
HAL Id: hal-04251969
https://hal.science/hal-04251969v1

Submitted on 20 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Federated learning compression designed for lightweight
communications

Lucas Grativol, Mathieu Leonardon, Guillaume Muller, Fresse, Virginie,
Matthieu Arzel

To cite this version:
Lucas Grativol, Mathieu Leonardon, Guillaume Muller, Fresse, Virginie, Matthieu Arzel. Fed-
erated learning compression designed for lightweight communications. ICECS 2023: IEEE 30th
International Conference on Electronics, Circuits and Systems, Dec 2023, Istanbul, Turkey.
�10.1109/ICECS58634.2023.10382717�. �hal-04251969�

https://hal.science/hal-04251969v1
https://hal.archives-ouvertes.fr


Federated learning compression designed for
lightweight communications

Lucas Grativol∗, Mathieu Léonardon∗, Guillaume Muller‡, Virginie Fresse† and Matthieu Arzel∗
∗IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France

†Hubert Curien Laboratory, Saint-Etienne, France
‡Mines Saint-Etienne, Institut Henri Fayol, Saint-Etienne, France

Abstract—Federated Learning (FL) is a promising distributed
method for edge-level machine learning, particularly for privacy-
sensitive applications such as those in military and medical
domains, where client data cannot be shared or transferred to
a cloud computing server. In many use-cases, communication
cost is a major challenge in FL due to its natural intensive
network usage. Client devices, such as smartphones or Internet
of Things (IoT) nodes, have limited resources in terms of
energy, computation, and memory. To address these hardware
constraints, lightweight models and compression techniques such
as pruning and quantization are commonly adopted in centralised
paradigms. In this paper, we investigate the impact of compres-
sion techniques on FL for a typical image classification task.
Going further, we demonstrate that a straightforward method
can compresses messages up to 50% while having less than 1%
of accuracy loss, competing with state-of-the-art techniques.

Index Terms—Compression, Federated Learning, Embedded
Systems

I. INTRODUCTION

The development of approaches for training machine learn-
ing models while preserving data privacy has long been a
goal. In traditional machine learning, embedded systems send
their raw data over a network to a powerful server, which
then trains the model and sends it back. However, this process
raises confidentiality issues, such as data interception during
communication and unauthorised access to user data by the
server owner or a third party. In standard Federated Learning
(FL), the server sends a model to a group of clients, who train
it on their local data and then send their updated parameters
back to the server for aggregation. By reversing the training
process in this way, FL attempts to better guarantee the
confidentiality of user data, since data never leaves a client
device. An overview of the process can be seen in Fig. 1.

These embedded devices such as IoT devices, smartphones
and drones are well suited to FL applications due to their
proximity to real-world data and applications [1]. However,
many of these devices have limited computational resources
and co-design techniques [2] are continually being explored
to match algorithms to hardware constraints. Among the
emerging research topics for FL at the edge/device level, the
field of neural network compression is a promising way to
tackle the constraints of devices exploiting FL [3].

This work is supported by the Futur et Ruptures program funded by IMT
and Institut Carnot TSN, and by the GdR ISIS.

Server

Clients

Step(4): Aggregate model

FedAvg

Step(1): Send model
to clients

Prune &
Compress

Step(2): Fit locally

Train Prune Compress

Step(3): Send Back

Fig. 1: The pipeline of our study. We propose a simple
way to insert the pruning technique as extra step before
communicating training results.

In addition to message compression, the FL domain en-
compasses important ongoing research efforts. These include
addressing challenges related to client heterogeneity in terms
of both data and hardware [4], ensuring secure aggregation
against attacks [5], and increasing client’s privacy [3]. While
our work primarily focuses on reducing message sizes for en-
ergy and bandwidth reductions, we emphasize the importance
of seamless integration with other ongoing research in FL.
When compared to previous approaches [6], [7], we propose
a simpler and more effective solution that not only reduces
message sizes but also ensures the possibility to be combined
with other techniques without compromising accuracy. Our
code is publicly accessible 1.

II. BACKGROUND

A. Overview of Federated Learning

Federated Learning (FL) [8] is a distributed framework that
enables collaborative training of machine learning (ML) mod-
els on multiple devices, called clients, via a central coordinator,
usually a server with large compute resources. Clients are
commonly embedded devices, such as smartphones. Differing
from traditional ML, each client trains its own local model and
shares only the local training results, like model parameters or
gradients, with the server. Through this mechanism, multiple

1https://github.com/lgrativol/fl exps

https://github.com/lgrativol/fl_exps


clients can jointly contribute to train a global model without
sharing their data. In each federated training cycle, commonly
referred to as a ’round,’ the server distributes the current model
to a subset of clients, who perform local training on the model
and subsequently send back the updated results. The final step
involves aggregating, on the server-side, client’s contribution
to create a global model, which ideally can represent the
knowledge from each client. Each round involves downloading
the model and several training iterations at client level.

B. Model Compression

Model compression is a widely adopted solution [2] to
reduce the computational and memory requirements of a
model. Among existing compression techniques, quantization
and pruning have been implemented to reduce the complexity
of inference and training of neural networks [9], [10].

Pruning aims to reduce the complexity of a model by
removing redundant or unnecessary parts of an architecture.
Very wide and deep models tend to yield good results, but
the contribution of each of its elements to the performance of
the whole network is not homogeneous. So, by observing each
architectural element of the network, it is possible to eliminate
those that have little impact. There are two possible approaches
to pruning in the context of neural networks [11]. The first is
to replace the value of certain weights with zeros, which is
commonly referred to as unstructured pruning. The second
approach consists of pruning entire structures within the net-
work, such as kernels, filters or layers, which do not contribute
significantly to the network’s performance. This approach is
known as structured pruning. On the other hand, unstructured
pruning can also offer compression benefits for FL through
the use of entropy coding techniques, such as Huffman [12]
coding, by exploiting sparse parameters. So far works in the
literature [6] have used pruning to reduce communication cost
by an order of 4.5 times. This is a significant consideration
since typical FL clients often encompass low-power devices
and operate in challenging transmission environments, such as
long-distance or underwater communications.

Another widely applied technique is quantization, neural
network models are generally constructed using 32-bit floating
point numbers (FP32), which are more expensive in terms
of computation, memory and energy than integers [13]. In
centralized machine learning is well-known that full-precision,
FP32, it’s not a necessary condition to obtain close to state-
of-the-art results for inference and training [12].

ZeroFL [6] is a recent work that seeks to reduce simul-
taneously communication and training costs with a double
optimization scheme to FL. First, a sparse training method
named SWAT [14], and second, a layer-wise pruning based on
weight importance. However as shown in [7] communications
cost can be much higher than the training cost. What should be
done in the case where the focus is solely on communication
costs ?

III. MAGNITUDE PRUNING FOR FEDERATED LEARNING

We address the invoked problem in II by proposing a
distributed non-structured pruning method. Unlike previous
works, our objective is to demonstrate that the conventional FL
framework can be modified to support sparse messages. This
method results in a compression of approximately 50% of the
original size while preserving accuracy with less than a 1%
loss. Our implementation is streamlined and easily extendable,
making it compatible with more advanced FL algorithms.

Starting from the standard FL pipeline, we introduced
pruning as a way to sparsify messages, server to client and
vice-versa. Inspired by [12], both server and clients perform
a non-structured magnitude pruning just before transmitting
a message. This pruning method is based on pruning the
absolute value of the global weights following a predetermined
pruning rate. Accordingly, the θ% smaller weights are substi-
tuted with zeros, thereby pruned. Consequently, both the server
and clients attain an equivalent level of sparsity in the message
throughout each round.

At first, we conducted experiments to study the behaviour of
our method while taking into account the impact on message
compression. We applied different levels of pruning to detect
trade-offs between compression and FL training mechanisms
according to the experimental setup illustrated in Fig. 1.
Building upon the results of our experiment, we extended our
study to include a comparison with a recently published paper
to showcase the viability of our approach.

IV. EXPERIMENTS

A. Exploring Magnitude Pruning

To explore the impacts of our technique in FL, we simulated
an image classification task, on the CIFAR-10 dataset, using
a ResNet-12 with 780K parameters and 2.97 MB. We used
the Flower [15] framework to simulate 10 FL clients. At
each round, 40% of the clients are selected for the training
process, and 100 rounds were performed to study the evolution
of the server model accuracy. Each client used SGD with
momentum as the optimizer. For simplicity, we use the same
hyperparameters as [4], also replacing the batch-norm layer by
a group-norm layer. The server uses FedAvg as the aggregation
strategy. Training examples are distributed across clients with
a Latent Dirichlet Allocation (LDA) [16] on the original
training set. The LDA partition is controlled by a distribution
parameter, α. A smaller value of α results in a more non-IID
task, making it more challenging. We examined the behavior of
our technique in a relatively IID (Independent and Identically
Distributed) scenario with α = 100. In this setting, clients
possess examples of all the classes.

As noted in previous works [3], [8] the number of local
iterations performed by clients during training can have an
important impact on model aggregation. For so, we decided
to investigate this behaviour in the presence of model com-
pression. The results on Fig. 2 show that spending more time
on each client contributes to a more robust model, allowing
sparser data communications while retaining approximately



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

55

60

65

70

75

80

Pruning rate

T
o
p
-1

A
cc
u
ra
cy

(%
)

1 cl.epoch
10 cl.epochs

Fig. 2: Pruning effect on the accuracy in function of the prun-
ing rate, where the rate represents the % of total parameters
pruned, for 1 and 10 clients epochs.

TABLE I: Comparation to ZeroFL

Method Compression Accuracy Message
Size (MB)

ZeroFL
Full model 80.62± 0.72 44.7
90 % SP +

0.2 Mask Ratio 81.04± 0.28 27.3

90 % SP +
0.0 Mask Ratio 73.87± 0.50 10.1

Global
magnitude
(Ours)

Full model 84.43± 0.36 44.7
10 % pruning rate 85.96± 0.37 38.1
20 % pruning rate 85.57± 0.19 34.8
30 % pruning rate 85.03± 0.32 31.1
40 % pruning rate 85.20± 0.20 27.1
50 % pruning rate 83.85± 0.65 23.0
60 % pruning rate 83.19± 0.44 18.9
70 % pruning rate 82.25± 0.63 14.5
80 % pruning rate 80.70± 0.24 9.8
90 % pruning rate 76.77± 0.47 4.9
95 % pruning rate 69.14± 0.85 2.5
99 % pruning rate 0.10± 0.0 0.5

the same accuracy, even though this approach also results in
a higher total number of local iterations.

To further investigate and evaluate the feasibility of our
method in a non-IID scenario, we adopted the same test case
as ZeroFL. The model is a ResNet-18 with 11M trainable
parameters, occupying 44.7 MB. The FL scenario simulates
100 clients with 10% participation rate, for only 1 local epoch
and with α = 0.1, where clients don’t have access to all
classes and the number of examples is randomly distributed.
Table I presents the model evaluation results. The reported
results are the means of three separate runs, with different
seeds applied to generate distinct distributions of clients’ data.
Unless otherwise stated, the size of the models is reported after
being compressed using a ZIP algorithm.

In Table I, we present a comparison with ZeroFL [6].
Initially, without pruning, our baseline has a higher accuracy
than ZeroFL and as far as we have understood, there are two
main distinctions. Firstly, we do not employ SWAT for local
training. Secondly, we use a batch size of 8, whereas ZeroFL
does not indicate the specific batch size used. As previously

observed in FL [8], the batch size is a crucial hyperparameter
that influences the aggregation accuracy. Even though SWAT
plays a significant role in reducing the communication cost,
it also has an impact on the model accuracy, resulting in an
overall hindrance. This effect can be noticed as our baseline,
which uses pure FedAvg without any compression, already
achieves higher accuracy, 4%, when compared to ZeroFL.
We observe that for the same level of pruning, our approach
exhibits proportionally less degradation. For instance, while
ZeroFL experiences an 8% accuracy degradation to prune the
model to 10 MB, we only experience a 4.63% degradation.
As the results show, client’s flexibility to perform pruning
on its own better compensates for the sparsity introduced.
This compensation enables messages to be more sparse while
resulting in a more robust global model.

B. Compressing more with Quantization

From the message savings observed with the pruning ex-
periments, one could ask if it is possible to have even smaller
messages. As exposed in section II-B another well-known
technique for compression is quantization. In Fig 3, we show
the impact of Quantization-Aware Training (QAT) [10], [17]
in the IID scenario described before. During QAT, weights
are still represented as floating-point numbers but are limited
to power-of-two values. At each gradient update, the values
are re-evaluated and scaled. The motivation behind using
QAT is to incorporate quantization noise into the training
procedure, allowing the network to learn from it. We chose
to work with 1-bit, 4-bit and 8-bit quantization levels, using
Binary Connect [18] for binary networks and the Brevitas [17]
framework for 4- and 8-bit with the default quantization
scheme. The weights are quantized to 4-bit and 8-bit integers
and the QAT scaling is calculated per layer.

0 20 40 60 80 100

20

40

60

80

Rounds

A
cc
u
ra
cy

(%
)

1 bit 4 bits
8 bits baseline

1 cl.epoch 10 cl.epochs

Fig. 3: Accuracy evolution comparison between baseline (32-
bit FP), 1-bit, 4-bit and 8-bit, for 1 and 10 clients epochs.

Looking at Fig. 3, we can see that the convergence time,
i.e. the number of rounds needed to reach maximum accuracy,
is not the same from one experiment to another, as it also
depends on the level of quantization. In addition to the fact



TABLE II: Summary of message size and accuracy for the
CIFAR-10 dataset for the IID case

Compression
Technique

Accuracy
(%)

Message Size
(MB)

1 Local
Epoch

10 Local
Epochs

Baseline 78.94 78.18 2.97
Pruning
10 % 74.79 78.18 2.57
20 % 76.01 78.12 2.34
30 % 78.20 77.83 2.10
40 % 77.50 77.81 1.85
50 % 72.74 77.65 1.57
60 % 76.00 77.65 1.29
70 % 73.43 78.11 1.01
80 % 75.18 77.89 0.70
90 % 73.37 76.63 0.37
95 % 71.05 74.81 0.19
99 % 52.77 66.82 0.04

Quantization
8 bits 78.80 78.58 0.75
4 bits 79.74 77.04 0.38
1 bit 48.93 70.89 0.10

that the 4- and 8-bit format enables us to achieve an accuracy
comparable to the reference, it also reveals a compromise
between communication and computation. In order to achieve
a similar accuracy of around 75%, Fig. 3, it is necessary to
perform 40 rounds of communication and 40 total epochs
when using 1 local epoch, while in the case of 10 local epochs,
100 total epochs are needed within 10 rounds. Still, in the
case of one bit, increasing the number of epochs per round on
the client from 1 to 10 considerably increases accuracy, from
48.8 % to 70.9 %, with the total number of epochs increasing
from 100 to 1000, with the same communication cost. As
seen in the IID pruning experiment in Fig. 2, spending more
time on each client contributes to a more robust model to the
perturbations introduced by the quantization.

Table II summarises the size of a message exchanged
between client and server for IID scenario. For quantization,
the message size depends only on the quantized weights,
since the server knows the client’s quantization. Table II also
shows that even simple approaches can be used to compress
a network, representing savings of 2 to 4 times in bandwidth
without significantly affecting accuracy.

V. CONCLUSION

Federated learning represents a new approach to training
models in a distributed manner, bringing forth fresh opti-
mization challenges due to the presence of embedded systems
serving as FL clients. These clients operate with limited hard-
ware, energy, and communication resources. In this article, we
demonstrated the promising application of traditional neural
network compression methods in the context of FL. Our easy
to implement yet effective technique achieved up to a 50%
reduction in message size without any significant impact on
accuracy, thereby resulting in direct savings in energy and
bandwidth costs. Moreover, our method allows each client to
customize their pruning process, enabling greater flexibility to
adapt to their unique datasets. By integrating quantization into

the training process, we introduced an additional compression
technique to the framework. It is conceivable that combin-
ing quantization and pruning could further enhance message
compression, although our results already demonstrate the
significance of both techniques individually. Based on these
findings, we posit that incorporating a compression-aware
training method, while ensuring seamless integration, is a
crucial step in advancing the field of FL.

REFERENCES

[1] P. P. Ray, “A review on tinyml: State-of-the-art and prospects,” Journal
of King Saud University-Computer and Information Sciences, 2021.

[2] Y. Cheng and et al, “A survey of model compression and acceleration
for deep neural networks,” arXiv:1710.09282, 2017.

[3] P. e. a. Kairouz, “Advances and open problems in federated learning,”
Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp.
1–210, 2021.

[4] S. e. a. Reddi, “Adaptive federated optimization,” arXiv:2003.00295,
2020.

[5] H. U. Manzoor, M. S. Khan, A. R. Khan, F. Ayaz, D. Flynn, M. A.
Imran, and A. Zoha, “Fedclamp: An algorithm for identification of
anomalous client in federated learning,” in 2022 29th IEEE International
Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2022,
pp. 1–4.

[6] X. e. a. Qiu, “Zerofl: Efficient on-device training for federated learning
with local sparsity,” arXiv preprint arXiv:2208.02507, 2022.

[7] P. Li, G. Cheng, X. Huang, J. Kang, R. Yu, Y. Wu, and M. Pan,
“Anycostfl: Efficient on-demand federated learning over heterogeneous
edge devices,” arXiv preprint arXiv:2301.03062, 2023.

[8] B. e. a. McMahan, “Communication-efficient learning of deep networks
from decentralized data,” in Artificial intelligence and statistics. PMLR,
2017, pp. 1273–1282.

[9] T. e. a. Hoefler, “Sparsity in deep learning: Pruning and growth for
efficient inference and training in neural networks.” J. Mach. Learn.
Res., vol. 22, no. 241, pp. 1–124, 2021.

[10] J. e. a. Lin, “On-device training under 256kb memory,”
arXiv:2206.15472, 2022.

[11] H. e. a. Tessier, “Rethinking weight decay for efficient neural network
pruning,” Journal of Imaging, vol. 8, no. 3, p. 64, 2022.

[12] S. e. a. Han, “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[13] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2014, pp. 10–14.

[14] M. A. Raihan and T. Aamodt, “Sparse weight activation training,” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 15 625–
15 638, 2020.

[15] D. J. e. a. Beutel, “Flower: A friendly federated learning research
framework,” arXiv:2007.14390, 2020.

[16] T.-M. H. e. a. Hsu, “Measuring the effects of non-identical data
distribution for federated visual classification,” arXiv:1909.06335, 2019.

[17] A. Pappalardo, “Xilinx/brevitas,” 2021. [Online]. Available: https:
//doi.org/10.5281/zenodo.3333552

[18] M. e. a. Courbariaux, “Binaryconnect: Training deep neural networks
with binary weights during propagations,” Advances in neural informa-
tion processing systems, vol. 28, 2015.

https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552

	Introduction
	Background
	Overview of Federated Learning
	Model Compression

	Magnitude Pruning for Federated Learning
	Experiments
	Exploring Magnitude Pruning
	Compressing more with Quantization

	Conclusion
	References

