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Abstract
This contribution presents a concrete example of un-
certainty propagation in a stereo matching pipeline.
It considers the problem of matching pixels between
pairs of images whose radiometry is uncertain and
modeled by possibility distributions. Copulas serve as
dependency models between variables and are used to
propagate the imprecise models. The propagation steps
are detailed in the simple case of the Sum of Absolute
Difference cost function for didactic purposes. The
method results in an imprecise matching cost curve. To
reduce computation time, a sufficient condition for con-
serving possibility distributions after the propagation
is also presented. Finally, results are compared with
Monte Carlo simulations, indicating that the method
produces envelopes capable of correctly estimating the
matching cost.
Keywords: imprecise probabilities, possibility distribu-
tion, copulas, uncertainty propagation, stereo matching

1. Introduction
This contribution presents a concrete example of uncertainty
propagation in the context of photogrammetry, and more
specifically in the crucial step of matching cost computation
(Scharstein et al., 2001). Recent research in this field aims
to estimate the uncertainty associated with dense stereo
matching in specific steps of the pipeline (Xiaoyan Hu and
Mordohai, 2012; Mehltretter and Heipke, 2021; Sarrazin
et al., 2021), orwith end-to-endmethods (Mehltretter, 2020).
Those methods either estimate the uncertainty a posteriori
without considering the uncertainty of the input data, or
are not explainable, as for the case of deep-learning based
methods. Okutomi and Kanade (1994) have estimated the
uncertainty using a precise density function, and adapt their
matching strategy to minimize this uncertainty. Instead, we

argue in favor of using imprecise models to represent the
uncertainty regarding our data, due to the noise and various
processing steps that can affect the images. In this contri-
bution, we will use belief functions, and more specifically
possibility distributions (Dubois and Prade, 1992), to model
the uncertainty on image intensities. Copulas are used to
characterize the dependency between models of uncertainty,
and will serve in the context of stereo matching to propagate
the models through a cost function. The resulting belief
function allows to define multiple envelopes with different
degrees of plausibility, centered on the matching cost com-
puted without uncertainty. Those envelopes are validated
using Monte Carlo simulations with multiple models of
noise on the input images.
Section 2 presents the stereo matching problem and the

considered sources of uncertainty. Section 3 contains defini-
tions regarding imprecise probabilities, dependency models
and details the uncertainty model used on the input images.
Section 4 explains the method used to propagate the impre-
cise models based on copulas and details the specific case of
propagation through a matching cost function. A sufficient
condition for conserving possibility distributions through
the propagation is also described. Finally, we present the re-
sulting belief functions as well as Monte Carlo simulations
for different copulas in Section 5.

2. The Stereo Matching Problem

2.1. Dense Matching

Stereo Matching is one of the main steps when reconstruct-
ing 3D models from pairs of images by photogrammetry.
For a complete description and review of stereo methods,
we refer to (Scharstein et al., 2001). In photogrammetry,
images of the same scene are acquired from different points
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Figure 1: Homologous pixels in a pair of images

of view, and depth information of each pixel is retrieved
by evaluating its displacement between images. Figure 1
presents a pair of images and highlights the position of
the same pixel in both images. This displacement is called
“disparity”. We consider the case with two images, referred
to as the left and right images. Images are often rectified so
that the displacement of pixels can only occur in one direc-
tion, usually horizontally (Fusiello et al., 2000). This allows
to restrict the search for a pixel’s match to a single row. The
problem could be briefly summarised as follows: given a
pair of left-right images (𝐼𝐿 , 𝐼𝑅), determine for every pixel
𝑝𝐿 (𝑥, 𝑦) ∈ 𝐼𝐿 of the left image the disparity 𝑑 of position,
allowing to find its homologous pixel 𝑝𝑅 (𝑥, 𝑦 − 𝑑) ∈ 𝐼𝑅 in
the right image. By knowing the disparity 𝑑 of an object, the
displacement 𝐵 and focal length 𝑓 of the camera, the depth
𝑧 of the object is computed using the following relation:

𝑧 =
𝐵 𝑓

𝑑
(1)

In practice, not all pixels of the left image have a corre-
sponding pixel in the right image. Some zones can become
occluded by an object when changing the camera’s point
of view, or similarly, pixels that where hidden behind an
object in the left image might appear in the right image.
Those occluded zones can be identified a posteriori (Fua,
1991), so we will not consider this issue here.

2.2. Cost Functions

For each pixel, we evaluate whether pixels of the other
image are good candidates for a match by measuring their
similarity. Cost functions measure the similarity between
two patches centered on the pixels to be compared. Patches
are usually squared windows, although other shapes can
be considered (Buades and Facciolo, 2015). Evaluating the
matching cost of a function between a patch in the left

Figure 2: Patch comparison to find the disparity between
two images. From top to bottom: left image patch,
patches from the right image, cost curve

image and a list of potential matches in the right image,
gives a cost curve. Low values of the cost function represent
a strong similarity, and the correct disparity is determined
by finding the minimum of a cost curve. An example of
this procedure is shown in Figure 2. The top and middle
figures present a patch of the left image and a row of the
right image, where a potential match is sought. The bottom
plot shows the corresponding cost curve, where each patch
of the right image row is compared with the left image
patch. The minimum of the cost curve indicates the correct
disparity.
In this article, we will focus on using a basic Sum

of Absolute Differences (SAD) cost function, defined as
follows. Given patches𝑊𝐿 ⊂ 𝐼𝐿 and𝑊𝑅 ⊂ 𝐼𝑅 of the same
shape with 𝑛 pixels (usually squares):

SAD(𝑊𝐿 ,𝑊𝑅) =
∑︁

(𝑝𝑖 ,𝑞𝑖) ∈(𝑊𝐿 ,𝑊𝑅)
|𝐼𝐿 (𝑝𝑖) − 𝐼𝑅 (𝑞𝑖) | (2)

where 𝑝𝑖 and 𝑞𝑖 are pixels at the same position 𝑖 in their patch.
For convenience purposes, we will refer to the Absolute
Difference as AD. This cost function is not ideal, but it is
preferred here for its didactic properties. An illustration of
the SAD cost function can be found in Figure 3.
An ideal cost function would generate a cost curve with

a unique minimum corresponding to the correct disparity.
In practice, such a function is hard to determine. There
is no guarantee that the minimum is unique, nor that it
corresponds to the correct disparity. Different cost functions
have been proposed to better identify the correct match
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Figure 3: Example of the SAD cost function

(Hannah, 1994), some being robust to small variations of
intensities (Zabih and Woodfill, 1994), or determined using
advancedmethod such as deep learning approaches (Žbontar
and LeCun, 2016).We have chosen the SADmethod to focus
on simplicity and to ease didactic explanations regarding
uncertainty propagation. Other cost functions can produce
better results but with less facility to explain this paper’s
methodology.

2.3. Sources and Modeling of Uncertainty in Stereo
Matching

In Section 2.1, we stated that images can be rectified to
ensure horizontal displacement of pixels. It is often the case
in remote-sensing, where images are taken by airplane or
satellites (Michel et al., 2020). This pre-processing step,
added to the noise of the sensor taking the image, generates
uncertainty surrounding the value of every pixel. Our aim
is to propagate this uncertainty through the matching cost
evaluation, in order to have an estimation of the uncertainty
attached to the matching cost of two patches. Knowing
this uncertainty can help in better identifying the correct
disparity (Okutomi and Kanade, 1994), for instance in
the case where multiple minima of the cost curve exist,
a good strategy may be to select the disparity with the
least uncertainty. The following section presents models of
uncertainty used in this contribution.

3. Uncertainty Models
The noise of the sensor and the uncertainty due to the
pre-processing steps make it difficult to specify a precise
probability model. Consequently, an imprecisemodel is pre-
ferred for this problem. Definitions regarding the imprecise
probability framework are now presented.

3.1. Belief Functions

Consider a random variable 𝑋 defined over a measurable
space X. A probability mass function 𝑚 over a space X is a
mapping P(𝑋) → [0, 1] satisfying:

𝑚(∅) = 0,
∑︁
𝑋 ⊆X

𝑚(𝑋) = 1 (3)

where P(X) is the power set of X. The subsets of X whose
mass is strictly positive are referred with the letter 𝑎. For
clarity, the exponent of focal sets will refer to the space or
variable they are defined over, and the subscripts will refer
to an order (if it exists). For instance, 𝑎𝑋3 refers to the third
focal set of variable 𝑋 . From a mass function, it is possible
to define a belief Bel and a plausibility Pl function, which
are mappings P(𝑋) → [0, 1] defined as:

∀𝐴 ⊆ X,Bel(𝐴) =
∑︁
𝑎⊆𝐴

𝑚(𝑎)

∀𝐴 ⊆ X, Pl(𝐴) =
∑︁

𝑎,𝑎∩𝐴≠∅
𝑚(𝑎) (4)

Similarly, a belief function can also be interpreted as the
lower bound of a convex set of probability measuresM,
called a credal set, defined as:

M = {𝑃 | 𝑃(𝐴) > Bel(𝐴),∀𝐴 ⊆ X} (5)

3.2. Possibility Distributions on Image Intensities

We work with grayscale images with a quantification of
intensity levels in [0, 255], corresponding to ourmeasurable
space X. In this paper, we make the hypothesis that the
value of a pixel cannot be more than 1 intensity level away
from its observed value, and that the observed value is
the most plausible. This is due to the quantification of the
observed radiometry into integers. We thus chose to model
the uncertainty of the intensity of every pixel 𝑝 ∈ 𝐼𝐿 , 𝐼𝑅
by a possibility distribution 𝜋 centered on the observed
intensity 𝑖𝑝:

𝜋(𝑖𝑝) = 1, 𝜋(𝑖𝑝 ± 1) = 𝛼 (6)

with 𝛼 ∈ [0, 1]. In our simulation, 𝛼 = 0.33 for pixels in
the left image, and 𝛼 = 0.4 for pixels in the right image.
We use different values of 𝑎𝑙 𝑝ℎ𝑎 for the left and right
image because the uncertainty model could change from
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one image to the other, due to a different exposure, different
noise or different calibration of our camera. This model is
equivalent to state that we accept every probability with
support in [𝑖𝑝 − 1, 𝑖𝑝 + 1] and whose probability measure
𝑃 verifies {𝑃(𝐴) 6 sup𝑖∈𝐴 𝜋(𝑖)} as an acceptable model
for our uncertainty. It has been shown (Dubois and Prade,
1992) that to every possibility distribution corresponds a
minitive belief function (also called a necessity function)
whose mass distribution function for every focal set 𝑎𝑝 is
in our case:

𝑚𝑝 (𝑎𝑝1 = [[𝑖𝑝 , 𝑖𝑝]]) = 1 − 𝛼
𝑚𝑝 (𝑎𝑝2 = [[𝑖𝑝 − 1, 𝑖𝑝 + 1]]) = 𝛼 (7)

with [[·, ·]] referring to integer intervals. In particular,
[[𝑖𝑝 , 𝑖𝑝]] correspond to the singleton {𝑖𝑝}
It is noteworthy that in this problem of disparity estima-

tion, we only consider the uncertainty of our input image
intensities, but do not consider the uncertainty regarding
our cost function’s ability to correctly identify the true
disparity as its minimum. In other words, we don’t take into
consideration the uncertainty resulting from the difference
between “two patches are very similar” and “the pixels
at the center of the patches are homologous”. To better
illustrate this, consider a case where two pixels should be
matched, but the pixels in the patches surrounding them
are dissimilar. Then the cost function between those two
patches would be high, and there can be another patch with
a lower cost function that would be wrongly selected as it
is the minimum of the cost curve.

3.3. Copulas as Dependency Models

When propagating probability densities, one has to take into
account the dependency between the different sources of
uncertainty. Copulas are great tools tomodel the dependency
between variables, as it has been shown that they can
represent any kind of dependency (Sklar, 1959). A copula,
or 𝑁-copula, is a mapping 𝐶 : [0, 1]𝑁 → [0, 1] satisfying
a number of properties (Nelsen, 2006) expressed here in
the 𝑁 dimensional case. For all 𝑘 in [[1, 𝑁]] and for all
(𝑢1, . . . , 𝑢𝑁 ) in [0, 1]𝑁 :

𝐶 (𝑢1, . . . , 𝑢𝑘−1, 0, 𝑢𝑘+1, . . . , 𝑢𝑁 ) = 0 (8)
𝐶 (1, . . . , 1, 𝑢𝑘 , 1, . . . , 1) = 𝑢𝑘 (9)

It also needs to be 𝑁-increasing, meaning that for all𝑈 =

(𝑢1, . . . , 𝑢𝑁 ) in [0, 1]𝑁 , and for all 𝑉 = (𝑣1, . . . , 𝑣𝑁 ) in
[0, 1]𝑁 , such that ∀𝑘 ∈ [[1, 𝑁]], 𝑢𝑘 6 𝑣𝑘 :∑︁

(𝑤1 ,...,𝑤𝑁 ) ∈
⊗𝑘 {𝑢𝑘 ,𝑣𝑘 }

(−1) | {𝑘 | 𝑤𝑘=𝑢𝑘 } |𝐶 (𝑤1, . . . , 𝑤𝑘 ) > 0 (10)

with ⊗ representing the Cartesian product of sets, and | · |
corresponding to the cardinal of a set. The left term of

the previous inequality is also called the hyper-volume
or 𝐻-volume of the copula. The inequality then reads as
the 𝐻-volume of the copula of every segment of the unit
hypercube is positive.
A copula can also be interpreted as a multivariate distri-

bution function whose marginals are uniform on the unit
interval.
Some famous copulas include:

• The product copula representing independence:
𝐶Π = Π𝑘𝑢𝑘

• The upper Fréchet-Hoeffding bound representing com-
plete co-monotonicity: 𝐶min = min𝑘 𝑢𝑘

• the Gaussian copula with correlation matrix 𝑅:
𝐶𝑅 = 𝛷𝑅 (𝛷−1 (𝑢1), . . . ,𝛷−1 (𝑢𝑁 )), where 𝛷𝑅 is the
joint multivariate distribution function of a Gaussian
variable with correlation matrix 𝑅, and 𝛷−1 is the
inverse distribution function of a univariate Gaussian
variable.

Sklar’s theorem states that every multivariate cumulative
distribution function (CDF) 𝐺 : ⊗𝑘X𝑘 → [0, 1] can be
expressed by means of its marginals CDF 𝐹𝑘 : X𝑘 →
[0, 1], 𝑘 ∈ [[1, 𝑁]] and a copula 𝐶:

𝐺 = 𝐶 (𝐹1, . . . , 𝐹𝑁 ) (11)

The reverse implication is also true, meaning that joining
any univariate CDFs with a copula returns a correctly define
multivariate CDF.

3.4. Sampling from Copulas

In our case, we want to model with a copula the dependency
between the random intensities of two pixels: one in the left
image, and one in the right image. We propose to model
their dependency with the product copula if the pixels are
not from the same physical object (meaning that the value
of their intensities are independent), and by a Gaussian
copula with a covariance matrix

( 1 𝜎obj
𝜎obj 1

)
, 𝜎obj ∈ ℝ+, if

they belong to the same physical object in the scene. A
segmentation of the image based on the ground truth of
the disparity is used to determine if two pixels belong to
the same object. As we validate our method using Monte
Carlo simulations in Section 5, we need to be able to sample
random vectors from a copula. We now detail a method
for sampling from copulas in general and a method for
sampling from the Gaussian copula. Given a copula 𝐶,
and two cumulative distribution functions 𝐹𝑋 and 𝐹𝑌 , the
method used to generate a pair of observations (𝑥, 𝑦) from
a joint CDF 𝐶 (𝐹𝑋 , 𝐹𝑌 ) is the following:

• Sample two independent samples𝑢1, 𝑢2 froma uniform
distribution on [0,1]
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• Set 𝑣 = 𝜕𝐶−1 (𝑢2) where 𝜕𝐶−1 is the quasi-inverse of
the partial derivative of 𝐶 regarding its first variable
(which exists almost everywhere and is invertible).

• (𝑢1, 𝑣) each follow a uniform distribution on [0, 1],
and their associated copula is 𝐶

• The desired pair is (𝑥1, 𝑥2) = (𝐹−1
𝑋

(𝑢1), 𝐹−1
𝑌

(𝑣)), with
𝐹−1
𝑋
, 𝐹−1

𝑌
being the quasi-inverses of the marginals

CDFs.

Details of this method in the 𝑁-dimensional case can be
found in (Cherubini et al., 2004). Simulation draws from the
Gaussian 𝑁-copula with correlation matrix 𝑅 are simpler
to obtain:

• Compute the Cholesky decomposition 𝐴 of the corre-
lation matrix 𝑅

• Draw 𝑁 independent random samples 𝑢 =

(𝑢1, . . . , 𝑢𝑁 ) ′ from N(0, 1)

• Set 𝑣 = 𝐴𝑢

• Set 𝑤𝑘 = 𝛷(𝑣𝑘 ) where 𝛷 is the univariate normal
distribution function

• The desired draw is (𝑥1, . . . , 𝑥𝑁 ) =

(𝐹−1
1 (𝑤1), . . . , 𝐹−1

𝑁
(𝑤𝑁 )) with 𝐹−1

𝑘
, being the

quasi-inverse of the 𝑘-th marginal CDF.

4. Using Copulas to Propagate Uncertainty
4.1. Combining Belief Functions with Copulas

In the following paragraph, we will explain how we use
copulas to propagate the uncertainty. Let us first explain it
in the precise case. LetX = 𝑥1, . . . , 𝑥𝑁𝑋 ,Y = 𝑦1, . . . , 𝑦𝑁𝑌

andZ be three discrete spaces, and let 𝑋,𝑌 be two discrete
random variables taking values in X,Y respectively, with
respective CDFs 𝐹𝑋 : X → [0, 1], 𝐹𝑌 : Y → [0, 1] and
whose dependency can be represented by a copula 𝐶. To
avoid heavy notations, we will refer to 𝛥𝐶𝑢2 ,𝑣2

𝑢1 ,𝑣1 as the 𝐻-
volume of the copula 𝐶 over [𝑢1, 𝑢2] ⊗ [𝑣1, 𝑣2] ⊆ [0, 1]2.
Then we know that the joint probability mass distribution
𝑝 : X ⊗ Y → [0, 1] is defined as

∀(𝑖, 𝑗) ∈ [[1, 𝑁𝑋 ]] ⊗ [[1, 𝑁𝑌 ]],

𝑝(𝑥𝑖 , 𝑦 𝑗 ) = 𝛥𝐶
𝐹𝑋 (𝑥𝑖) ,𝐹𝑌 (𝑦 𝑗 )
𝐹𝑋 (𝑥𝑖−1) ,𝐹𝑌 (𝑦 𝑗−1) (12)

with the convention that 𝐹𝑋 (𝑥0) = 𝐹𝑌 (𝑦0) = 0.
Let 𝑓 : X ⊗ Y → Z be a mapping and we define the

random variable 𝑍 as 𝑍 = 𝑓 (𝑋,𝑌 ). Then the probability
mass distribution 𝑝𝑍 of 𝑍 is:

∀𝑧 ∈ Z, 𝑝𝑍 (𝑧) =
∑︁
𝑥,𝑦

𝑧= 𝑓 (𝑥,𝑦)

𝑝(𝑥, 𝑦) (13)

Determining every (𝑥, 𝑦), whose image by 𝑓 equals 𝑧, is
not always trivial. This becomes even more complex when
we are considering copulas with 𝑁 > 2 variables. Note that
the 𝐻-volume is a sum of 2𝑁 terms, which also increases
exponentially with the dimension. In the continuous case,
the 𝐻-volume is replaced with the density ℎ of the joint
CDF, and the density of 𝑍 is

𝑝𝑍 (𝑧) =
∫
X

∫
Y
ℎ(𝑥, 𝑦)Ind( 𝑓 (𝑥, 𝑦) = 𝑧)𝑑𝑥𝑑𝑦 (14)

where Ind is an indicator function.
Let us now consider the case where we do not know the

CDFs of 𝑋 and 𝑌 , but only the belief functions Bel𝑋 ,Bel𝑌
and their associated mass functions 𝑚𝑋 : P(X) →
[0, 1], 𝑚𝑌 : P(Y) → [0, 1]. Propagating belief functions
can be done in similar manner as in (12), replacing the
CDFs by cumulated masses (Ferson et al., 2004). In order
to do so, we need to fix an arbitrary order over the focal sets
of 𝑚𝑋 and 𝑚𝑌 . Let us suppose we have such an order and
that the focal sets of 𝑚𝑋 are {𝑎𝑋1 , . . . , 𝑎

𝑋

𝑁𝑋
𝑎

} and those of
𝑚𝑌 are {𝑎𝑌1 , . . . , 𝑎

𝑌

𝑁𝑌
𝑎

}. Then the joint mass for X and Y is
defined as:

𝑚𝑋𝑌 (𝑎𝑋𝑖 , 𝑎𝑌𝑗 ) = 𝛥𝐶
∑𝑖

𝑘=1 𝑚𝑋 (𝑎𝑋
𝑘
) ,∑ 𝑗

𝑘=1 𝑚𝑌 (𝑎𝑌
𝑘
)∑𝑖−1

𝑘=1 𝑚𝑋 (𝑎𝑋
𝑘
) ,∑ 𝑗−1

𝑘=1 𝑚𝑌 (𝑎𝑌
𝑘
)

(15)

We refer to a previous publication for details about this
method and details on other ways of aggregating credal sets
with a copula, as well as the importance of the order over
focal sets (Malinowski and Destercke, 2023).
An important thing to note here is that a copula does not

bare the same meaning when used with precise models in
(12) and when used with imprecise models as in (15). In
the precise case, the copula will encode the dependency
between the values of the random variables. For instance
in the case of co-monotonicity inside an image patch, the
minimum copula 𝐶min would mean that a high value of a
pixel indicates that the pixel’s neighbours must have also
possess high intensities. In the imprecise case, the copula
will encode the dependency between degrees of belief
regarding the values of random variables (supposing that
there exist such underlying random variables behind our
models). For instance the minimum copula 𝐶min indicates
that a high belief regarding a pixel’s intensity is correlated
to a high belief regarding its neighbours. However, the
(confident) values of pixels could be very low and very high,
which would not be the case using (12).
Given the joint mass distribution function constructed

with the copula, it is then possible to compute the mass
distribution function of Z:

∀𝑎𝑍 ⊆ Z, 𝑚𝑍 (𝑎𝑍 ) =
∑︁

𝑎𝑋
𝑖
,𝑎𝑌

𝑗

𝑎𝑍= 𝑓 (𝑎𝑋
𝑖
,𝑎𝑌

𝑗
)

𝑚𝑋𝑌 (𝑎𝑋𝑖 , 𝑎𝑌𝑗 ) (16)
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As in the precise case, computing the image of 𝑓 for every
pair of focal sets (𝑎𝑋

𝑖
, 𝑎𝑌

𝑗
) is not always trivial.

4.2. Uncertainty Propagation through the SAD Cost
Function

To illustrate how to propagate the uncertainty using belief
functions and a copula, we will present in this section the
case of the uncertainty related to the SAD cost function.
The SAD is computed between two 3 × 3 windows

𝑊𝐿 ,𝑊𝑅. The propagation of uncertainty is done in two
passes: in the first pass, the pixel-to-pixel Absolute Differ-
ence (AD) of intensities is computed, resulting in a single
3×3window. In the second pass, all of the AD are summed,
resulting in the complete SAD. Figure 3 illustrates those
two steps. For the AD, the uncertainty for each “pixel” is
computed using a Gaussian 2-copula characterizing the
dependency between each pair of pixels. We use the mass
distribution 𝑚𝑝 of Equation (7) to represent the uncertainty
of each pixel 𝑝. For every pair of pixel 𝑝 ∈ 𝐼𝐿 , 𝑞 ∈ 𝐼𝑅, we
note AD𝑝𝑞 = |𝑖𝑝 − 𝑖𝑞 |. There exists 3 focal sets related to
the AD:

• 𝑎AD1 is obtained by computing the AD of 𝑎𝑝1 and 𝑎
𝑞

1

• 𝑎AD2 is obtained by computing the AD of 𝑎𝑝2 and 𝑎
𝑞

1
or 𝑎𝑝1 and 𝑎

𝑞

2

• 𝑎AD3 is obtained by computing the AD of 𝑎𝑝2 and 𝑎
𝑞

2

To compute their exact image through the AD, we need
to take into account the non monotonicity of the absolute
value around 0:

𝑎AD1 = [[AD𝑝𝑞 , AD𝑝𝑞]]
𝑎AD2 = [[AD𝑝𝑞 − 1, AD𝑝𝑞 + 1]] if AD𝑝𝑞 > 0

= [[AD𝑝𝑞 , AD𝑝𝑞 + 1]] otherwise
𝑎AD3 = [[AD𝑝𝑞 − 2, AD𝑝𝑞 + 2]] if AD𝑝𝑞 > 1

= [[AD𝑝𝑞 − 1, AD𝑝𝑞 + 2]] if AD𝑝𝑞 = 1
= [[AD𝑝𝑞 , AD𝑝𝑞 + 2]] otherwise

The mass of each focal set of AD is computed using
Equations (15) and (16), and by remarking that 𝑚𝑝 (𝑎𝑝1 ) +
𝑚𝑝 (𝑎𝑝2 ) = 1 and 𝑚𝑞 (𝑎𝑞1 ) + 𝑚𝑞 (𝑎𝑞2 ) = 1:

𝑚AD (𝑎AD0 ) = 𝛥𝐶𝑚𝑝 (𝑎𝑝

1 ) ,𝑚𝑞 (𝑎𝑞

1 )
0,0

𝑚AD (𝑎AD1 ) = 𝛥𝐶1,𝑚𝑞 (𝑎𝑞

1 )
𝑚𝑝 (𝑎𝑝

1 ) ,𝑚𝑞 (𝑎𝑞

1 )
+ 𝛥𝐶𝑚𝑝 (𝑎𝑝

1 ) ,1
𝑚𝑝 (𝑎𝑝

1 ) ,𝑚𝑞 (𝑎𝑞

1 )

𝑚AD (𝑎AD2 ) = 𝛥𝐶1,1
𝑚𝑝 (𝑎𝑝

1 ) ,𝑚𝑞 (𝑎𝑞

1 )

Once all of the AD focal sets and mass functions are
computed, they are summed over the 3×3window. The same
steps are repeated, this time with 9 sources of uncertainty.
The dependency between all of the pixels is represented by
a Gaussian 9-copula.

4.3. Reducing the Computation Time of Exact
Propagation

Determining the images of the AD focal sets by the sum is
trivial as we only need to sum the bounds of each interval
for every combination of them. Computing the joint mass
over a 3×3 window is not as easy as in the AD case. The 𝐻-
volume is now computed for a 9-copula, which is a sum of 29
terms. Because the uncertainty of each absolute difference
is represented by 3 focal sets, there are 39 combinations of
focal sets to evaluate for the whole 3 × 3 window. A way of
reducing the computation time is to take advantage of the
fact that the focal sets derived from a possibility distribution
(or equivalently from its necessity measure) form a nested
family of sets. In the general case, propagating two necessity
measures Nec𝑋 : P(X) → [0, 1], Nec𝑌 : P(Y) → [0, 1]
through a mapping 𝑓 : X ×Y → Z with a copula 𝐶 does
not yield a necessity measure but “only” a belief function.
For the special case where Nec𝑋 ,Nec𝑌 are defined by
symmetric uni-modal possibility distributions (typically
triangular possibilities), and 𝑓 is a monotone function
applied to a linear combination 𝛼𝑋 + 𝛽𝑌 + 𝛾 of 𝑋 and
𝑌 , (𝛼, 𝛽, 𝛾) ∈ ℝ3, then the focal sets of 𝑍 = 𝑓 (𝑋,𝑌 )
form a nested family of sets, which is characteristic of
necessity measures (Shafer, 1976). Indeed, the focal sets of
Nec𝑋 ,Nec𝑌 are families of nested sets that can be written
as ( [𝑋 ± 𝛥𝑥𝑖]), ( [𝑌 ± 𝛥𝑦 𝑗 ]), with 𝑋 ∈ X, 𝑌 ∈ Y and
(𝛥𝑥𝑖), (𝛥𝑦 𝑗 ) positive scalars. The focal sets of the linear
combination of 𝛼𝑋 + 𝛽𝑌 + 𝛾 are of the form:

𝑎𝑖 𝑗 = [𝛼𝑋 + 𝛽𝑌 + 𝛾 − (|𝛼 |𝛥𝑥𝑖 + |𝛽 |𝛥𝑦 𝑗 ),
𝛼𝑋 + 𝛽𝑌 + 𝛾 + (|𝛼 |𝛥𝑥𝑖 + |𝛽 |𝛥𝑦 𝑗 )]

and is a nested family of sets. Applying a monotone function
to those focal sets will keep the nesting property (but not
their symmetry), which results in Bel𝑍 being a necessity
measure. For more advances functions such as multiplica-
tion, exponential etc. . . , this property is not always true (it
is easy to find examples where the nesting property is not
retained for Bel𝑍 ). This property can be used to simplify
and reduce the computations of focal sets bounds and their
masses in the case where the AD is superior to 2 (to avoid
the non monotonicity of the absolute value around 0). In
the case where the focal sets are nested, it holds that for
every focal sets 𝑎𝑋

𝑖
, 𝑎𝑌

𝑗
of Nec𝑋 ,Nec𝑌 (Malinowski and

Destercke, 2023):

Bel𝑋𝑌 (𝑎𝑋𝑖 , 𝑎𝑌𝑗 ) = 𝐶 (Nec𝑋 (𝑎𝑋𝑖 ),Nec𝑌 (𝑎𝑌𝑗 )) (17)

hence the joint belief function can be computed solely with
the marginal masses of Nec𝑋 and Nec𝑌 and the copula.
There is no need to compute the joint mass, thus avoiding
the computation of the 𝐻-volume with (10).
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5. Resulting Envelopes and Monte Carlo
Simulations

We have presented the tools used for propagating belief
functions through the cost function. This section details the
construction of the correlation matrix for the Gaussian cop-
ula, and how envelopes were computed from the propagated
belief function. We also generate samples from different
noise models with a dependency specified by the product
and Gaussian copulas. This noise is added to the input
images, and we apply the Monte Carlo method to generate
multiple “noised” cost curves. Those curves are compared to
the envelopes to determine if the propagated belief functions
is able to correctly characterize the uncertainty.

5.1. Constructing a Correlation Matrix for the
Gaussian Copula

Section 3.4 presented our aim to sample from copulas to
validate the computed envelopes. The current section details
the construction of the Gaussian copula which will be used.
The Gaussian copula is parameterized by a correlation
matrix 𝑅. The correlation between the uncertain sources is
based on a segmentation 𝑆 : (𝐼𝐿 ∪ 𝐼𝑅) → [[0, 𝐾]], 𝐾 ∈ ℕ,
of the images, performed on the ground truth disparity of
each pixel. Given two pixels (𝑝, 𝑞) ∈ (𝐼𝐿 ∪ 𝐼𝑅)2, their
covariance is determined by:

cov(𝑝, 𝑞) =


1 if 𝑝 = 𝑞

𝜌𝑘 , if 𝑝 ≠ 𝑞 and 𝑆(𝑝) = 𝑆(𝑞)
0, otherwise

(18)

The segmentation contains 𝐾 = 8 different clusters, and
for every 𝑘 in [[0, 𝐾]], 𝜌𝑘 is assigned an arbitrary value
between 0.9 and 1.
We can thus build a correlation matrix 𝑅 for all pixels

of (𝐼𝐿 ∪ 𝐼𝑅), and sample a perturbation on all of the pix-
els using a Gaussian copula with this correlation matrix.
The Gaussian 2−copula and Gaussian 9−copula are used
to model the dependency between masses in the uncer-
tainty propagation step and their correlation matrix is also
constructed using Equation (18).

5.2. Envelopes from the Propagated Belief Function

To illustrate the propagation of uncertainty with a concrete
example, we used the Middlebury dataset1, consisting of
pairs of left-right images with the correct disparity map
available. An example of an image pair from this dataset is
presented in Figure 1. For every pixel in the left image, we
computed its SAD cost curve, while propagating the uncer-
tainty model presented in (3.2). The focal sets representing

1https://vision.middlebury.edu/stereo/data/
scenes2003/

the uncertainty related to the SAD value at every considered
disparity are intervals containing the “precise” SAD value.
Upper and lower envelopes with different plausibility levels
have been computed. They represent the biggest (resp. low-
est) focal set bound 𝑎 whose plausibility, computed using
Equation (4), is above a given threshold 𝑇 : Pl(𝑎) > 𝑇 . The
plausibility threshold 0 is strict Pl(𝑎) > 0 and represents the
support of the SAD. The plausibility threshold 1 coincides
with the value of the cost curve obtained in the “precise
setting” (i.e. without considering the uncertainty).
Figure 4 contains the cost curve and its support obtained

using the product copula. The curves obtained using the
Gaussian copula with correlation matrix 𝑅 present the exact
same values, so they are not represented here. In this case;
this is due to the fact that the Gaussian Copula 𝐶𝑅 and
the product copula 𝐶Π never assign a null value to a joint
mass. Thus the joint belief functions computed using those
copulas have the same focal sets. Taking the product copula
and, for example, the lower Fréchet-Hoeffding 2-copula
𝐶 (𝑢, 𝑣) = max(𝑢 + 𝑣 − 1, 0), might have led to different
joint focal sets, and thus to different envelopes.
In the specific case of the product copula 𝐶Π, the joint

mass is easy to compute as it is simply the product of the
marginal masses. The black dotted rectangle in Figure 4(a)
represents a region of interest (ROI), defining the bounds of
Figures 5 and 6. The green vertical line represents the correct
disparity. It is important to remark that in the “precise” case,
the minimum of the SAD curve does not indicate the true
disparity as there is a slight offset between this minimum
and the ground truth. When considering the support of the
cost curve (where Pl > 0), it is possible to determine a
set of disparities containing the true value of the disparity.
By noting SAD(𝑑) (resp. SAD(𝑑)) the upper (resp. lower)
envelope of the cost curve at disparity 𝑑, the set containing
the true disparity is estimated as:

𝐷 = {𝑑 | SAD(𝑑) 6 min
𝑑′
SAD(𝑑 ′)} (19)

This set is represented graphically by the blue arrow in
the Figure 4(b). This set can later be used to determine
confidence intervals for the true disparity (or for the true
depth using eq. (1)), or could be used to better estimate the
true disparity by solving an optimization problem under
uncertainty. We do not cover these topics in this article.
Figure 5 displays more detailed plausibility thresholds.

The envelopes of Figure 5(a) where computed using the
product copula𝐶Π, whereas those of Figure 5(b) where com-
puted using the Gaussian copula 𝐶𝑅. As stated previously,
the envelopes corresponding to plausibility levels 0 and 1
are the same for both copulas. However, the plausibility
levels 0.99 and 0.6 a more concentrated around plausibility
level 1 in the case of the Gaussian copula than in the case of
the product copula. By construction, the Gaussian copula
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(a) Complete cost curve

(b) Focus around the true disparity and the possible disparity
set 𝐷

Figure 4: Cost curve (Pl = 1) and its support (Pl > 0) using
the product copula 𝐶Π. The green vertical line
represents the true disparity

(a) Different plausibility levels for the product copula 𝐶Π

(b) Different plausibility levels for the Gaussian copula 𝐶𝑅

(the Pl = 1 and Pl > 0.99 curves overlap)

Figure 5: Zoom over a ROI and plausibility levels

𝐶𝑅 is more comonotone than the product copula, which
could explain this effect.

5.3. Comparison with Monte Carlo Samplings

Figure 6(a) contains Monte Carlo samplings for indepen-
dent centered normal noise (with standard deviation 𝜎 = 1)
and independent uniform noise (with support [−1, 1]). Fig-
ure 6(b) contains the same type of noise models, but this
time sampled from the Gaussian copula as their depen-
dency model as in Section 3.4. Different plausibility levels
computed with their respective copula are also plotted. We
observe that all Monte Carlo samplings, no matter the noise
model used, are correctly contained in the support envelopes.
This holds for both the product and the Gaussian copulas. It
suggests that the method used for computing the envelopes
allows to correctly estimate the possible values of the cost
curve when the input images are uncertain. The envelopes
computed with the product copula are pessimist, as the
independent Monte Carlo samplings are rarely outside the
0.6 plausibility level. The envelopes obtained with the Gaus-
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(a) Envelopes and Monte Carlo sampling using the product
copula 𝐶Π

(b) Envelopes and Monte Carlo sampling using the Gaussian
copula 𝐶𝑅

Figure 6: Zoom over a ROI and Monte Carlo sampling

sian copula suffer less from this observation, with more
samples venturing outside the envelopes. Nevertheless, the
method for propagating belief functions correctly provides
confidence levels regarding the value of the cost function at
all the disparities.

6. Conclusion

This contributions presents a real-life application of uncer-
tainty propagation using possibility distributions as models,
and copulas to characterize the dependency between differ-
ent random sources. In order to propagate the uncertainty
in the matching step of a photogrammetry 3D pipeline, we
introduce the use of cost functions, and presented a simple
model to represent the sources of uncertainty in input im-
ages. The different steps for propagating the uncertainty are
detailed for didactic purposes, with the intention of high-
light the potential of using imprecise models in concrete
cases. Additionally, a sufficient condition for conserving
possibilities after the propagation is proposed, which can
be used to reduce the computation time.
Envelopes are deduced from the propagated plausibility

functions, which correctly frame different types of input
noise, generated using Monte Carlo simulations. Although
copulas do not bear the same meaning when used with
precise density functions and when used with belief func-
tions, simulations show that the propagated belief functions
allow to generate correct envelopes which estimate the
possible value of the cost function. Dealing with uncertain
cost functions allows as well to estimate a set of acceptable
disparities, which correctly contains the true disparity.
Although we presented a case of using imprecise prob-

ability to estimate the cost function in a photogrammetry
3D pipeline problem, we did not consider the uncertainty
stemming from the formulation of the function itself. It is
not guaranteed that comparing two patches of images as
we did is sufficient to determine with certainty all dispar-
ities. Future work includes taking into account both the
uncertainty on the input image and the uncertainty related
to the cost function’s ability to correctly distinguish homol-
ogous pixels. Another perspective is to extend this work to
more complex cost functions and to other step of the 3D
pipeline, such as rasterisation of imprecise 3D point clouds
or stereo-rectification of pairs of images.
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