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Our scheme
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Proposed setups. On the left, each client trains a model using QAT (Quantization-Aware-Training). On the
right, both client and server use magnitude prune to compress the model.

Context
Federated Learning (FL) is used dis-
tributed/collaborative learning algorithm, for a
more private machine learning.
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Federated Learning standard setup.

Clients are usually embedded devices, with low
hardware specifications but access to real-world,
possibility private, data. In this scenarios, how can
neural networks compression techniques im-
prove the FL framework ?

Experimental results – CIFAR10
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Accuracy evolution comparison, for the quantization technique, between baseline (FP 32-bit), 1-bit, 4-bit
and 8-bit, on the left. Pruning effect on the accuracy in function of the pruning rate, where the rate indicates
the % of total parameters pruned, on the right. Experiments done for 1 and 10 cl.epochs (clients epochs)

Compression expectation
Technique Accuracy (%) Message (MiB)

1 Lc. Epoch 10 Lc. Epochs
Baseline 78.94 78.18 2.97
Pruning

10 % 74.79 78.18 2.57
20 % 76.01 78.12 2.34
30 % 78.20 77.83 2.10
40 % 77.50 77.81 1.85
50 % 72.74 77.65 1.57
60 % 76.00 77.65 1.29
70 % 73.43 78.11 1.01
80 % 75.18 77.89 0.70
90 % 73.37 76.63 0.37
95 % 71.05 74.81 0.19
99 % 52.77 66.82 0.04

Quantization
8-bits 78.80 78.58 0.75
4-bits 79.74 77.04 0.38
1-bit 48.93 70.89 0.10

Summary of message size and
accuracy for the CIFAR-10
dataset.

Through the integration of com-
mon compression techniques to FL,
where, depending on the compres-
sion used, it is possible to reduce
the size of the message to be sent
from 13% (10% pruning) to 96%
(99%/1-bit pruning), after data
compression. Where the trade-off
between accuracy and message size
is the main point.

Setup
FL Setup: We used Flower’s framework [1]
to simulate 10 FL clients, with 40 % sampling
rate, for 100 rounds of communication. The
client’s learning rate was fixed to 0.0316 and a
batch-size of 20, as per [2]. On the server side,
we use FedAvg as aggregation strategy.

Simulation: The experiments are done for im-
age classification on CIFAR-10 and CIFAR-100,
where each client hold a fraction of the trainset,
accordiantly to a Latent Dirichlet Allocation [3]
with parameter equals to 100. Each client
trains a ResNet-12, with GroupNorm instead of
a BatchNorm.

Quantization: We chose to work with
quantization levels that are easily exploitable
on embedded systems, 1-bit, 4-bit and 8-bit
(weights only). For 4- and 8-bit, we use the
brevitas framework [4] to implement QAT.

Pruning: We considered an unstructured
magnitude based pruning method. To keep
coherence between up and down streams,
server and clients prune the same percentage of
weights each round.

Conclusions
• Takeaways: As seen in centralized training, reduced precision can achieve comparable accuracy to an FP32 model. Furthermore, in the quantization

experiment, reaching 78% accuracy takes approximately 40 rounds with 1 local epoch, whereas with 10, it is achieved in just 10 rounds. By increasing the
number of local epochs, it is possible to reduce communication, but at the same time, it increases device training time/energy.

• Perspectives: In order to go further with the adaptation of hardware constraints and the machine learning model, it could be interesting to integrate
heterogeneous Federated Learning.
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