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Introduction

The analysis of dynamic discrete choices from short panel data is fundamental in applied work. Allowing for unobserved heterogeneity in such a setting is recognized to be important [START_REF] Heckman | Heterogeneity and state dependence[END_REF] but doing so in a flexible manner is known to be difficult. A leading paradigm is to presume that the population of agents is composed of a finite number of (latent) types, implying that the (marginal) distribution of the data takes the form of 1 Mixtures of dynamic discrete choices Suppose that Z is a latent random variable that can take on q values, where q is a known integer. We normalize its support to the set of integers up to q, which is without loss of generality, and write µ 1 , . . . , µ q for its probability mass function. So, µ z := P(Z = z) > 0 for 1 ≤ z ≤ q and zero otherwise. Next let {X t } be a sequence of observable random variables that can take on r values. We presume that its support constitutes the set of integers up to r. This is merely for notational convenience in what is to follow; translation of the support to a general set is straightforward. Conditional on Z = z, the sequence {X t } follows a first-order Markov process. The process is initialized with a draw from the distribution s z (x) := P(X 1 = x|Z = z), and subsequently evolves according to the time-homogeneous transition kernel k z (x, x ) := P(X t = x |X t-1 = x, Z = z).

This delivers a dynamic model of discrete choice with unobserved heterogeneity captured by a mixture over q latent types. The dynamic processes are allowed to be non-stationary in that the initial conditions are not assumed to have been drawn from the steady-state distribution.

Our goal is to recover the distribution of the latent types, µ 1 , . . . , µ q , the distributions of the initial conditions, s 1 , . . . , s q , and the transition kernels, k 1 , . . . , k q , from knowledge of the joint distribution of X 1 , X 2 , X 3 , X 4 . Our arguments to follow can be generalized to the case where additional time-series observations are available and we discuss how to do so below. As latent types can be relabelled without any observable implications, identification here is to be understood as being up to an arbitrary re-ordering of types.

Before turning to the identification analysis it is useful to point out that restricting attention to univariate variables is without loss of generality. To see this, suppose that we are interested in a sequence of k-dimensional vectors V t whose entries can take on, respectively, r 1 , . . . , r k values. Then we can always enumerate all values in the state space of V t and define a scalar random variable X t on this set of numbers that is a (known) one-to-one transformation of V t . This random variable can take on r = r 1 × . . . × r k values.

Identification of a mixture on X t then implies identification of the corresponding mixture on V t . As will become apparent below, a larger r can only make the identification problem easier, and so observing more variables is helpful for identification. This connects to the discussion in [START_REF] Hall | Nonparametric estimation of component distributions in a multivariate mixture[END_REF] and [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF] on the identification power of multivariate mixtures. It might be the case that, for a partitioning of V t into Y t and W t , the ultimate goal is to recover the (type-specific) distribution of the initial condition and the transition kernel of Y t conditional on W t . Here, Y t is the outcome of interest while W t plays the role of covariates. This corresponds to the point of view in [START_REF] Kasahara | Nonparametric identification of finite mixture models of dynamic discrete choices[END_REF]. Such conditional distributions are, of course, identified once the joint distribution is.

Assumptions. Our constructive identification approach employs three assumptions. We first introduce notation for probabilities that involve only observable variables. We will use the shorthands p x 1 ,x 2 := P(X 1 = x 1 , X 2 = x 2 ) and p x 1 ,x 2 ,x 3 := P(X 1 = x 1 , X 2 = x 2 , X 3 = x 3 ) as well as p x 1 ,x 2 ,x 3 ,x 4 := P(X 1 = x 1 , X 2 = x 2 , X 3 = x 3 , X 4 = x 4 ). First, we collect all the bivariate probabilities into the two sets of r-vectors p 1 , . . . , p r and p * 1 , . . . , p * r , where we write

p x := (p 1,x , . . . , p r,x ) , p * x := (p x,1 , . . . , p x,r ) .
Note that p x = p * x , in general. Similarly, we construct r ×r matrices P 1 , . . . , P r containing trivariate probabilities, letting (P x ) i,j := p j,x,i .

Finally, we do the same for probabilities involving all four periods, by introducing the r × r matrices (P x,x ) i,j := p j,x,x ,i , with (x, x ) ranging over all the r 2 possibilities. The probabilities involved here are all nonparametrically identified and these matrices may thus all be considered known for our purposes.

Our first assumption is a rank condition that is directly testable from the data.

Assumption 1. For each x the r × r matrix P x has rank q.

A necessary condition for this assumption to hold is that r ≥ q. The decomposition in Equation (2.1) below shows that the main implication of Assumption 1 is that, for each x, the conditional distributions of X t given X t-1 = x and Z = z (seen as a function of z) are linearly independent.

To state our remaining assumptions we let

k m z (x; x 1 , . . . , x m ; x ) := k z (x, x 1 ) m-1 × i=1 k z (x i , x i+1 ) k z (x m , x ),
be the probability of the walk from x to x via the m intermediate stops x 1 , . . . , x m through the Markov chain of type z. To cover walks that go directly from x to x , that is, without passing through any intermediate points, we adopt the convention that k 0 z (x; x ) = k z (x, x ). So, m can be any non-negative integer.

Our second assumption involves walks from x back to x. For each triplet (z, x, m), let f z,x,m be the vector that contains the probabilities k m z (x; x 1 , . . . , x m ; x) across all possible sequences x 1 , . . . , x m . Next collect these vectors across the q different types in the matrix

F x,m := (f 1,x,m , . . . , f q,x,m ).
For example, F x,0 = (k 1 (x, x), . . . , k q (x, x)). For m > 0 F x,m has as many rows as there are unique sequences x 1 , . . . , x m .

Assumption 2. For each x there exists an integer m such that the columns of the matrix

F x := (F x,0 , . . . , F x, m) are all distinct.
This requirement is quite weak. A simple sufficient (but substantially too strong) condition for Assumption 2 to go through is that, for each x, there exists a walk from x going back to x that occurs with a different probability for each type.

Our last assumption concerns a point x 0 and walks between it and all other points x.

Assumption 3. There exists a value x 0 such that for each x = x 0 there exists a finite non-negative integer m such that

(i) k m z (x 0 ; x 1 , . . . , x m ; x) or (ii) k m z (x; x 1 , . . . , x m ; x 0 )
is non-zero for some sequence x 1 , . . . , x m for each z. The sequence x 1 , . . . , x m and its length m may be different for the different x.

Assumption 3 requires that we can connect the value x 0 to all other values x = x 0 by some walk for all types. Only a single such x 0 is required. The developments to follow will make it apparent that evaluating whether any particular sequence of values satisfies this assumption can be done by testing whether a collection of q × q matrices have maximal rank.

Identification. We now proceed to establish identification. The proof can be broken down into four logical steps. In the first step we show that the model gives rise to a set of multilinear restrictions. In this format it becomes apparent that model parameters are identified if we are able to recover a collection of matrices up to a common permutation of their columns. In the second step we show that a subset of these multilinear restrictions can be used to recover each of these matrices up to an arbitrary permutation of their columns.

In the third step we use the remaining multilinear restrictions to enforce an ordering on the columns that is common across matrices. In the fourth and final step we back out the parameters of our model.

1) Multilinear restrictions. We begin by constructing, for each x, the r × q matrices K x and L x as

(K x ) x ,z := k z (x, x ), (L x ) x ,z := µ z s z (x ) k z (x , x).
Next, we appeal to the Markovian structure of our model to see that, for each x, the factorization

P x = K x L x (2.1)
holds. Assumption 1 states that each r × r matrix P x has rank equal to q. Hence, it has the singular-value decomposition

P x = U x E x V x ,
for unitary r × q matrices of, respectively, left and right singular vectors, U x and V x , and q × q diagonal matrices E x of singular values. It then follows that, if we use the shorthands

A x := E -1/2 x U x and B x := E -1/2 x V x , A x P x B x = I q , (2.2)
with I q being the q × q identity matrix. Now introduce the q × q matrix Q x := A x K x .

Combining Equation (2.1) with Equation (2.2) reveals that

I q = A x P x B x = (A x K x )(B x L x ) = Q x Q -1 x ,
and so Q - x = B x L x must hold. Here, and later we use the superscript -as a notational shorthand for the inverse of a matrix transpose, i.e., Q -

x = (Q x ) -1 .
We now turn to the distribution of all four observable variables. Notice that, in the same way as before,

P x,x = K x D x,x L x ,
where D x,x := diag(k 1 (x, x ), . . . , k q (x, x )) collects the transition probabilities from state

x to x for each of the different types z. Hence,

C x,x := A x P x,x B x = Q x D x,x Q -1 x (2.3)
for all (x, x ). If we can recover the matrices Q x for all x we can invert the above system for each pair (x, x ) to identify the matrix D x,x and, consequently the transition kernel k z for each z. Identification of the remaining parameters of the model then follows readily.

We thus next set out to recover Q x for all x. Note that we can at best hope to recover these matrices up to a common permutation of their columns, as Equation ( 2.3) is invariant to such a permutation. Also note that it does not suffice to recover Q x and Q x up to a different permutation of their columns, as this is insufficient to be able to solve Equation (2.3) for the transition kernels.

2) Identification of Q 1 , . . . , Q r up to arbitrary permutation matrices.

A first implication of Equation (2.3) is that C x,x = Q x D x,x Q -1
x , so that Q x is a matrix of eigenvectors. Furthermore, we also have that, for each x and all x 1 ,

C x 1 ,x C x,x 1 = (Q x D x 1 ,x Q -1 x 1 ) (Q x 1 D x,x 1 Q -1 x ) = Q x (D x,x 1 D x 1 ,x )Q -1
x and, more generally, that for each x and for any sequence of m values x 1 , . . . , x m ,

C xm,x C x m-1 ,xm • • • C x 1 ,x 2 C x,x 1 = Q x (D x,x 1 D x 1 ,x 2 • • • D x m-1 ,xm D xm,x )Q -1 x .
That is, Q x is a joint diagonalizer of a set of matrices. Notice that the z-th diagonal

entry of D x,x 1 D x 1 ,x 2 • • • D x m-1 ,xm D xm,x is k m z (x; x 1 , . . . , x m ; x). Moreover, the eigenvalues of the set of matrices C xm,x C x m-1 ,xm • • • C x 1 ,x 2 C x,x 1 (as a function of x 1 , . . . , x m ) are the rows of the matrix F x,m . Further, because the joint diagonalizer is independent of m, the same Q x equally diagonalizes the matrices C x m ,x C x m -1 ,x m • • • C x 1 ,x 2 C x,
x 1 (as a function of x 1 , . . . , x m ) for any different walk length m . Take the set of all walk lengths from zero to m. This delivers a joint diagonalization problem whose eigenvalues are the rows of the matrix F x . By Assumption 2 there exists an m for which the columns of F x are all distinct. It then follows from Theorem 6.1 of De Lathauwer, De Moor and Vandewalle ( 2004) that the matrix Q x is unique up to the scale and ordering of its columns. That is, a joint diagonalization problem identifies the matrix Qx := Q x Ω x ∆ x , where Ω x is a diagonal scaling matrix and ∆ x is a permutation matrix.

The diagonal matrix Ω x can be recovered, up to permutation of the entries on its diagonal, from the observation that

u x := B x p x = B x L x ι q = Q - x ι q ,
where the first transition uses the model structure, the second follows from the definition of Q x , and ι q denotes the q-vector of ones. Moreover,

Q x u x = ∆ -1 x Ω x ι q = ∆ -1 x Ω x ∆ x ι q ,
using that each row of any permutation matrix sums to unity. It is easy to see that the matrix ∆ -1

x Ω x ∆ x on the right-hand side is diagonal; a proof is provided in Lemma A.1 in the Appendix. We, therefore, indeed recover

Ωx := ∆ -1 x Ω x ∆ x for all x.
3) Identification of the joint eigenvectors up to a common permutation. Moving on, take a particular x and let the value x 0 and the sequence x 1 , . . . , x m be such that Condition (i)

in Assumption 3 is satisfied for this x; working with Condition (ii) instead of Condition (i) is analogous and is, therefore, not dealt with further. Using the same argument as before it is easy to see that a second implication of Equation (2.3) is that

Dx 0 ,x := Q-1 x (C xm,x C x m-1 ,xm • • • C x 0 ,x 1 ) Qx 0 = ∆ -1 x Ḋx 0 ,x ∆ x 0 ,
where the matrices Ḋx 0 ,x :=

Ω x 0 (D x 0 ,x 1 D x 1 ,x 2 • • • D xm,x ) Ω -1
x are diagonal. We can write

Dx 0 ,x = ∆ -1 x Ḋx 0 ,x ∆ x 0 = ∆ -1 x ∆ x 0 (∆ -1 x 0 Ḋx 0 ,x ∆ x 0 ).
(2.4)

Note that the matrix ∆ -1 x ∆ x 0 is a product of permutation matrices and, hence, is itself a permutation matrix. Therefore, Dx 0 ,x is equal to ∆ -1

x 0 Ḋx 0 ,x ∆ x 0 up to ordering of the rows. The latter matrix is diagonal. The diagonal entries of ∆ -1

x 0 Ḋx 0 ,x ∆ x 0 are thus identified by the column sums of the matrix Dx 0 ,x . From Equation (2.4), coupled with Assumption 3, it follows that

H x,x 0 := ∆ -1 x ∆ x 0 = Dx 0 ,x (∆ -1 x 0 Ḋx 0 ,x ∆ x 0 ) -1
is identified for all x. With these matrices in hand we may re-arrange the diagonal entries of the scaling matrices in a common order, as

H -1 x,x 0 Ωx H x,x 0 = ∆ -1 x 0 Ω x ∆ x 0 =: Ωx ,
and subsequently recover

Qx := Qx H x,x 0 Ω-1 x = Q x ∆ x 0 .
Now, because Assumption 3 is satisfied for each x = x 0 we can repeat the same argument for each x = x 0 . Thus, we have identified the matrices of joint eigenvectors Q 1 , . . . , Q r up to a common permutation of their columns. We can now recover the parameters of our mixture model, up to the permutation ∆ x 0 .

4) Identification of the model parameters. First, from Equation (2.3) we recover the transition kernels as

Q-1 x C x,x Qx = ∆ -1 x 0 D x,x ∆ x 0 =: Dx,x .
Because the diagonal of D x,x constitutes the x -th row of matrix K x , knowledge of Dx,x for all (x, x ) allows us to construct the matrix Kx := K x ∆ x 0 for each x. Next, the Markov structure of the model implies that

p * x = K x λ x ,
where λ x := (s 1 (x) µ 1 , . . . , s q (x) µ q ) . By consequence of Assumption 1, each K x has maximal column rank. Letting a + superscript on a matrix indicate its left inverse, we may thus calculate

K+ x p * x = ∆ -1 x 0 K + x p * x = ∆ -1 x 0 λ x =: λx ,
for each x. Collecting Λ := ( λ1 , . . . , λr ) yields the joint distribution of types and initial conditions. Indeed, with Λ := (λ 1 , . . . , λ r ) , we see that Λ = Λ∆ x 0 . Finally, letting µ := (µ 1 , . . . , µ q ) and S := (s 1 , . . . , s q ), where s z := (s z (1), . . . , s z (r)) is the distribution of the initial condition for type z, we first recover the distribution of latent types by averaging-out the initial condition, as in

Λ ι r = ∆ -1 x 0 Λ ι r = ∆ -1 x 0 µ =: μ,
and then recover the type-specific distributions of the initial condition as

Λ diag( μ) -1 = Λ∆ x 0 ∆ -1 x 0 diag(µ) -1 ∆ x 0 = Λ diag(µ) -1 ∆ x 0 = S∆ x 0 =: S,
which uses the fact that Λ = S diag(µ) by definition and diag( μ) = ∆ -1 x 0 diag(µ)∆ x 0 . We have shown the following result.

Theorem 1. Let Assumptions 1-3 hold. Then the distributions of the initial condition, s z , the transition kernels, k z , and the type probabilities, µ z , may all be identified, up to a common permutation of the latent types, from the distribution of four consecutive observations.

Remark. Having access to longer time series allows to weaken Assumption 1. Say we have access to the joint distribution of X 1 , . . . , X T . Let • denote the floor function. Redefine the matrix K x to let its z-th column be the (vectorized) distribution of X T /2 +1 , . . . , X T -1 given X T /2 = x and Z = z. A typical entry of this matrix in column z has the multiplicative structure

k z (x, x 1 ) (T -1) /2 -1 × i=1 k z (x i , x i+1 )
and depends only on the number of time periods involved. Conformably redefine the matrix L x so that its z-th column reflects the joint distribution of X 1 , . . . , X T /2 and Z at X T /2 = x and Z = z. Then we can mimic the proof of Theorem 1 with P x being the joint distribution of X 1 , . . . , X T -1 at X T /2 = x and P x,x being the joint distribution of X 1 , . . . , X T at X T /2 = x and X T /2 +1 = x , both arranged as two-way tables. Indeed, we again have that

P x = K x L x , P x,x = K x D x,x L x .
Assumption 1 now involves matrices that are of dimension r (T -2) /2 × r (T -2) /2 when T is even and of dimension r (T -1) /2 × r (T -3) /2 when T is odd. Assumptions 2 and 3 require no modification.

The above discussion yields the following corollary

Corollary 1. The maximum number of types that can be accommodated in our framework equals r (T -2) /2 when T is even and r (T -3) /2 when T is odd.

It is also useful to note that under Assumption 1 the number of types is identified as the rank of P x .

3 Comparison to prior work [START_REF] Kasahara | Nonparametric identification of finite mixture models of dynamic discrete choices[END_REF]. Identification of mixtures of dynamic discrete choices has previously been considered by [START_REF] Kasahara | Nonparametric identification of finite mixture models of dynamic discrete choices[END_REF]. Their Proposition 6

provides an identification result for the matrix of transition probabilities K x and the vector of joint probabilities λ x for a fixed value x from the joint distribution of six outcomes. The conditions under which this result is obtained are (in our notation) that (i) the vector λ x only has positive entries; (ii) there exists a collection of points x 1 , . . . , x q-1 such that the

q × q matrix M x with (M x ) z,i :=    1 if i = 1 k z (x, x i-1 ) k z (x i-1 , x) if i > 1
is invertible; and (iii) for some x , k z (x, x ) > 0 for all z and k z (x, x ) = k z (x, x ) for all z = z.

The approach of [START_REF] Kasahara | Nonparametric identification of finite mixture models of dynamic discrete choices[END_REF] is built around the observation that the joint distribution of X 2 , X 4 , X 6 , conditional on the fact that X 1 , X 3 , X 5 all take on the value x, factors as a static tri-variate mixture. This argument works around the Markovian dependence, whereas ours exploits it. It also makes clear why they require six time-series observations as opposed to our four.

The difference between the approach of [START_REF] Kasahara | Nonparametric identification of finite mixture models of dynamic discrete choices[END_REF] and ours makes a precise comparison between the requirements underlying them difficult. Still, in the argument of [START_REF] Kasahara | Nonparametric identification of finite mixture models of dynamic discrete choices[END_REF], Conditions (i) and (ii) play a similar role to does our Assumption 1, although we do not require Condition (i) and our techniques avoid the need to work with only a subset of the support points to ensure that the resulting matrix is square. Condition (iii), in turn, is used by [START_REF] Kasahara | Nonparametric identification of finite mixture models of dynamic discrete choices[END_REF] to ensure uniqueness of an eigendecomposition. As such it fulfills the role of our Assumption 2 in their context. Condition (iii) is too strong for that purpose, however. Indeed, a look at their proof shows that their result continues to go through under the weaker requirement that the columns of K x are all distinct. This follows from an application of Theorem 6.1 of De Lathauwer, De [START_REF] De Lathauwer | Computation of the canonical decomposition by means of a simultaneous generalized Shur decomposition[END_REF] to their set of multilinear restrictions. [START_REF] Kasahara | Nonparametric identification of finite mixture models of dynamic discrete choices[END_REF] have no analog of our Assumption 3 as their argument is for a given value x.

If Conditions (i)-(iii) hold for all x Proposition 6 of [START_REF] Kasahara | Nonparametric identification of finite mixture models of dynamic discrete choices[END_REF] can be applied to each of them (see, e.g., the discussion in [START_REF] Kasahara | Nonparametric identification of finite mixture models of dynamic discrete choices[END_REF] Remark 5(iii))). Identification here is up to an arbitrary ordering of the latent types, however, and separate application of their Proposition 6 does not ensure that the same ordering of latent types is recovered in all of the cases. Hence, this argument only identifies K 1 ∆ 1 , . . . , K r ∆ r and ∆ -1 1 λ 1 , . . . , ∆ -1 r λ r , where ∆ 1 , . . . , ∆ r are arbitrary permutation matrices. This does not suffice to reconstruct the transition kernels, nor does it lead to identification of the distributions of the initial condition or the distribution of the latent types. [START_REF] Hu | Nonparametric identification of dynamic models with unobserved state variables[END_REF]. In related work, Hu and Shum (2012) entertain a framework where, in addition to the observable variables, the latent types themselves, too, may follow a first-order Markov process. This nests our specification. On the other hand, their approach requires that r = q, i.e., that the observable variables cannot take on more values than there are latent types. This is a substantial restriction that, together with Assumption 1, implies that the matrices P 1 , . . . , P r are invertible, which is crucial in the argument of [START_REF] Hu | Nonparametric identification of dynamic models with unobserved state variables[END_REF]. Their technique could be applied after binning the r support points into q bins, but this would not yield identification of the model on the original data.

The requirement that r = q is not imposed here. Moreover, our derivations highlight the identifying power of having r > q.

Hu and Shum (2012) recover the unknown probabilities from the distribution of only four outcomes, as do we. To do so they impose, along with Assumption 1, the requirement that, for each x, there exists an x and a pair (x 1 , x 2 ) = (x , x) such that k z (x , x), k z (x 1 , x), k z (x , x 2 ), and k z (x 1 , x 2 ) are all strictly positive for all z, and that, in addition, it holds

that k z (x , x) k z (x 1 , x 2 ) k z (x , x 2 ) k z (x 1 , x) = k z (x , x) k z (x 1 , x 2 ) k z (x , x 2 ) k z (x 1 , x)
for all z = z . The first of these two conditions is used to set up a matrix-diagonalization problem. It states that, for every x, there exist two states, x and x 1 , from which x can be reached by all types, and that there exists another state, x 2 , which is equally reachable from these starting points by all types. Our results here reveal that such restrictions are unnecessary to achieve identification in our setup. The second condition further requires the transition probabilities along these states to be sufficiently different for different latent types. This condition is used by [START_REF] Hu | Nonparametric identification of dynamic models with unobserved state variables[END_REF] to ensure uniqueness (up to scale and permutation) of the eigenvectors in their diagonalization problem. As such, it plays a similar role as our Assumption 2. However, our Assumption 2 is arguably weaker in that it only requires there to exist (collections of) walks along the type-specific Markov chains that occur with different probability for the different types. Moreover, we use different multilinear restrictions and exploit many of them through a joint diagonalization system, which demands weaker restrictions on the associated eigenvalues.

Under these conditions, Hu and Shum (2012, Lemma 3 and Corollary 2) establish an analog of Kasahara and Shimotsu (2009, Proposition 6), recovering K 1 ∆ 1 , . . . , K r ∆ r and ∆ -1 1 λ 1 , . . . , ∆ -1 r λ r for unknown permutation matrices ∆ 1 , . . . , ∆ r . To be able to proceed further, they additionally assume that, for each x, there exists a functional, say the mean,

δ x,z := r x =1 k z (x, x ) x ,
for which it is known that δ x,1 < • • • < δ x,q . This assigns empirical content to the types.

Moreover, it allows to recover the matrices K 1 , . . . , K r with their columns arranged in a common order, thereby resolving the remaining ambiguity and establishing identification.

Our Theorem 1 shows that, under Assumption 3, a common (albeit arbitrary) ordering is identified from the data. Therefore, monotonicity restrictions that link types to outcomes can be dispensed with.

Illustrations

Dynamic binary choice. The most basic situation that fits our setup has both binary observables and binary type heterogeneity. Given adding-up constraints, the model depends on the success probabilities ω z := k z (1, 2), z := k z (2, 2), and π z = s z (1) for z ∈ {1, 2}, and the single mixing proportion µ 1 .

With four times periods we have

P 1 =   (1 -ω 1 ) (1 -ω 2 ) ω 1 ω 2     µ 1 0 0 1 -µ 1     π 1 (1 -ω 1 ) π 2 (1 -ω 2 ) (1 -π 1 ) (1 -1 ) (1 -π 2 ) (1 -2 )   and P 2 =   (1 -1 ) (1 -2 ) 1 2     µ 1 0 0 1 -µ 1     π 1 ω 1 π 2 ω 2 (1 -π 1 ) 1 (1 -π 2 ) 2   .
Assumption 1 requires these matrices to have full rank. Equivalently, all matrices on the right-hand side need to be invertible. Given that 0 < µ 1 < 1, P 1 is invertible if and only if

ω 1 = ω 2 , π 1 (1 -ω 1 ) (1 -π 2 ) (1 -2 ) = π 2 (1 -ω 2 ) (1 -π 1 ) (1 -1 ) (4.5)
Similarly, P 2 is invertible if and only if

1 = 2 , π 1 ω 1 (1 -π 2 ) 2 = π 2 ω 2 (1 -π 1 ) 1 (4.6)
The two conditions ω 1 = ω 2 and 1 = 2 simply state that the transition probabilities of the Markov chain differ across types. The other two conditions further involve the initial conditions π 1 and π 2 . They state that the ratio of the type-specific probabilities of the event (X 1 = 1, X 2 = x) to the event (X 1 = 2, X 2 = x) must be different across the two types, for x ∈ {1, 2}. They can equally be interpreted as restrictions on the initial conditions.

Rearrangement yields the equivalent statements that

1-π 1 /1-π 2 π 1 /π 2 = 1-ω 1 /1-ω 2 1-1 /1-2 , 1-π 1 /1-π 2 π 1 /π 2 = 2 / 1 ω 2 /ω 1 ,
where we presume for a moment that the probabilities showing up in denominators are non-zero.

Assumption 2 is implied by Assumption 1. Indeed, setting m = 0, Assumption 2 requires that direct walks from 1 to 1 and from 2 to 2 occur with different probabilities across types. This means that we require that (1 -ω 1 ) = (1 -ω 2 ) and that 1 = 2 .

These conditions already appeared in (4.5) and (4.6), respectively, where they were shown to validate Assumption 1.

For Assumption 3 we need that either ω z > 0 or z < 1 for both types. One implication is that Assumption 3 allows for a state to be absorbent for one type; if it were absorbant for both types Assumption 1 would fail.

In this example r = q and so the approach of Hu and Shum (2012) could equally be followed. In addition to Assumption 1 they require, in place of Assumption 2, that either

ω z (1 -ω z ) (1 -z ) z , or (1 -ω z ) ω z z (1 -z ) ,
is known to be well defined for both z and is different for different z. Next, they need a monotonicity condition. Here, this condition boils down to imposing that ω 1 < ω 2 (where the direction of the inequality is without loss of generality because types are arbitrary) together with either 1 < 2 or 1 > 2 . The choice between the two amounts to taking a stand on the difference in magnitude of state dependence across types. To illustrate consider a standard random-coefficient model (e.g., Browning andCarro 2007, 2014) with parametrization

ω z = F (α z ), z = F (α z + ρ z ),
for some specified strictly-increasing continuous distribution function F and type-specific parameters (α z , ρ z ). Here, Assumption 1 demands that α 1 = α 2 and α

1 + ρ 1 = α 2 + ρ 2 .
With α 1 < α 2 the monotonicity requirement then further requires a choice to be made as to whether

ρ 1 > ρ 2 + (α 2 -α 1 ) or ρ 1 < ρ 2 + (α 2 -α 1 )
. With the transition probabilities in hand identification follows from

α z = F -1 (ω z ), ρ z = F -1 ( z ) -F -1 (ω z ).
Without monotonicity [START_REF] Hu | Nonparametric identification of dynamic models with unobserved state variables[END_REF] argument is not guaranteed to yield the ω z and the z up to a common ordering, and so the ρ z parameters cannot be point identified.

Numerical example. Next consider a numerical example with r = 3 and q = 2, and transition kernels

k 1 1 2 3 1 1 0 0 2 7 /10 1 /10 2 /10 3 2 /10 6 /10 2 /10 , k 2 1 2 3
1 3 /10 2 /10 5 /10 2 0 1 0 3 6 /10 2 /10 2 /10

.

Here both types have a terminal state (equal to their type number). Nonetheless, the transition probabilities are linearly independent, so K x has maximal rank for all x. Further, a simple sufficient condition for L x to have maximal rank here is that s 2 (1) > 0 and that s 1 (2) > 0. Then Assumption 1 is satisfied.

For Assumption 2, reading off the diagonal entries of the transition matrices we see that

F 1,0 = 1 3 /10 , F 2,0 = 1 /10 1 , F 3,0 = 2 /10 2 /10 .
The last of these row vectors does not have distinct elements. Hence, although Assumption 2 holds for x ∈ {1, 2} with m = 0 it does not for x = 3. However, looking at walks over one intermediate point yields

F 1,1 =      1 9 /100 0 0 0 30 /100      , F 2,1 =      0 0 1 /100 1 12 /100 0      , F 3,1 =      0 30 /100 12 /100 0 4 /100 4 /100     
. conditional transition probabilities when starting at (y, w) = (0, 0). The matrix is equal to

K 1 =        (1 -ω 1 (0, 0)) (1 -1 (0)) (1 -ω 2 (0, 0)) (1 -2 (0)) (1 -ω 1 (0, 0)) 1 (0) (1 -ω 2 (0, 0)) 2 (0) ω 1 (0, 0) (1 -1 (1)) ω 2 (0, 0) (1 -2 (1)
)

ω 1 (0, 0) 1 (1) ω 2 (0, 0) 2 (1)        .
Clearly, the presence of two binary variables makes the rank condition easier to satisfy than in the first example, where we had a single binary variable. For example, if ω 1 (0, 0) = 1

and ω 2 (0, 0) = 0, then both types can be perfectly separated and no restriction on 1 (1)

and 2 (0) is needed to ensure that K 1 has maximal column rank. If, on the other hand, ω 1 (0, 0) = 1 and ω 2 (0, 0) = 1 would hold, the first two rows of K 1 would have only zeros and we would effectively fall back to the previous example; here we would require that 1 (1) = 2 (1). Many other cases are possible. A case of particular interest is obtained by imposing the additional model restriction [START_REF] Magnac | Identifying dynamic discrete decision processes[END_REF] that ω z (y, w) = ω(y, w) for all z;

that is, that type heterogeneity only affects the choice variable, and not the state variable.

We can factor

K 1 =        (1 -ω(0, 0)) 0 0 0 0 (1 -ω(0, 0)) 0 0 0 0 ω(0, 0) 0 0 0 0 ω(0, 0)               (1 -1 (0)) (1 -2 (0)) 1 (0) 2 (0) (1 -1 (1)) (1 -2 (1)) 1 (1) 2 (1)        .
Provided that 0 < ω(0, 0) < 1, elementary row operations reveal that the rank condition is satisfied if 1 (0) = 2 (0) or 1 (1) = 2 (1). The matrices K 2 , K 3 , K 4 have the same structure. As the matrix K x depends on x only through the diagonal matrix on the right-hand side of the above equation, it suffices to replace ω(0, 0) by the relevant ω(y, w).

Further note that, if the state variable does not depend on latent type, its transition matrix is nonparametrically identified without any restrictions. Hence, in this case, the ω(y, w)

can effectively be considered as known. The remainder of Assumption 1 involves a rank condition on L x , and, as before, this can again be interpreted as a restriction on the initial conditions.

both types z. If we maintain that the evolution of the state variable does not depend on z and the relevant probabilities are non-zero, the probability of such walks are positive if 0 < z (0) < 1 and 0 < z (1) < 1, that is, if the choice variable has full support for each value of the state variable and for each of the latent types.

An alternative to Assumption 3 would be to impose monotonicity restrictions. In the current model, such restrictions would need to be based on functionals of the variable X t , and so would involve the joint distribution of the choice variable and the state variable.

This may be challenging. Even if possible, they may imply sign and magnitude restrictions that may not be desirable to impose. In addition, the formulation of any such restrictions is not invariant to how the auxiliary variable X t is defined. As, here, this variable is an artificial construction, there are many possible ways to do this.

Higher-order Markov dependence

Our argument can be extended to models with higher-order dynamics. To see how this can be done, take a model with second-order Markov dependence. The transition kernel is now

k z (x, x , x ) := P(X t = x |X t-1 = x , X t-2 = x, Z = z).
For each pair (x, x ), collect the type-specific distributions in the r × q matrix K x,x and, similarly, construct the r × q matrix L x,x as (L x,x ) x ,z := P(X 3 = x , X 2 = x, X 1 = x , Z = z).

Then

P x,x = K x,x L x,x .
If we have access to the joint distribution of five observations we can define the collection of matrices (P x,x ,x ) i,j := p j,x,x ,x ,i in complete analogy to before. We see that

P x,x ,x = K x ,x D x,x ,x L x,x
where, now, D x,x ,x is the q × q diagonal matrix that contains the k z (x, x , x ). The factorizations in the above equations are of the same form as those obtained in Section 2, and the arguments followed there can be modified to apply here.

The general conclusion, then, is that, under suitable modifications of Assumptions 1 to 3, identification of a mixture of Markov processes is possible from the cross-sectional distribution of as little as three effective time-series observations. If dependence is present up to order p, we need 3 + p observations.

Conclusion

We have derived a constructive identification result for finite mixtures of dynamic discrete choices. Our method of proof differs from [START_REF] Kasahara | Nonparametric identification of finite mixture models of dynamic discrete choices[END_REF] and [START_REF] Hu | Nonparametric identification of dynamic models with unobserved state variables[END_REF], who rely on arguments from the literature on static mixture models, and is able to deliver full identification without the need to impose monotonicity restrictions.

The chief observation behind it is that, while the model implies a collection of multilinear restrictions akin to those used in the analysis of multivariate mixtures, these are only a small subset of the restrictions that arise from the dynamics in the model. This subset of restrictions, in isolation, does not yield identification. The full set of restrictions, however, does.

Our arguments yield identification from three effective time-series observations. Results

of [START_REF] Hall | Nonparametric estimation of component distributions in a multivariate mixture[END_REF] and [START_REF] Henry | Partial identification of finite mixtures in econometric models[END_REF] (in a different context)

suggest that (point) identification from shorter panels is unlikely to be possible, in general, without imposing additional restrictions. An example of such additional restrictions is given in [START_REF] Gupta | On mixtures of Markov chains[END_REF], where a specific approach to identification of first-order Markov processes from two effective time periods is considered. A necessary (but not sufficient) requirement for their approach to go through is that (in addition to

Assumption 1) we have that r ≥ 2q.

Likelihood. Let X := (X 1 , . . . , X T ) be a random sequence drawn from the mixture model and let x := (x 1 , . . . , x T ) be a particular realization of this sequence. The probability mass function of X at x takes the form q z=1 µ z z (x; ϑ z ), where x) .

z (x; ϑ z ) := P(X = x|Z = z) = r × x=1 s z (x) {x 1 =x} r × x =1 k z (x, x ) n x,x ( 
Here, the r + r 2 vector ϑ z collects the steady-state distribution s z and the transition matrix k z , we use {•} to denote the indicator function, and write n x,x (x) for the number of transitions from x to x that appear in x.

The log-likelihood function for a random sample X 1 , . . . , X n is

n i=1 log q z=1 µ z z (X i ; ϑ z ) .
Let Z 1 , . . . , Z n denote the (latent) types. The complete-data log-likelihood function equals {Z i = z} (log µ z + log z (X i ; ϑ z )) ,

where Θ collects all µ 1 , . . . , µ q and ϑ 1 , . . . , ϑ q . The EM algorithm iterates on L n (Θ) and, in our case, is guaranteed to deliver a local maximizer of the log-likelihood [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF]. We defer to [START_REF] Mclachlan | The EM Algorithm and Extensions[END_REF] for additional discussion and references on the EM algorithm in a mixture context.

EM iteration. An iteration starting at Θ proceeds as follows. In the E-step we compute the expectation of L n (Θ) given the data X 1 , . . . , X n under the distribution induced by Θ.

This yields the criterion

E Θ(L n (Θ)|X 1 , . . . , X n ) = n i=1 q z=1
ω z (X i ; Θ) (log µ z + log z (X i ; ϑ z )) , where ω z (X i ; Θ) := μz z (X i ; θz ) z μz z (X i ; θz ) 

Figure B. 1 :

 1 Figure B.1: Studentized empirical distributions (red) together with the standard-normal reference distribution (black) for T = 4

Table B .

 B 1: Descriptive statistics of simulation results for T = 4k 1 (1, 2) k 1 (2, 2) s 1 (2) k 2 (0, 1) k 2 (1, 1) s 2 (2)

					µ 1
	value	0.800	0.300 0.533 0.200	0.700 0.400 0.400
	mean	0.794	0.305 0.533 0.194	0.705 0.398 0.414
	median	0.797	0.303 0.533 0.197	0.703 0.399 0.402
	std dev	0.058	0.048 0.046 0.035	0.042 0.036 0.068
	std error 0.067	0.051 0.046 0.039	0.045 0.036 0.079
	iqr	0.078	0.065 0.061 0.046	0.054 0.048 0.096
	size	0.037	0.049 0.047 0.025	0.028 0.042 0.025
	Table B.2: Descriptive statistics of simulation results for T = 5
		k 1 (1, 2) k 1 (2, 2) s 1 (2) k 2 (0, 1) k 2 (1, 1) s 2 (2)	µ 1
	value	0.800	0.300 0.533 0.200	0.700 0.400 0.400
	mean	0.800	0.301 0.534 0.199	0.701 0.399 0.404
	median	0.801	0.301 0.534 0.199	0.701 0.400 0.401
	std dev	0.040	0.035 0.042 0.024	0.029 0.033 0.046
	std error 0.041	0.036 0.042 0.024	0.030 0.033 0.047
	iqr	0.055	0.049 0.056 0.032	0.039 0.044 0.064
	size	0.053	0.050 0.052 0.043	0.047 0.050 0.040

We next verify Assumption 2 in this example. For m = 0 the assumption requires that (1z (0)) (1 -ω z (0, 0)),
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These matrices all have distinct columns. Hence, Assumption 2 is satisfied for all x with m = 1.

Assumption 3 is satisfied because the final row of both k 1 and k 2 only has non-zero entries. Therefore, we can walk from x 0 = 3 to each x ∈ {1, 2, 3}\{x 0 } for both types z by taking one step through the Markov chain. This is more than enough to validate Assumption 3.

Binary choice with a state variable. Our results are relevant for identification of structural dynamic discrete-choice models with unobserved heterogeneity. Suppose that we have binary variables Y t ∈ {0, 1} and W t ∈ {0, 1}. Then we can define the new variable

, and apply our results to the distribution of X 1 , X 2 , X 3 , X 4 . Say that Y t is the choice variable and that W t is the state variable. A common assumption on the transition probability

We can parametrise the transition kernel in terms of the conditional success probabilities

Then the transition from (y, w) to (y , w ) for type z takes the form

We discuss our assumptions in the context of this model next, maintaining binary type heterogeneity.

Assumption 1 demands the 4 × 2 matrices K x and L x to have maximal column rank for all x ∈ {1, 2, 3, 4}. As an example, the first of these matrices, K 1 , contains the type-specific z (0

all vary with z. The presence of the state variable again provides an additional source from which such variation may arise. Under the assumption that ω z (y, w) = ω(y, w) for all z, thus shutting down this additional channel, and considering the case where 0 < ω(y, w) < 1 the requirement is equivalent to demanding that

Assumption 1 required only one of these two inequalities to hold. However, we can consider larger values for m. With m = 1, for example, we equally consider probabilities involving walks with one intermediate stop. For x = 1, for example, we can consider the probabilities of the walks 1, x , 1 for x ∈ {1, 2, 3, 4}. The probabilities of the first two walks are equal to

and

respectively. They differ across z if and only if 1 (0) = 2 (0). This permits 1 (1) = 2 (1).

Similarly, the probabilities of the walks over the two remaining stops are

They vary with type if either (1

). These conditions, in turn, permit 1 (0) = 2 (0). So, again, Assumption 2 is easily satisfied given Assumption 1.

Assumption 3, finally, again involves probabilities of walks and, in particular, requires that their exists an x 0 ∈ {1, 2, 3, 4} from which we can travel to x ∈ {1, 2, 3, 4}\{x 0 } for Appendix A Lemma A.1. Let P be a permutation matrix and let D be a diagonal matrix. Then P -1 DP is a diagonal matrix.

Proof. We show that P DP -1 is diagonal. Because P is a permutation matrix, P -1 = P and so P -1 DP = P DP -1 , from which the result follows. Because P is a permutation matrix each of its rows and columns contains a single one; the other entries are all zero.

Let σ(i) be the mapping which yields the column that contains the one in the i-th row and let σ -1 be the inverse mapping. Then

, where the first equality follows by definition, the second from the fact that D is diagonal, and the third from the fact that P is a permutation matrix. Next, using this result yields

, so that, indeed, P DP -1 is a diagonal matrix.

Appendix B

The proof of Theorem 1 is constructive. The key to constructing an estimator based on it is a routine that (approximately) solves the set of equations in (2.3) based on estimators of the matrices on the left-hand side. Such a problem is related to, but different from, joint approximate diagonalization. An algorithm for doing so is provided in a companion paper [START_REF] Higgins | Joint approximate asymmetric diagonalization by non-orthogonal matrices[END_REF]. Alternatively, maximum likelihood estimation is feasible in our context. As it is efficient and yields estimated distributions that are easily ensured to satisfy non-negativity and adding-up constraints it carries our preference. A natural way to proceed with implementation is via the EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF].

is the posterior probability that Z i = z. In the M-step we maximize the criterion with respect to Θ to get Θ, say. Inspection of E Θ(L n (Θ)|X 1 , . . . , X n ) reveals that Θ can be written in closed form. With the solution forced to consist of valid probability distributions we find

.

We subsequently replace Θ by Θ and start a new iteration. The procedure is repeated until convergence.

Simulations. We provide results from a Monte Carlo experiment on a two-component mixture of binary decisions. The type-specific transition kernels, k 1 and k 2 , are specified as k 1 1 2 1 2 /10 8 /10 2 7 /10 3 /10 k 2 1 2 1 8 /10 2 /10 2 3 /10 7 /10 , and we mix the two types with µ 1 = 4 /10 and µ 2 = 1 -µ 1 = 6 /10. The type-specific Markov chains are initialized with a draw from their steady-state distributions. In each of 10, 000

Monte Carlo replications we estimate the model by maximum likelihood, using the EM algorithm (initiated at a range of different starting values with a terminal condition on the improvement of the likelihood), and estimate the information as the outer-product of the score vector, evaluated at the maximizer.

Tables B.1 and B.2 provide the mean, median, standard deviation, average standard error, and interquartile range of the point estimator (over the Monte Carlo replications)

together with the empirical size of a two-sided t-test with a theoretical size of 5%. Table B.1 concerns the case where we observe four outcomes for each of 500 observations (so the minimum of the three transition needed for our results to apply). Table B.2 reports results