k = 0 or k = 2p−1

2 if 0 < k < 2p−1
. (29)

Incidentally, the corresponding shape function, which can be computed to be

SF (x) =
2p−1

∑
k=0

wk cos2πkx, (30)

is delocalized on the entire grid, since all markers contribute to all modes, and a sinusoidal wave

is by nature delocalized on the grid. In fact, in order to derive the binary filter, we don’t need

to consider equations (27)-(30). We only need to consider the Nyquist theorem: if one wants to

use the collected Fourier coefficients on a grid of level p, one needs to collect the modes up to

k = 2p−1.

We will restrict ourselves to the two dimensional case (there is no difficulty with the extension

to the three dimensional case). The first step is to examine the meaning of ρ
(p)
(i, j) in the context of

direct Fourier decomposition. This quantity is the density evaluated on a grid of level (i, j) and

then interpolated on the grid of level p. On a grid of level (i, j), the fastest modes available in the
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Figure 5. Selection of retained modes (black squares) in the Fourier sparse grid algorithm (p = 4).

x and y directions are respectively kx = 2i−1 and ky = 2 j−1. If the interpolation on the grid of level

p still uses the Fourier decomposition, rather than bilinear interpolations, ρ
(p)
(i, j) is exactly the same

as if one had collected all the modes up to kx = ky = 2p−1, and subsequently set all the modes

having kx > 2i−1 or ky > 2 j−1 to zero.

From this simple observation, one can easily make sense of equation (8) by rearranging the

terms as follows (omitting the (p) exponent to make the notation lighter):

ρsg,2D = ρ(1,p)−ρ(1,p−1)

+ρ(2,p−1)−ρ(2,p−2)

+ . . .

+ρ(p−1,2)−ρ(p−1,1)

+ρ(p,1). (31)

A term such as ρ(i, j)−ρ(i, j−1) is decomposed as follows. Both terms contain the same modes

in the x direction. However, in the y direction, ρ(i, j) contains the modes up to ky = 2 j−1, whereas

ρ(i, j−1) contains the modes up to ky = 2 j−2, so that ρ(i, j)−ρ(i, j−1) contains all the kx modes up to

kx = 2i−1 and all the ky modes between ky = 2 j−2+1 and ky = 2 j−1. The result is seen graphically

for p = 4 in figure 5. In this figure, the nodes represent the modes kx ∈ J0,23K, ky ∈ J0,23K. All

the nodes in contact with colored squares are kept, all the others are set to zero. The filtering rule

can be expressed in terms of a maximum value of ky for each value of kx. The algorithm to find
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Figure 6. Pcolor of Fsg
2D together with the retained modes in the Fourier formulation for the case n = 6. The

red contour line is the isocontour Fsg
2D = 0.3.

ky,max(kx) is as follows:

ky,max(kx = 0) = 2p−1

ky,max(kx = 1) = 2p−1

ky,max(kx = 2) = 2p−2

ky,max(kx = 3–kx = 4) = 2p−3

ky,max(kx = 5–kx = 8) = 2p−4 (32)

ky,max(kx = 9–kx = 16) = 2p−5

ky,max(kx = 17–kx = 32) = 2p−6

. . .

ky,max(kx = (2p−2 +1)–kx = 2p−1) = 20

It is interesting to compare the filtering rule (32) with the sparse grid filter derived in the con-

text of standard moment deposition, equation (10). In figure 6, the comparison is performed for

p = 6, where black squares represent the modes that are kept by the binary filter. One sees that

the boundary between the modes that are set to zero and the ones that are kept, using rule (32),

roughly coincides with the Fsg
2D = 0.3 contour line. A short calculation shows that the fraction of
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retained degrees of freedom, compared to the total number of degrees of freedom, 22p, on a two

dimensional grid of level p, scales as p2−p. As expected, most modes are set to zero, and increas-

ingly so when p increases. The gain in terms of PIC noise can become very large, at the expense

of not describing a lot of modes. The question is, of course, whether these modes are physical and

should actually be treated, or not.

In three dimensions, using the same rule for interpreting terms such as ρ
(p)
(i, j,k), we obtain similar

conclusions. The filter derived from the three dimensional combination formula, equation (9)

becomes a binary filter, with coefficients either 0 or 1, that is, some modes are retained, while

others are simply discarded. This binary filter, which we shall denote Fsg
3D in the following, acts

qualitatively in the same way as the sparse grid filter discussed in sections II and III. Compared to

the latter, it has two advantages. The normal sparse grid filter, Fsg
3D, is more difficult to compute

as it requires numerous cardinal sine computations. The numerical cost is never quite prohibiting

until the grid level exceeds p = 10, which is usually sufficient, nonetheless, it can take a few

minutes unless the task is parallelized (which is easy). Another, more important, advantage is that

in the case of Fsg
3D, the only mode that is not affected has kx = ky = kz = 0. Any other mode is

reduced by a factor strictly less than one. This is not the case with the binary filter, Fsg
3D, where the

retained modes do not undergo any deformation.

We now apply the ideas developed in this article to the PIC solver of the magnetohydrodynamic

kinetic/fluid hybrid code XTOR-K.

V. APPLICATION TO THE XTOR-K HYBRID MAGNETOHYDRODYNAMIC CODE

A. Current moment collection strategy in XTOR-K

The XTOR-K code23 solves a set of two-fluid visco-resistive magnetohydrodynamics (MHD)

equations in interaction with a population of markers evolving in the fluid electromagnetic field.

It is a hybrid kinetic/MHD extension of the two-fluid code XTOR-2F24. The coupling between

the fluid and the marker distribution is carried out through the particle pressure tensor, which is

injected in the momentum equation. The fluid grid of XTOR-K is based on the flux coordinates

of the underlying equilibrium, computed with the CHEASE code25. XTOR-K uses a spectral

description in the poloidal (θ ) and toroidal (ϕ) directions, and finite differences in the radial (s ∝

√
ψ , where ψ is the initial equilibrium poloidal flux) direction. The moments of the marker
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distribution are collected on a specific grid, that is different from the fluid grid. The collection grid

is Cartesian in the poloidal plane, which bypasses any issue associated with the singular jacobian

at the toroidal grid axis (which coincides with the magnetic axis at equilibrium). The spectral

representation of the fluid code is partially used here, in that the represented toroidal modes are

collected one by one on the two dimensional poloidal grid, applying equations (27)-(28). Jointly,

the toroidal modes represent the full three dimensional signal. Once the moments (density, velocity

and pressure tensor) are known on the collection grid, they are interpolated on the toroidal fluid

grid, and finally projected on the set of represented modes. A typical resolution of the fluid grid

in the radial, poloidal and toroidal direction is ℓmax ×mmax × nmax = 512× 64× 24. This typical

resolution reflects the fact that the XTOR code (in its purely fluid or hybrid version) is used to study

MHD or kinetic MHD instabilities such as the kink26,27, the tearing28 or the fishbone mode23,

which have well defined low order angular mode numbers, but have a radial structure exhibiting

sharp features around the resonant surface of the instability.

The set of angular modes retained in the simulations is defined by a band of poloidal modes

m around each toroidal mode n > 0, such that n−minf < m < n+msup. The n = 0 case receives

a separate treatment, where the poloidal modes are retained up to m = mn0. Due to aliasing con-

straints in the context of nonlinear equations, the largest toroidal mode number (resp. mn0) is less

than one third of the number of toroidal (resp. poloidal) grid points. For instance when the toroidal

resolution is 12 (resp. 24), then the largest toroidal mode is effectively n = 3 (resp. n = 7). There-

fore, the number of dofs in the angular dimensions is reduced by a factor of roughly three, down

from the already moderate value of mmax × nmax. Since the moments are projected on this set of

physical modes, the PIC noise is in part filtered. The problem resides in the radial direction, where

the PIC noise is not filtered. The current filtering strategy is to apply a diffusion operator but its

main purpose is to clean the noise only close to the axis. The presence of sharp features of the

modes at the instability resonant surface (which justifies the choice of the resolution) means that a

strategy of noise reduction based on high frequency filtering (low-pass filter) of the radial profiles

only is bound to fail. We now explain how the ideas developed in this manuscript suggest filtering

strategies to reduce the noise in the radial direction.
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B. Filtering of an XTOR-K distribution

We use an actual marker distribution coming from XTOR-K, in order to evaluate under what

conditions the sparse grid filter is able to reduce the PIC noise without deforming the signal. We

consider a run where an m = 1, n = 1 internal kink is simulated in presence of a population of

thermal α particles of temperature Tα = 2MeV, while the electron and ion bulk temperature are

Te = 30 keV. The α density, nα = 4×1017m−3 in the core is 2% of the bulk density, with similar

profile. The β of the α particles, βα = 1.2% is close to the fluid β , β f = 1.7% (β is the ratio

of kinetic to magnetic pressure). In this configuration, the effect of the particles on the kink is

significant. The total number of markers is NP = 172× 106. The question is whether the radial

noise can be reduced on the modes. At t = 5000τA, where τA is the Alfvén time, the mode has

grown out of the PIC noise and the growth rate of the mode is clearly measurable on the integrated

magnetic energies. At this time, we extract the global distribution of markers to compute its

moments. We will be able to study the different poloidal and toroidal mode numbers separately.

The moments are first collected on a cartesian grid in (R,ϕ,Z) coordinates. As explained in

section V A, this avoids the issue of the magnetic axis, where the volume of cells tends to zero,

increasing the noise. The level of the grid is p∈ {6,7,8}. Then, the moments are mapped by linear

interpolation to the toroidal coordinates (s,θ ,ϕ) used by the fluid part of the code. The toroidal

grid has the same size as the deposition (R,ϕ,Z) grid (eventually the poloidal and toroidal modes

are filtered to retain only the band of simulated modes). We call this step the mapping. The filter

can be applied either before or after the mapping. The result will not be the same, because in the

first case, the grid is not aligned with the modes present in the distribution, which typically have

a well defined periodicity in θ and ϕ . Therefore, it would seem more natural to filter after the

mapping step. However, the most important modes have low poloidal and toroidal mode numbers

m and n. Therefore, the fast radial frequencies, which contribute to the radial noise, will tend to be

well preserved, while they will be cut down for the modes having large m and n. This is not what

we hope to achieve, since we would like the fast frequencies corresponding to noise to be filtered

even for low m and n modes. We see that the order between filtering and mapping matters much,

and that it might be preferable to filter before the mapping, where the grid is, in a sense, agnostic

regarding the nature of the structures. In particular, we can hope that the sharp features associated

with resonance layers will be preserved, at least in part, because they have a broad spectrum.

For each choice of the order between the filtering and mapping steps, we test both Fsg
3D and Fsg

3D,
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Figure 7. Radial structure of the m = 1,n = 1 mode. Filtering before the mapping and with Fsg
3D (a), after

the mapping and with Fsg
3D (b), before the mapping and with Fsg

3D (c), after the mapping and with Fsg
3D (d).

that is, the filter derived using formula (11) or using the three dimensional counterpart of (32).

Finally, the radial structure of any (m,n) mode can be extracted from the filtered signal. For each

(m,n) mode, we show how the filtered signal depends on p, the level of the grid; every time there

are four plots, for each choice of the filter and the order between mapping and filtering. All plots

show in black the original signal in XTOR-K. The other curves show the cases p= 6 (green), p= 7

(red), p = 8 (blue). In the top row (subfigures a) and b)) Fsg
3D is used, while in the bottom row, Fsg

3D

is used. In the left column (subfigures a) and c)), the filtering is done before the mapping, while

it is done after the mapping in the right column. Figures 7, 8 9, 10 show the radial structure of

the (1,1), (1,0), (2,1) and (2,2) modes respectively. The other modes are drowned in the noise.

Note that our analysis of the noise is qualitative only, because a quantitative study would require

to know the underlying true signals, which we do not know.

The bottom rows of these two figures show an interesting behaviour. When Fsg
3D is used, a
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Figure 8. Radial structure of the m = 1,n = 0 mode. Filtering before the mapping and with Fsg
3D (a), after

the mapping and with Fsg
3D (b), before the mapping and with Fsg

3D (c), after the mapping and with Fsg
3D (d).

significant reduction of the signal is observed (figures 7, 8, 9 and 10 c)-d)). This reduction of the

signal barely shows up for Fsg
3D (figures 7, 8, 9 and 10 a)-b)) even at p = 6 (but we would start

to see it for lower values of p). The fact that lower values of p lead to stronger deformation of the

signal is very natural in view of the properties of the sparse grid filters. The reason for the better

robustness of the binary filter Fsg
3D is the following: although it has qualitatively similar properties

to Fsg
3D in terms of noise reduction, in the zone where Fsg

3D takes up values significantly above zero,

Fsg
3D is exactly equal to one (figure 6). This means that the retained modes are well preserved for

Fsg
3D, whereas they are reduced by some factor in the case of Fsg

3D. This shows that it is largely

preferable to use Fsg
3D instead of Fsg

3D.

Now, we compare the left and right columns of the figures (top row), that is, whether the

filtering is done before or after the step of mapping to toroidal coordinates. Therefore, we compare

the subfigures a) and b) in each figure. In the first case (filtering before the mapping), a good

22



PIC Sparse Grid as a filter

0

1

2

3

4

5

6

7

8
ρ

2,
1
/
ρ

0
1e 3
a)

Fsg
3D applied before mapping to toroidal

XTOR

p=8

p=7

p=6

b)
Fsg

3D applied after mapping to toroidal

XTOR

p=8

p=7

p=6

0.0 0.2 0.4 0.6 0.8 1.0

s=
√
ψ

0

1

2

3

4

5

6

7

8

ρ
2
,1
/ρ

0

1e 3
c)

F sg
3D applied before mapping to toroidal

XTOR

p=8

p=7

p=6

0.0 0.2 0.4 0.6 0.8 1.0

s=
√
ψ

d)
F sg

3D applied after mapping to toroidal

XTOR

p=8

p=7

p=6

Figure 9. Radial structure of the m = 2,n = 1 mode. Filtering before the mapping and with Fsg
3D (a), after

the mapping and with Fsg
3D (b), before the mapping and with Fsg

3D (c), after the mapping and with Fsg
3D (d).

level of filtering is obtained for p = 6 and p = 7, even for p = 8. However, the use of p = 6

should be prohibited, because we see that the noise reduction comes with a diffusion of the sharp

features. Indeed, the MHD modes should be allowed to vary rapidly, close to the resonant surface.

The choices of p = 7 or p = 8 appear to be a good compromise between noise reduction and

good representation of the structures. In other words, it reduces the particle based error without

increasing too much the grid based error. In the case when the filter is applied after the mapping,

we see that p = 7 leads to almost no noise reduction, while p = 8 even seems to increase the noise

(actually, this is due to the fact that the additional step of applying a radial diffusion operator,

which is used for the XTOR-K data in black, was not used for the sparse grid filtered data). The

case of p = 6, when the filter is applied after the mapping, corresponds roughly to the same level

of noise as the case of p = 7 when the filter is applied before. However, it looks preferable to use

the latter, because the noise increases much faster with p in the former case (filter after mapping),
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Figure 10. Radial structure of the m = 2,n = 2 mode. Filtering before the mapping and with Fsg
3D (a), after

the mapping and with Fsg
3D (b), before the mapping and with Fsg

3D (c), after the mapping and with Fsg
3D (d).

so the likelihood of mistuning the algorithm is larger.

In conclusion, the choice of p = 7 or p = 8 and of filtering the moments before the mapping

appears to be a reasonable choice in XTOR-K. It remains to be fully implemented in the code, in

order to perform systematic comparisons. First, the linear growth rates will have to be compared,

then, possible differences in the nonlinear physics will have to be tracked before it can be envisaged

to routinely use sparse grid filtering.

VI. TRUNCATED COMBINATION SCHEMES

In ref.2, filtering strategies based on a modification of the combination formulæ (8)-(9) are con-

sidered. Namely, an integer offset, or truncation, parameter τ is introduced such that the minimum

level of the grids used in the combination becomes τ instead of 1. Namely, formula (8) is replaced
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with

ρ
(p,τ)
sg,2D =

p

∑
i=τ

i+ j=p+τ

ρ
(p)
(i, j)−

p−1

∑
i=τ

i+ j=p+τ−1

ρ
(p)
(i, j) (33)

ρ
(p,τ)
sg,3D =

p

∑
i=τ

p+1−i

∑
j=τ

i+ j+k=p+τ+2

ρ
(p)
(i, j,k)

−2
p−1

∑
i=τ

p−i

∑
j=τ

i+ j+k=p+τ+1

ρ
(p)
(i, j,k)

+
p−2

∑
i=τ

p−1−i

∑
j=τ

i+ j+k=p+τ

ρ
(p)
(i, j,k). (34)

In ref.2, τ is chosen dynamically at run time, depending on an estimation of the value of τ that

minimizes the grid based error. This τ optimization step involves the Fourier transform of the

signal obtained by moment deposition on the finest grid level. Then, it is suggested to deposit the

moments on all the sparse subgrids of the algorithm, and combine them with equation (33). Note

that each deposition on a subgrid involves a loop through all the markers of the simulation. As

emphasized above, in three dimensions the number of terms in the combination formula scales

with p2, where p is the level of the finest grid, with for example 109 terms (109 loops over all

markers) for p = 9. We suggest that it would be much faster, especially if the Fourier transform of

the signal has already been obtained, to simply apply the filter corresponding to equation (33) or

its three dimensional counterpart (34). They can be obtained for any order of the shape function,

and any value of τ , with the following formula:

Fsg
2D,tr(k; p,τ) =

p

∑
i=τ

i+ j=p+τ

sinc2 (kx2−i)sinc2 (ky2− j)

−
p−1

∑
i=τ

i+ j=p+τ−1

sinc2 (kx2−i)sinc2 (ky2− j) (35)

and similarly in three dimensions. Note that to distinguish this filter from that of equation (10), we

have added the subscript tr to indicate that it uses the truncated combination formula. In particular

we have Fsg
2D,tr(•;•,1) = Fsg

2D. The maps of the filter for order q = 1 and grid level p = 6, for the

cases τ = 1 to τ = 4, are displayed in figure 11. In fact, once again the formalism of section III

can be used to obtain a unified picture of the filters. Let kx,ky,kz ∈ N⋆ and p ≥ 2, 1 ≤ τ ≤ p−1.
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Figure 11. Filters for order q = 1 and grid level p = 6, for τ = 1 (a), τ = 2 (b), τ = 3 (c) and τ = 4 (d).

Then, by rearranging the sum (35) (let i′ = i+ τ −1, j′ = j+ τ −1) we find

Fsg
2D (k; p+1− τ) = Fsg

2D,tr
(
2τ−1k; p,τ

)
(36)

Therefore, we have

Fsg
2D,tr

(
2τ−1k; p,τ

)
= G(i)

2D(2
−rk), (37)

where r, i are the quotient and remainder of the euclidean division of p+1−τ by 2. Unfortunately,

the equality does not hold when the arguments of Fsg
2D,tr are no longer a multiple of 2τ−1, that is, in

general

Fsg
2D,tr (k; p,τ) ̸= G(i)

2D(2
−(r+τ−1)k). (38)

Nonetheless, the preceding equality alsmost holds in practice, so that G(0)
2D and G(1)

2D give the general

qualitative features of the truncated filters, owing to equation (36), as can be observed in figure 11.

Naturally, the truncated combination formula also allows to redefine the binary filter of sec-

tion IV. For instance, for p = 4 and τ = 2, the terms combine in the way represented in figure 12

(to be compared with figure 5).

VII. EXTENSION TO HIGHER ORDER SHAPE FUNCTIONS

So far, we have restricted the discussion to the case where the shape function is based on the

tent function, eq. (2), because this is a very common choice in PIC algorithms. In fact, the tent
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Figure 12. Selection of retained modes (black squares) in the Fourier sparse grid algorithm (p = 4, τ = 2).

Figure 13. Sparse grid filter for a grid level p = 6 when the shape function is the hat function (order 0).

function is but the order 1 of a series of shape functions built by successive convolutions of the hat

function τ0:

τ0(x) =

 1 if |x| ≤ 1/2

0 if |x|> 1/2.
(39)

First, the tent function τ1 is the convolution product

τ1(x) =
∫

∞

−∞

dtτ0(x− t)τ0(t). (40)

More generally, the shape function of order q is given recursively by

τq(x) =
∫

∞

−∞

dtτ0(x− t)τq−1(t). (41)
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The Fourier transform of the hat function is the cardinal sine, which explains why that of the tent

function is the square of the cardinal sine. More generally, formula (41) immediately leads by

induction to the conclusion that the Fourier transform of τq is the cardinal sine to the power q+1.

Therefore, the results of this paper can easily be extended to the case of shape functions of any

order q, if one replaces equation (5) with

f (k, p) = sincq+1
(

k
2p

)
. (42)

This formula has an important consequence. We know that ∀x,sinc2(x) > sinc2(2x), therefore

∀q ∈ N⋆, ∀x,sinc2q(x) > sinc2q(2x). This property is essential to prove the positivity of the filter

when the shape function is built on the tent function, and so this property is preserved for all other

odd orders of the shape functions. However, sinc(x)− sinc(2x) = sinc(x)(1− cosπx), which is

of the sign of sinπx for x > 0. Therefore, the property that is essential to prove the positivity of

the filter is lost for all even powers of the order of the shape function. As a matter of fact, one

can check that the filters associated with the shape functions of even order have negative values.

For example, the case of order 0 (deposition using the hat function, or, equivalently, deposition on

the nearest neighboring grid point) for p = 6 (kmax = 32) is plotted in figure 13. Fortunately, it

looks like the minimum (negative) of the filter tends to be reduced in absolute value as p increases.

Hence this issue may not be very problematic in practice.

VIII. SUMMARY

In this paper, we have interpreted the action of the sparse grid combination technique on mo-

ments of markers distribution, in the context of the PIC Method, as a filter in Fourier space. The

essential idea is to remember that the moment collection step is a convolution between the signal

represented by the markers and the shape function. The Fourier transform of the shape functions

are powers of the cardinal sine function, and the filter becomes a combination of sums and prod-

ucts of cardinal sines. We have shown that the filters can be expressed in terms of functions that

are independent of the level of the grid. With the quantitative characterization of the filters, it

becomes possible to replace the sparse grid combination formula, which involves numerous sums

on the markers, with the sparse grid filter, involving only a forward and backward fast Fourier

transform. In addition, it is shown how any sparse grid combination formula, including truncated

ones, can be translated into a filter with similar qualitative properties, but with values either 0 or 1.
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The advantage of this binary filter is that it is easier to compute and preserves the large scale struc-

tures with more fidelity than the filter derived from the cardinal sine factors. The application of

these factors to the hybrid fluid/kinetic magnetohydrodynamic code XTOR-K yields encouraging

results.
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Appendix A: General properties of the two dimensional filter

1. Proof that 0 ≤ Fsg
2D(k; p)≤ 1

Let us detail here general results about the two dimensional Filter Fsg
2D defined in eq. (10). First

of all, one can use Eqs. (5), (6) in order to rewrite eq. (10) into

Fsg
2D (kx,ky; p) = ∑

i+ j=p+1
sinc2 (kx2−i)sinc2 (ky2− j)

− ∑
i+ j=p

sinc2 (kx2−i)sinc2 (ky2− j) . (A1)

Eq. (A1) is very convenient because it makes it clear that:

• Fsg
2D can be extended by identification to a function defined on R2×N\{0,1}→R. Besides,

for all p ∈ N \ {0,1}, Fsg
2D(•,•; p) ∈ C ∞(R2,R). This comes from the fact that the sinc

function is infinitely continuous over R.

• ∀p ≥ 2, ∀k1,k2 ∈ R,Fsg
2D(k1,k2; p) = Fsg

2D(k2,k1; p).

• ∀p ≥ 2, ∀k ∈ R,Fsg
2D(0,k; p) = sinc2 (k2−p).

• Fsg
2D(0,0; p) = 1.

Now, let us recombine the two sums of eq. (A1) into one, with one additional term:

Fsg
2D (kx,ky; p) = sinc2

(
kx

2p

)
sinc2

(
ky

2

)
+

p−1

∑
i=1

[
sinc2

(
kx

2i

)
×

(
sinc2

(
2iky

2p+1

)
− sinc2

(
2iky

2p

))]
.
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The terms inside the big parentheses are of the form sinc2(x)− sinc2(2x) = (πx)2 sinc4(x). Con-

sequently, the previous expression reduces to

Fsg
2D (kx,ky; p) =

p−1

∑
i=1

sinc2
(

kx

2i

)(
2iπky

2p+1

)2

sinc4
(

2iky

2p+1

)
+ sinc2

(
kx

2p

)
sinc2

(
ky

2

)
.

(A2)

Eq. (A2) immediately shows that

∀(kx,ky,n) ∈ R×N\{0,1}, Fsg
2D (kx,ky;n)≥ 0. (A3)

It also implies that Fsg
2D (kx,ky; p) = 0 =⇒ kx/2p ∈ Z or ky/2p ∈ Z.

The same trick used for eq. (A2) can also be used to compute H(kx,ky; p) ≡ Fsg
2D (kx,ky; p)−

Fsg
2D (2kx,ky; p):

H(kx,ky; p) =
p−1

∑
i=1

[(
sinc2

(
kx

2i

)
− sinc2

(
2kx

2i

))
×

(
2iπky

2p+1

)2

sinc4
(

2iky

2p+1

)]

+

(
sinc2

(
kx

2p

)
− sinc2

(
2kx

2p

))
sinc2

(
ky

2

)
=

p−1

∑
i=1

(
π2kxky

2p+1

)2

sinc4
(

kx

2i

)
sinc4

(
2iky

2p+1

)
+

(
πkx

2p

)2

sinc4
(

kx

2p

)
sinc2

(
ky

2

)
.

Consequently, ∀(kx,ky, p) ∈ R2 × N \ {0,1}, H(kx,ky; p) ≥ 0. Hence, Fsg
2D (kx/2,ky; p) ≥

Fsg
2D (kx,ky; p). Using the symmetry of the function and iterating it, one has the following re-

sult: ∀(kx,ky, p,m1,m2) ∈ R×N\{0,1}×N2,

0 ≤ Fsg
2D (kx,ky; p)≤ Fsg

2D

(
kx

2m1
,

ky

2m2
; p
)
. (A4)

Thus, letting m1,m2 → +∞ and using the fact that Fsg
2D is continuous, one has ∀(kx,ky, p) ∈

R×N\{0,1},

0 ≤ Fsg
2D (kx,ky; p)≤ 1. (A5)
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2. Proof of equations (17) and (21)

We start by proving equation (21), which gives a relation between the filters when the grid is

refined. Property (17) will come as a consequence. Let us assume that kx,ky ∈ Z⋆ and m,n ∈ N.

Then, one can develop

Fsg
2D (2mkx,2nky; p+m+n) = ∑

i+ j=p+m+n+1
sinc2 (kx2m−i)sinc2 (ky2n− j)

− ∑
i+ j=p+m+n

sinc2 (kx2m−i)sinc2 (ky2n− j)
=

m+p

∑
i=m+1

sinc2 (kx2m−i)sinc2 (ky2i−p−m−1)
−

m+p−1

∑
i=m+1

sinc2 (kx2m−i)sinc2 (ky2i−p−m)
+ ∑

i∈J1,mK×Jp+m+1,p+m+nK
sinc2 (kx2m−i)sinc2 (ky2i−p−m−1)

− ∑
i∈J1,mK×Jp+m,p+m+n−1K

sinc2 (kx2m−i)sinc2 (ky2i−p−m)
=

p

∑
i=1

sinc2 (kx2−i)sinc2 (ky2i−p−1) −
p−1

∑
i=1

sinc2 (kx2−i)sinc2 (ky2i−p)
+

m−1

∑
l=0

sinc2

kx2l︸︷︷︸
∈Z∗

[
sinc2

(
ky2−(l+p+1)

)
− sinc2

(
ky2−(l+p)

)]

+
n−1

∑
t=0

sinc2

ky2t︸︷︷︸
∈Z∗

[
sinc2

(
kx2−(t+p+1)

)
− sinc2

(
kx2−(t+p)

)]
,

(A6)

with l = m− i and t = i− p−m− 1 in (A6). Since the sine function cancels out on πZ, sinc is

equal to 0 on Z∗. Besides, the first term of (A6) is precisely Fsg
2D (kx,ky; p). This immediately leads

us to the equality in 2D

∀kx,ky ∈ Z∗, ∀p ≥ 2, ∀m,n ≥ 0, Fsg
2D (2mkx,2nky; p+m+n) = Fsg

2D (kx,ky; p) . (A7)

Equation (21) is a direct application of eq. (A7) to the special case m = n.

Finally, let us use eq. (A6) but for kx,ky ∈R instead of N. It gives us a weaker, but more general
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result: ∀(kx,ky, p,m) ∈ R2 ×N\{0,1}×N,

Fsg
2D (2mkx,2mky; p+2m)≥ Fsg

2D (kx,ky; p) . (A8)

Eq. (A8) can be rewritten into Fsg
2D (kx,ky; p+2m)≥ Fsg

2D (2−mkx,2−mky; p). Using again the conti-

nuity of Fsg
2D, letting m →+∞ and considering odd and even values of p, one has the result

∀(kx,ky) ∈ R2, Fsg
2D (kx,ky; p) −→

p→+∞
1, (A9)

which proves eq. (17).

3. Continuity of G(i)
2D

Let us define for all kx,ky ∈ R and for all p ≥ 1, Gp(kx,ky) ≡ Fsg
2D(2

pkx,2pky;2p). According

to eq. (A7), kx,ky ∈ 2−mZ∗ =⇒ ∀p ≥ 1, Gp+m(kx,ky) = Gm(kx,ky). Thus, it becomes natural to

consider, provided it exists, the limit of the sequence (Gp):

G(0)
2D(kx,ky) = lim

p→∞
Fsg

2D(2
pkx,2pky;2p). (A10)

The convergence of (Gp) can be proven as follows. Let us consider the sequence Cp,n ≡Gp+n−

Gp. Using again eq. (A6), one has

Cp,n(kx,ky) =
n−1

∑
l=0

[
sinc2

(
kx2p+l

)(
πky

2p+l+1

)2

sinc4
(

ky

2p+l+1

)

+ sinc2
(

ky2p+l
)(

πkx

2p+l+1

)2

sinc4
(

kx

2p+l+1

)]
.

(A11)

One can immediately see that this series normally converges on R2 at fixed p and when n →

∞ since both terms inside the brackets behave like O(2−2l). Thus, let us define its limit Cp =

limn→∞Cp,n. It is continuous thanks to the normal convergence and satisfies the relationship ∀p ≥

1, G(0)
2D = Cp +Gp. As a consequence, G(0)

2D is a continuous function that can be expressed as the

following series :

G(0)
2D(kx,ky) = sinc2

(
kx

2

)
sinc2

(
ky

2

)
+

∞

∑
l=0

sinc2
(

kx2l
)(

πky

2l+1

)2

sinc4
(

ky

2l+1

)
+ sinc2

(
ky2l

)(
πkx

2l+1

)2

sinc4
(

kx

2l+1

)
. (A12)
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where we used G1(kx,ky) = sinc2
(

kx
2

)(
πky
4

)2
sinc4

(
ky
4

)
+ sinc2

(
kx
4

)
sinc2

(
ky
2

)
and sinc2(x) =

sinc2(2x)+(πx)2 sinc4(x).

Finally, G(0)
2D satisfies the following properties :

• G(0)
2D is solution of eq. (A10) by construction.

• G(0)
2D ∈ C (R2,R) thanks to uniform convergence (it is even infinitely continuous).

• 0 ≤ G(0)
2D ≤ 1 thanks to the properties of Fsg

2D.

• ∀m ∈ N, kx,ky ∈ 2−mZ∗ =⇒ ∀p ≥ 2, G(0)
2D(kx,ky) = Fsg

2D(2
p+mkx,2p+mky;2(p+m)).

• In the particular case kxky = 0 (let us take ky = 0), one has

Cp,n(kx,0) = sinc2
(

kx

2p+n

)
− sinc2

(
kx

2p

)
−→
n→∞

1− sinc2
(

kx

2p

)
.

(A13)

Thus, G(0)
2D(kx,0) = G(0)

2D(0,ky) = 1.

Appendix B: General results on the 3D filter

The three dimensional filter Fsg
3D defined in (11) verifies the same properties as its two dimen-

sional counterpart. The proofs are more cumbersome but use the same methods. As in appendix

A, let us rewrite eq. (11) with the help of eqs. (5) and (7) :

Fsg
3D(k, p) = ∑

i+ j+l=p+2
sinc2

(
kx

2i

)
sinc2

(
ky

2 j

)
sinc2

(
kz

2l

)
−2 ∑

i+ j+l=p+1
sinc2

(
kx

2i

)
sinc2

(
ky

2 j

)
sinc2

(
kz

2l

)
+ ∑

i+ j+l=p
sinc2

(
kx

2i

)
sinc2

(
ky

2 j

)
sinc2

(
kz

2l

)
,

(B1)

with k = (kx,ky,kz). Eq. (B1) makes it clear that:

• Fsg
3D(•,•,•; p) can be identified as an infinitely continuous function defined on R3 (with

p ≥ 3).

• Fsg
3D(•,•,•; p) is a symmetric operator.
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• Fsg
3D(0; p) = 1.

In order to retrieve the three dimensional counterpart of the results found in appendix A, one

needs to define

Pp(k)≡ ∑
i+ j+l=p+1

sinc2
(

kx

2i

)
sinc2

(
ky

2 j

)
sinc2

(
kz

2l

)
− ∑

i+ j+l=p
sinc2

(
kx

2i

)
sinc2

(
ky

2 j

)
sinc2

(
kz

2l

)
.

(B2)

Now, let us develop eq. (B2):

Pp(k) =
p−1

∑
i=1

p−i

∑
j=1

sinc2
(

kx

2i

)2

sinc2
(

ky

2 j

)
sinc2

(
kz2i+ j

2p+1

)

−
p−2

∑
i=1

p−1−i

∑
j=1

sinc2
(

kx

2i

)
sinc2

(
ky

2 j

)
sinc2

(
kz2i+ j

2p

)

=
p−2

∑
i=1

p−1−i

∑
j=1

[
sinc2

(
kx

2i

)
sinc2

(
ky

2 j

)
(

sinc2
(

kz2i+ j

2p+1

)
− sinc2

(
kz2i+ j

2p

))]
+

p−1

∑
i=1

sinc2
(

kx

2i

)
sinc2

(
ky2i

2p

)
sinc2

(
kz

2

)
.

Using again the sinc2(x)− sinc2(2x) = (πx)2 sinc4(x) identity, one has

Pp(k) = ∑
2≤i+ j≤p−1

[
sinc2

(
kx

2i

)
sinc2

(
ky

2 j

)
(

πkz2i+ j

2p+1

)2

sinc4
(

kz2i+ j

2p+1

)]

+
p−1

∑
i=1

sinc2
(

kx

2i

)
sinc2

(
ky2i

2p

)
sinc2

(
kz

2

)
.

(B3)

Now, remarking that Fsg
3D(k; p) = Pp+1(k)−Pp(k), we expand Fsg

3D(k; p) using eq. (B3) :
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Fsg
3D(k; p) =

p−1

∑
i=1

p−i

∑
j=1

sinc2
(

kx

2i

)
sinc2

(
ky

2 j

)(
πkz2i+ j

2p+2

)2

sinc4
(

kz2i+ j

2p+2

)
+

p

∑
i=1

sinc2
(

kx

2i

)
sinc2

(
2iky

2p+1

)
sinc2

(
kz

2

)
−

p−2

∑
i=1

p−1−i

∑
j=1

sinc2
(

kx

2i

)
sinc2

(
ky

2 j

)(
πkz2i+ j

2p+1

)2

sinc4
(

kz2i+ j

2p+1

)

−
p−1

∑
i=1

sinc2
(

kx

2i

)
sinc2

(
2iky

2p

)
sinc2

(
kz

2

)

=
p−2

∑
i=1

p−1−i

∑
j=1

sinc2
(

kx

2i

)(
sinc2

(
ky

2 j+1

)
− sinc2

(
ky

2 j

))(
πkz2i+ j

2p+1

)2

sinc4
(

kz2i+ j

2p+1

)

+
p−1

∑
i=1

sinc2
(

kx

2i

)
sinc2

(
ky

2

)(
2iπkz

2p+1

)2

sinc4
(

2ikz

2p+1

)
+ sinc2

(
kx

2p

)
sinc2

(
ky

2

)
sinc2

(
kz

2

)
+

p−1

∑
i=1

sinc2
(

kx

2i

)(
sinc2

(
2iky

2p+1

)
− sinc2

(
2iky

2p

))
sinc2

(
kz

2

)

= ∑
i+ j≤p−1

sinc2
(

kx

2i

)(
2iπ2kykz

2p+2

)2

sinc4
(

ky

2 j+1

)
sinc4

(
kz2i+ j

2p+1

)

+
p−1

∑
i=1

sinc2
(

kx

2i

)
sinc2

(
ky

2

)(
2iπkz

2p+1

)2

sinc4
(

2ikz

2p+1

)
+ sinc2

(
kx

2p

)
sinc2

(
ky

2

)
sinc2

(
kz

2

)
+

p−1

∑
i=1

sinc2
(

kx

2i

)(
2iπky

2p+1

)2

sinc4
(

2iky

2p+1

)
sinc2

(
kz

2

)
.

(B4)

To obtain the first equality in equation (B4), we have rewritten ∑
p−1
i=1 ∑

p−i
j=1 as ∑

p−1
i=1 ∑

p−1−i
l=0 with

l = j − 1, and then renamed l with the letter j. Eq. (B4) shows that Fsg
3D ≥ 0 and that, as for

the two dimensional filter, one has Fsg
3D(kx,ky,kz;n) ≥ Fsg

3D(2kx,ky,kz;n). Thus, one has the three

dimensional counterpart of eqs. (A5) and (A9) :

∀k ∈ R3, ∀n ≥ 3, 0 ≤ Fsg
3D(k;n)≤ 1 (B5)

∀k ∈ R3, Fsg
3D(k;n) −→

n→+∞
1. (B6)
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In addition, by setting kz to 0 in eq. (B4), we find directly expression (A2), which shows that

Fsg
3D(kx,ky,0; p) = Fsg

2D(kx,ky; p). (B7)
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