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Abstract—Recent data-driven approaches using neural net-
works have shown promising results for pedestrian trajectory
prediction. These algorithms outperform the knowledge-based
and physics-based models in terms of distance error. However, it
has been observed that the neural networks produce too many
collisions and pedestrian overlaps, leading to unrealistic predic-
tions. To address this problem, we propose in this contribution
a hybrid extension of the Social-LSTM data-driven approach
by introducing a collision loss in the training. The collision
loss is provided by an interaction energy based on the time-
to-collision with the neighbors. The predictions are evaluated
and compared to the Social-LSTM model using both distance-
error metrics and collision metrics. The results show that collision
and pedestrian overlap in the predicted trajectories decreases
exponentially as the collision loss weight in the training increases,
while the displacement error remains approximately constant.
These preliminary results make the proposed hybrid algorithm a
promising approach for realistic pedestrian prediction, especially
in high-density situations.

Index Terms—Pedestrian trajectory prediction, Social-LSTM,
time-to-collision, interaction energy, hybrid approach

I. INTRODUCTION

In an increasingly urbanised world, the modelling of pedes-
trian dynamics is necessary for mobility planning in towns and
cities, or for the design of large infrastructures or the organisa-
tion of events with large audiences, among other applications.
These issues are of great societal interest, in terms of mobility,
safety and environment. The modelling of pedestrian dynamics
is by its nature multidisciplinary. The last decade has seen
the rapid emergence of alternative approaches solely driven
by data to predicting pedestrian dynamics [3], [4]. Numerous
recent empirical analyses have shown that deep learning algo-
rithms using displacement-based error metrics and neural net-
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works, more specifically long short-term memory (LSTM) and
generative adversarial networks (GAN), can predict pedestrian
trajectories more accurately than traditional physical models
in terms of prediction displacement error. LSTM networks
have emerged as the most widely employed architecture in
this area, primarily due to their capability to adeptly handle
sequential data, such as trajectories. The first breakthrough
came with the publication of the Social-LSTM from Alahi
et al. [6]. It presents a pooling layer, called social pooling,
that gathers the hidden states of nearby pedestrians. Further
studies have extended these initial algorithms by incorporating
elements such as scene information [9], attention mechanisms
[10], graph neural networks [11], [12], and heterogeneity
among pedestrians [13]. Besides the use of LSTM algorithms,
researchers applied other supervised learning algorithms such
as generative adversarial networks, like the Social-GAN for
predicting pedestrian trajectories. Due to the architecture of the
Social-GAN, which contains a generator and a discriminator, it
allows to predict a distribution of potential future trajectories.
An even more recent trend in modelling consists of hybrid
extended approaches in which further physical constraints
or knowledge on pedestrian behavior is incorporated into
the data-based algorithms. Such advanced hybrid approaches
not only allow accurate trajectory prediction in terms of
displacement error, but can also limit unrealistic collisions
and pedestrian overlap, especially in high-density situations,
that data-driven algorithms based only on displacement error
metrics tend to describe [4], [7].

In this contribution, we propose to extend the Social-LSTM
(SLSTM) data-driven approach [6] by introducing a collision
loss in the training, to tackle the problem of unrealistic
collisions behavior. The collision metric is provided by an
interaction energy based on the times to collision (TTC) with
the neighbors, successfully introduced to model pedestrian



dynamics a few years ago [8] (hence the name TTC-SLSTM).
A factor λ ≥ 0 weights the collision loss in the training.
The results show that collision and pedestrian overlap in the
predicted trajectories decrease exponentially for increasing λ,
while the displacement error remains approximately constant.
These preliminary results make the proposed TTC-SLSTM
algorithms a promising hybrid approach for realistic pedestrian
prediction, especially in high-density situations.

The rest of the contribution is structured as follows. The
next section covers the methodological aspects of the study,
including definitions of the SLSTM and TTC-SLSTM algo-
rithms and the evaluation metrics. The empirical analysis using
real pedestrian trajectories is described in section III, including
a comparison of the approaches. Section IV summarises the
results and outlines future research directions.

II. METHODOLOGY

This section presents the methodology for the proposed
TTC-SLSTM for pedestrian trajectory prediction. The problem
of pedestrian trajectory prediction is first formulated, followed
by the TTC-SLSTM algorithm description and evaluation
metrics for assessing the predictions.

A. Problem formulation

The primary objective is to accurately predict the future
positions of pedestrians based on their historical positions and
the contextual information of their surroundings. This problem
can be formulated as a sequence-to-sequence prediction task,
in which the input consists of a series of observed pedestrian
positions, while the output comprises the predicted future
positions. Given a scene with N pedestrians, their observed
positions at time instants 1 ≤ t ≤ Tobs is represented as
p(t) = {pt1, pt2, ..., ptN}. Here, pti = (xt

i, y
t
i) denotes the xy-

coordinate of the ith pedestrian, and Tobs represents the total
number of observation time steps. The future trajectories of the
pedestrians are predicted within the time interval Tobs + 1 ≤
t ≤ Tobs+Tpred, where Tpred is the number of prediction time
steps. The predicted position of the i-th pedestrian at time step
t is denoted as p̂ti = (x̂t

i, ŷ
t
i).

B. Algorithms

The three key components contributing to the TTC-SLSTM
are introduced including time-to-collision, interaction energy,
and SLSTM.

1) Time-to-Collision: The Time-to-Collision (TTC) metric
estimates how long it would take for two pedestrians to collide
with each other if they continue to move at their current
velocities [8]. Let ri represent the radius of the pedestrian
body i, and its velocity can be represented as vi = (vxi

, vyi
).

The relative position and velocity between the pedestrian i
and j can be denoted by pij = (xi − xj , yi − yj) and
vij = (vxi

− vxj
, vyi

− vyj
), respectively. A collision between

pedestrian i and pedestrian j occurs if a ray, originating from
(xi, yi) and extending in the direction of vij , intersects the
circle centered at (xj , yj) with a radius of ri + rj at some

time τij in the future. This condition can be mathematically
represented as ||pij + vij .t||2 < (ri + rj)

2 where ||.|| denotes
Euclidean norm. Solving this quadratic inequality for t yields
τij as the smallest positive root:

τij=
−pij · vij −

√
(pij · vij)2−||vij ||2(||pij ||2−(ri+rj)2)

||vij ||2
(1)

In case of a collision, τij = 0, whereas τij is assigned to a
large positive number when no collision occurs.

2) Interaction energy: The concept of interaction energy in
the field of pedestrian dynamics, as described by Karamouzas
et al. [8], is a fundamental component in understanding
social interactions among pedestrians. The analysis of a large
collection of human motion datasets uncovers a simple power-
law interaction based on the estimated time to a potential
future collision rather than merely depending on the physical
distance between pedestrians. The interaction energy between
the pedestrian i and j is formulated as follows:

Eij = E(τij) =
k

τ2ij
e−τij/τ0 (2)

where k represents a constant that normalizes the interaction
energy, and τ0 signifies the upper limit for the time range
of interaction. The short-range (power-law) interaction has
been demonstrated to simulate pedestrian interactions across
a wide range of situations effectively and can be employed to
reproduce many well-known crowd phenomena [8].

3) Social-LSTM: LSTM networks have demonstrated effec-
tive performance in sequence learning tasks. One such task,
the prediction of pedestrian trajectories, presents the chal-
lenges, that the trajectory of a pedestrian can be significantly
influenced by the trajectories of surrounding pedestrians. The
number of these neighboring influences can fluctuate widely,
especially in densely crowded environments [7]. Alahi et al.
[6] proposed a solution to that challenge by adding a ”social”
pooling layer. This added layer accounts for the spatial and
temporal effects of neighbors on an individual’s movement,
reflecting the inherently social nature of human motion. Given
the hidden-state dimension D, and the neighborhood size No

a tensor Ht
i for the ith trajectory is created with the size

No ×No ×D according to equation 3:

Ht
i (m,n, :) =

∑
j∈Ni

1mn[x
t
j − xt

i, y
t
j − yti ]h

t−1
j . (3)

In this equation, ht−1
j denotes the hidden state of the SLSTM

corresponding to the jth person at time t − 1. The term
1mn[x, y] serves as an indicator function to ascertain whether
a point (x, y) resides within the (m,n) cell of the grid.
Lastly, Ni signifies the set of local neighbors influencing
person i within a specific distance. The negative log-likelihood
loss (NLL) for the i-th trajectory is minimized to learn the
parameters of the SLSTM model.



In the original Social-LSTM model, the training loss func-
tion calculates the negative log-likelihood loss for the pre-
dicted coordinates (x̂, ŷ) at each time step, taking into ac-
count the estimated standard deviation, mean, and correlation
coefficient of the bivariate Gaussian distribution. This loss
function provides a measure of the discrepancy between the
predicted probability distribution of the pedestrian trajectories
and the observed data. Minimizing this value during the
training process allows the model to generate more accurate
predictions that adhere closely to the actual trajectories.

4) TTC-SLSTM: While the loss function of the SLSTM has
shown promising results, it is important to recognize potential
limitations: trajectories predicted with low loss values can still
manifest unrealistic behavior, particularly high collision rates.
This paradox arises because the loss function primarily focuses
on the overall distance accuracy of the prediction without
explicitly considering the physical plausibility of these trajec-
tories. More precisely, the model can generate trajectories that
are statistically accurate (i.e. low distance error) but physically
implausible (i.e. result in high collision rates) as it does not
inherently account for real-world constraints such as the need
for pedestrians to avoid collisions.

To address this limitation, the loss function is augmented
with an additional term that captures the interaction energy to
neighboring agents (Li for the ith trajectory):

Li = NLLi + λ
1

Tpred

Tpred∑
t=1

∑
j ̸=i

tanh(Eij) (4)

where λ is the weight. The tanh function is applied to
the interaction energy to normalize excessively large values
for small τ . Fig.1 graphically illustrates the function of
tanh(E(τ)), with k = 1.5, τ0 = 3 which are the calibrated
parameters [8].

Fig. 1: tanh function of the interaction energy E(τ) with k =
1.5 and τ0 = 3.0.

The second term in the new loss function describes the
total sum of the tanh function applied to the interaction
energy with the neighboring pedestrians. A penalty is added
for predicted trajectories with small τ values relative to the
neighbors. Consequently, the neural network then learns to
minimize both the negative log-likelihood loss and energy term
in the proposed training loss function.

C. Evaluation metrics

Two types of evaluation metrics are used including distance-
error metrics and collision metrics. The evaluation metrics are
typically applied to a primary pedestrian in each prediction
scene, where the primary pedestrian refers to the specific
individual whose future trajectory is the primary focus of the
prediction.

The Average Displacement Error (ADE) and Final Dis-
placement Error (FDE) are commonly used metrics for
evaluating the accuracy of pedestrian trajectory predictions [4].
ADE is defined as the average Euclidean distance between
the ground truth and prediction of the primary pedestrian
over all predicted time steps. In contrast, FDE measures the
Euclidean distance between the final predicted position and the
corresponding ground truth position of the primary pedestrian.
Lower values of ADE and FDE indicate a more accurate
predicted trajectory to the ground truth.

ADE =
1

MTpred

M∑
i=1

Tpred∑
t=1

√
(x̂t

i − xt
i)

2 + (ŷti − yti)
2

FDE =
1

M

M∑
i=1

√
(x̂

Tpred

i − x
Tpred

i )2 + (ŷ
Tpred

i − y
Tpred

i )2

(5)
where M is the total number of predicted primary pedestrians.

In recent literature, an increasing focus has been placed on
the importance of incorporating collision metrics in human
trajectory prediction [4], [7]. These metrics offer a deeper
understanding of the realism of the predicted trajectories, par-
ticularly in high-density scenarios where pedestrians typically
adhere to social norms of avoiding collisions. In this study,
the Prediction Collision (Col-I) and Groundtruth Collision
(Col-II) [4] are utilized to evaluate collisions in trajectory
predictions. The Col-I metric quantifies the proportion of colli-
sions of predicted trajectories between the primary pedestrian
and neighbors in the predicted future scene. In contrast, the
Col-II metric computes the percentage of collisions between
the prediction of the primary pedestrian and the groundtruth
of neighboring pedestrians in the future scene.

Col-I =
1

M

M∑
i=1

min(1,
∑
j ̸=i

Tpred∑
t=1

[∥p̂ti, p̂tj∥ < ri + rj ])

Col-II =
1

M

M∑
i=1

min(1,
∑
j ̸=i

Tpred∑
t=1

[∥p̂ti, ptj∥ < ri + rj ])

(6)

where [·] denotes the Iverson bracket, which assigns
[
P
]
= 1

if the statement P is true and 0 otherwise. ∥p̂ti, p̂tj∥ is the
Euclidean distance of the predicted position of the primary
pedestrian i and the pedestrian j in the corresponding scene
at time step t.

It is important to note that the results of Col-I and Col-
II metrics are significantly impacted by the selection of the
pedestrian radius. Recent studies have utilized a radius of



0.1 m [4], however, this value may be insufficient to represent
a pedestrian adequately. Based on the heuristic of Moussaı̈d
et al. [16] for estimating the size of pedestrians, a pedestrian
radius of 0.2 m is selected.

In this contribution, we introduce an additional collision
evaluation metric: the average interaction energy (AE) in the
predicted trajectories, which calculates the average interaction
energy in the predicted trajectory of the primary pedestrian
i to others in the corresponding scene. Although there are
similarities among Col-I, Col-II, and AE metrics, as all three
evaluate collisions in the predictions, Col-I and Col-II do
not adequately quantify the extent of collisions occurring in
the predicted scene. For instance, a predicted scene with one
collision and another with ten collisions may have the same
Col-I value, whereas the AE metric provides a continuous
value that increases with the number of collisions. To prevent
extreme values of interaction energy when the TTC is very
close to or equal to 0, a small constant ϵ = 0.01 is added into
the interaction energy equation:

Ê(τ) =
k

τ2 + ϵ
e−τ/τ0

AE =
1

MTpred

M∑
i=1

Tpred∑
t=1

∑
j ̸=i

Êt(τij)
(7)

III. EXPERIMENTS

This section presents the experiments conducted on the
widely used datasets, along with the results obtained using
distance-error metrics (ADE and FDE) as well as collision
metrics (Col-I, Col-II, and AE). Additionally, a comparative
analysis between the SLSTM and TTC-SLSTM models with
varying values of λ is provided.

A. Datasets

Two publicly available datasets are used to train the neural
network and evaluate its predictions, which include ETH [17]
and UCY [18]. These datasets were collected in outdoor
experiments and exhibit diverse pedestrian traffic with uni-
directional, bidirectional, and multidirectional flows.

The ETH dataset comprises 750 trajectories split between
the ETH and HOTEL sub-datasets. The 786 trajectories of the
UCY dataset are divided into ZARA01, ZARA02, and UCY.
Fig. 2 presents some examples of trajectories in these datasets,
where each line corresponds to one trajectory. By averaging
instantaneous densities over time, the densities of these sub-
datasets were calculated to be 0.13 to 0.38 pedestrians per
square meter.

B. Implementation details

The implementation employs the commonly accepted con-
figurations of related contributions [3], with a prediction length
of 4.8s and an observation length of 3.6s. Given the datasets’
framerate of 0.4 frames per second, this corresponds to using 9
observations to generate 12 predictions. The ADAM optimizer
with a learning rate of 0.001 is selected.

(a) ZARA1. (b) ETH.

Fig. 2: Trajectory examples from the datasets.

Training is carried out for 15 epochs with a batch size of
8, using the proposed loss function described previously. For
validation and testing, a hold-out validation strategy is adopted
by allocating 15% of the dataset for each validation and
testing, while the remaining data serves as the training set. All
computations are performed using the PyTorch framework 1

on a M1 MacBook Pro with 32 GB of memory.

C. Results

The influence of the interaction energy term on trajectory
predictions is investigated by training models with different
values of λ (0.1, 0.25, 0.5, 1.0, 2.0) on both the ETH and UCY
datasets simultaneously. The results of the TTC-SLSTMs are
compared with the original SLSTM model, which corresponds
to λ = 0.0. For each model, the average performance is
computed based on a total of 12 trainings, with the confidence
interval of 95%. Table I provides the average of the predic-
tion results over the five sub-datasets by using five different
evaluation metrics: ADE, FDE, Col-I, Col-II, and AE.

1) ADE and FDE: Fig. 3a,b shows the trend of average
ADE and FDE results of the different models. Generally, the
ADE and FDE results follow similar patterns across various
values of λ. When compared to the baseline SLSTM model,
improved ADE and FDE results can be seen for λ values
within the range of 0.25 to 1.0. The best performance is
achieved at λ = 0.5, with the ADE of 0.555 and the FDE
of 1.135, which correspond to improvements of approximately
0.9% and 1.0%, respectively, over the baseline SLSTM model.
However, as λ increases to 2.0, both ADE and FDE sig-
nificantly rise, indicating that excessively high λ values can
negatively impact distance-based accuracy.

2) Col-I, Col-II, and AE: On the other hand, the TTC-
SLSTM models overperform the baseline SLSTM model for
all three metrics: Col-I, Col-II, and AE, at any value of λ > 0.
The Col-I, Col-II, and AE results decrease consistently when
λ increases (as seen in Fig. 3c,d,e) and λ = 2.0 performs best
at almost sub-datasets for Col-I, Col-II, and AE (as shown in
Table I).

For both Col-I and AE results, the average values decrease
exponentially as increasing λ. With Col-I, the TTC-SLSTM
shows an exponential decrease from 19.888 (λ = 0.0) to 11.689
(λ = 2.0), resulting in an approximate 41.2% improvement.

1http://pytorch.org



TABLE I: Prediction results of different models.

Metric Data SLSTM TTC-SLSTM

λ = 0.1 λ = 0.25 λ = 0.5 λ = 1.0 λ = 2.0

ADE ETH [17] 0.677 0.681 0.676 0.678 0.689 0.706
HOTEL [17] 0.484 0.484 0.477 0.473 0.473 0.461
ZARA01 [18] 0.500 0.505 0.493 0.486 0.481 0.491
ZARA02 [18] 0.438 0.438 0.440 0.439 0.439 0.469
UCY [18] 0.699 0.702 0.697 0.698 0.704 0.728
Average 0.560 0.562 0.557 0.555 0.557 0.571

FDE ETH [17] 1.302 1.309 1.296 1.299 1.323 1.371
HOTEL [17] 0.882 0.890 0.878 0.865 0.875 0.862
ZARA01 [18] 1.049 1.065 1.042 1.017 1.001 1.007
ZARA02 [18] 0.949 0.952 0.956 0.948 0.948 1.004
UCY [18] 1.555 1.558 1.543 1.548 1.562 1.605
Average 1.147 1.155 1.143 1.135 1.142 1.170

Col-I ETH [17] 24.568 22.828 21.661 20.218 19.855 15.505
HOTEL [17] 12.145 11.430 10.130 7.379 4.048 4.522
ZARA01 [18] 17.381 9.285 5.972 5.476 4.998 3.811
ZARA02 [18] 17.978 16.822 16.752 16.126 16.281 14.814
UCY [18] 27.367 26.327 25.206 23.957 21.779 19.791
Average 19.888 17.338 15.944 14.631 13.392 11.689

Col-II ETH [17] 28.555 29.999 29.566 28.914 28.914 26.525
HOTEL [17] 17.857 16.668 14.287 13.336 11.667 11.668
ZARA01 [18] 30.237 29.763 28.311 25.713 21.666 17.143
ZARA02 [18] 19.290 19.289 19.612 20.060 20.678 19.752
UCY [18] 22.158 21.970 20.555 22.442 22.159 23.673
Average 23.619 23.538 22.466 22.093 21.017 19.752

AE ETH [17] 20.605 17.509 17.544 13.631 13.081 9.377
HOTEL [17] 11.357 11.168 9.954 9.543 6.035 3.640
ZARA01 [18] 10.164 6.387 3.925 3.496 3.496 6.502
ZARA02 [18] 23.186 23.456 23.036 24.387 23.943 16.307
UCY [18] 17.126 16.177 14.492 12.982 13.768 12.077
Average 16.488 14.939 13.790 12.808 12.065 9.581

(a) ADE. (b) FDE. (c) Col-I.

(d) Col-II. (e) AE. (f) ADE vs Col-I.

Fig. 3: Average results of evaluation metrics over different values of λ.



Likewise, the AE results exhibit approximately a roughly
41.7% improvements from 16.448 (λ = 0.0) to 9.581 (λ =
2.0). For Col-II, the average results also show a significant
improvement of around 16.4% from 23.619 (λ = 0.0) to 19.752
(λ = 2.0). These results suggest that a higher value of λ en-
hances performance for these collision metrics. However, there
is always a trade-off between the optimization of distance-error
metrics (ADE, FDE) and collision metrics (Col-I, Col-II, AE).
Here, the best value for λ is determined as 1.0, which results
in improved ADE and Col-I metrics (see Fig. 3f).

Fig. 4 visually compares the predictions generated by
SLSTM and TTC-SLSTM (λ = 1.0) models. The depicted
scene contains eight pedestrians, with four in motion while
the others remain stationary. The prediction by the SLSTM
model exhibits collisions in the predicted trajectories as high-
lighted by the red dashed circle in Fig. 4a. In contrast, the
TTC-SLSTM successfully addresses this issue by producing
collision-free trajectory predictions (see Fig. 4b).

(a) SLSTM. (b) TTC-SLSTM λ = 1.0.

Fig. 4: Prediction examples of SLSTM and TTC-SLSTM.

IV. CONCLUSION

Recent studies have increasingly focused on developing
neural networks for pedestrian trajectory prediction. However,
existing algorithms primarily minimize distance-error loss
functions. This contribution proposes a novel training loss
function that enhances the neural networks’ ability to make
more realistic predictions. The proposed loss function incor-
porates not only the distance-error term but also the collision
loss, which is derived from an interaction energy based on
time-to-collision with neighboring pedestrians. The proposed
approach is evaluated on widely used datasets. The results
show that collision and pedestrian overlap in the predicted
trajectories decreases exponentially as the collision loss weight
in the training increases, while the displacement error remains
approximately constant. However, excessively high collision
weight values can negatively impact distance-based accuracy
despite still improving collision metrics. This demonstrates the
ability of the neural networks to make physically plausible
trajectory predictions with the proposed loss function. Our
future work will explore incorporating the effect of additional
behaviors, such as grouping and leader-following, into pedes-
trian trajectory prediction.
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