
HAL Id: hal-04251959
https://hal.science/hal-04251959

Preprint submitted on 20 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Compressed Consecutive Pattern Matching
Pawel Gawrychowski, Garance Gourdel, Tatiana Starikovskaya, Teresa Anna

Steiner

To cite this version:
Pawel Gawrychowski, Garance Gourdel, Tatiana Starikovskaya, Teresa Anna Steiner. Compressed
Consecutive Pattern Matching. 2023. �hal-04251959�

https://hal.science/hal-04251959
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Compressed Consecutive Pattern Matching

Pawe l Gawrychowski1, Garance Gourdel2,3, Tatiana Starikovskaya3,
and Teresa Anna Steiner4

1 University of Wroc law, Poland

2 Université Rennes IRISA Inria Rennes, France

3 DI/ENS, PSL Research University, France

4 DTU Compute, Denmark

Abstract

Originating from the work of Navarro and Thankanchan [TCS 2016], the problem of con-
secutive pattern matching is a variant of the fundamental pattern matching problem, where
one is given a text and a pair of patterns p1, p2, and must compute consecutive occurrences
of p1, p2 in the text. Assuming that the text is given as a straight-line program of size g,
we develop an algorithm that computes all consecutive occurrences of p1, p2 in optimal
O(g + |p1| + |p2| + output) time. As a corollary, we also derive an algorithm that reports
all co-occurrences separated by a distance d ∈ [a, b] in O(g + |p1| + |p2| + output) time and
an algorithm that reports the top-k closest co-occurrences in O(g + |p1| + |p2| + k) time.

1 Introduction

In the classical pattern matching problem, one is given a pattern and a text, and must
find all substrings of the text equal to the pattern. However, considering potential
applications, it is advantageous to enable queries beyond simply identifying exact
matches of a given pattern in the preprocessed text.

Recently, Navarro and Thankanchan [1] suggested a generalisation of the pattern
matching problem, where in addition to the pattern and the text one is given two
integers a, b, and must find all pairs of consecutive occurrences of the pattern in the
text separated by a distance d ∈ [a, b]. They showed that there is a O(n log n)-space
index for this problem with optimal query time O(m+ output), where n is the length
of the text and m of the pattern.

Following their work, indexing for consecutive occurrences is receiving growing
attention in the literature [2, 3, 4].

Bille et al. [3] considered an even more general case of the problem, where a query
consists of two different patterns p1, p2 of total length m and two integers a, b, and
one must find all pairs of consecutive occurrences of p1, p2 in the text separated by
a distance d ∈ [a, b]. For reporting the occurrences, they showed a linear-space data
structure with Õ(m+n2/3output) query time. On the other hand, by reduction from
the set intersection problem, they showed a lower bound suggesting that achieving
query time better than Õ(m +

√
n) for indexes of size Õ(n) is impossible, even if

a = 0 is fixed.
Gawrychowski et al. [4] showed that one can circumvent this lower bound in the

case a = 0 assuming that the text is very compressible: assuming that the text is

represented by a straight-line program (SLP) of size g, they showed a Õ(g5)-space
data structure with Õ(m + output) query time, where m is the total length of the
patterns.

Unfortunately, the above upper bounds, despite their theoretical interest, are still
far from providing an efficient solution. Motivated by this, we study the dual variant
of the problem, where one must process the text and the patterns simultaneously.
Note that if the text is uncompressed and has length n, the problem can be solved
by classical online pattern matching in O(n + m + output) time by keeping the most
recent occurrences of p1 and p2. In this work, we show that for very compressible
texts which can be represented by an SLP of size g ≪ n, we get a better runtime
O(g + m + output) by extending the ideas of [5]:

Theorem 1. Given a text of length n on a constant-size alphabet represented by an
SLP G of size g and patterns p1, p2 of total length m, all consecutive occurrences of
p1, p2 in the text can be found in O(g + m + output) time assuming the word-RAM
model with a machine word of size w = Ω(log n).

Using similar techniques, we derive an algorithm to output all consecutive occur-
rences with a bounded distance between them:

Corollary 2. Given a text of length n on a constant-size alphabet represented by an
SLP G of size g and patterns p1, p2 of total length m, all consecutive occurrences of
p1, p2 in the text separated by a distance d ∈ [a, b] can be found in O(g +m+ output)
time assuming the word-RAM model with a machine word of size w = Ω(log n).

Finally, our techniques allow to derive an efficient solution for the variant of the
problem suggested by Bille et al. [2], where one must report the top-k consecutive
occurrences of p with smallest distances between them.

Corollary 3. Given an integer k, a text of length n on a constant-size alphabet
represented by an SLP G of size g and patterns p1, p2 of total length m, the k closest
consecutive occurrences of p1, p2 in the text can be found in O(g+m+k) time assuming
the word-RAM model with a machine word of size w = Ω(log n).

Technical Overview. Our algorithm builds on and extends the work by Ganardi
and Gawrychowski [5], who gave the first O(g + m)-time algorithm for deciding
whether a pattern p occurs in a string s represented by a context-free grammar G
of size g. Their algorithm relies on the fact that for any occurrence of pattern p of
length at least 2 in s, there exists a production A → BC in G, such that a suffix
of the extension of B is a prefix of p and and a prefix of the extension of C is a
suffix of p. They show how to efficiently compute information about prefixes (resp.
suffixes) of non-terminals which contain the longest possible suffix (resp. prefix) of p.
This information is called boundary information and is constructed for G bottom-up,
starting at the terminals. To do so efficiently, the authors give a new data structure
for efficiently answering batches of substring concatenation queries. Our algorithm
extends this approach to reporting consecutive occurrences of patterns p1 and p2.

Similarly to above, for any consecutive occurrence of p1 and p2, there exists some
production A → BC, such that the first position of the occurrence of p1 is in the
extension of B, and the last position of the occurrence of p2 is in the extension of C.
However, there are different cases to consider, depending on whether the occurrences
of p1 resp. p2 are fully in the extension of B resp. C, or whether one or both of
them start in the extension of B and end in the extension of C (called a crossing oc-
currence). To handle the different cases, we need to compute additional information
for every non-terminal, including the left- and rightmost occurrence of both patterns
in the extension of any non-terminal, all crossing occurrences of both patterns, and
a two-level version of the boundary information. The two-level boundary informa-
tion is necessary for the case where p2 is a crossing occurrence, and we need to find
its “predecessor occurrence” of p1, i.e. the rightmost occurrence of p1 starting be-
fore p2. We show how to compute this information efficiently for all non-terminals
via a bottom-up approach. For computing all crossing occurrences, we extend the
work by Ganardi and Gawrychowski [5], who only showed how to answer whether
or not a crossing occurrence of a pattern exists in any non-terminal. We can find
all crossing occurrences in the same time complexity, even if there are many in the
same non-terminal, by using periodicity arguments. Then we show how to use this
information to report all co-occurrences, which requires a careful case analysis and
further periodicity arguments.

2 Preliminaries

A string s of length |s| = n is a sequence s[0]s[1] . . . s[n−1] of characters from a finite
alphabet Σ. In this work, we assume that the size of the alphabet is constant. A
substring of a string s is a pair (i, j) where 0 ≤ i ≤ j < |s| and is identified with the
string s[i . . . j] = s[i] . . . s[j]. We also use the notation s[i . . . j) and s(i . . . j] which
stand for the substring s[i . . . j − 1] and s[i − 1 . . . j] respectively. We say that a
substring s[i . . . j] is fully contained in another substring s[i′ . . . j′] if i′ ≤ i ≤ j ≤ j′.
We call a substring s[0 . . . i] a prefix of s and use a simplified notation s[. . . i], and
a substring s[i . . . n − 1] a suffix of s denoted by s[i . . .]. We say that x occurs in s
at position i if x = s[i . . . i + |x|), alternatively we say i is an occurrence of x in s.
Additionally, an occurrence i is fully included in a substring f of s if s[i . . . i + |x|) is
fully included in f .

An occurrence k1 of p1 together with an occurrence k2 of p2 form a consecutive
occurrence (co-occurrence) (k1, k2) of the strings p1, p2 in a string s if there are no
occurrences of p1 in (k1, k2] and no occurrences of p2 in [k1, k2). The distance k2 − k1
is sometimes referred to as a gap.

An integer π is a period of a string s of length n if s[i] = s[i + π] for all i =
0, . . . , n − 1 − π. We say that s is periodic if its smallest period, referred to as the
period of s, is at most |s|/2. We also exploit the well-known corollary of the Fine and
Wilf’s periodicity lemma [6]:

Corollary 4. Let x, y be strings such that |x| ≤ 2|y|. If there are at least three
occurrences of y in x, then all occurrences of y in x form an arithmetic progression

with difference equal to the period of y.

Proposition 5. Let p be an m-length string over a constant-size alphabet. Then, one
can preprocess p in O(m) time to maintain the following queries in constant time:
Given a substring p[i...j], find its leftmost and rightmost occurrences in p, as well as
the total number of occurrences. Given two substrings p[i...j] and p[k...l], compute
their longest common prefix and their longest common suffix.

Proof. We first construct the suffix tree of p in O(m) time [7]. Belazzougui et al. [8]
showed that the suffix tree can be preprocessed in linear time so that, given a substring
p[i...j], one can find the node u of the suffix tree labeled by p[i...j] in constant time.
The leaves of the subtree of u correspond to the occurrences of p[i...j] in p. For each
node, we can precompute in linear time in the size of its subtree, the leftmost and
rightmost occurrences of its label. This is done by simply traversing the tree from the
bottom to the top and propagating the information. We also preprocess the suffix
trees in linear time so that it is possible to find the lowest common ancestor between
two nodes in constant time [9]. Given two nodes u and v labelled by substrings p[i...j]
and p[k...l], the length of the label of their common ancestor is the longest common
prefix of p[i...j] and p[k...l]. Analogously, by building the suffix tree for the reverse of
p, we can compute the longest common suffix of two substrings in constant time.

Corollary 6 (of Corollary 4 and Proposition 5). One can preprocess an m-length
string p over a constant-size alphabet in O(m) time to maintain the following queries
in constant time: Given a substring (i, j), such that j − i ≥ m/2, one can output the
arithmetic progression of the occurrences of p[i...j] in p in constant time.

2.1 Grammars

Definition 1 (Straight-line program [10]). A straight-line program (SLP) is a context-
free grammar (CFG) consisting of a set of non-terminals X1, . . . , Xq, a set of termi-
nals, an initial symbol Xq, and a set of productions, satisfying the following properties:

• A production consists of a left-hand side and a right-hand side, where the left-hand
side is a non-terminal Xi and the right-hand side is a sequence XjXk, where j, k < i,
or a terminal;

• Every non-terminal is on the left-hand side of exactly one production.

The expansion S of a sequence of terminals and non-terminals S is the string
that is obtained by iteratively replacing non-terminals by the right-hand sides in the
respective productions, until only terminals remain. We say that G represents the
expansion G of its initial symbol.

Definition 2 (Parse tree). The parse tree of a SLP is defined as follows:

• The root is labeled by the initial symbol;

• Each internal node is labeled by a non-terminal;

s xs ys us vs

p[m− |prefixp(s)| . . .] p[. . . |suffixp(s)| − 1]

Figure 1: A p-boundary information for a string s that is not a substring of p.

• If S is the expansion of the initial symbol, then the ith leaf of the parse tree is labeled
by a terminal S[i];

• A node labeled with a non-terminal A that is associated with a production A → BC
has two children labeled by B and C, respectively.

The size of a grammar is the total size of all right-hand sides of all productions.
The height of a grammar is the height of the parse tree.

3 Boundary information

Fix a pattern p of length m. In this section, we remind the notion of the p-boundary
information for a string s, introduced by Ganardi and Gawrychowski [5]. It con-
stitutes information about the longest prefix resp. suffix of s containing a suffix
resp. prefix of a pattern p. This information, if computed for the extension of a non-
terminal A in G, can then be used to decide whether there is a crossing occurrence of p
in A. The information is defined in such a way that given boundary information for
strings s and t, the boundary information for st can be constructed in constant time,
given additional data structures (see Algorithm 1). This allows efficiently computing
boundary information for all non-terminals in G.

For a string s, let prefixp(s) be the longest prefix of s which is a suffix of p and
suffixp(s) the longest suffix of s which is a prefix of p. If s occurs in p at position i,
meaning s = p[i...i+|p|−1], then we define p-substring information for s as (i, i+|p|−
1), and otherwise p-substring information for s is undefined (if p occurs multiple times
in s, any occurrence defines a valid p-substring information for s). For a string s, a
p-boundary information is defined as follows:

1. If s occurs in p, then it is simply p-substring information for s;

2. Otherwise, it is two substrings of p, xs and ys such that prefixp(s) is a prefix
of xsys which in turn is a prefix of s (p-prefix information), and two substrings
of p, us, vs such that suffixp(s) is a suffix of usvs which in turn is a suffix of s
(p-suffix information). (See Fig. 1.)

For a string s, there are multiple ways p-boundary information can be constructed.
We apply a recursive approach: for two strings s, t, assume to be given p-boundary
information for s, t. Algorithm 1 (first described in [5]) correctly constructs a p-
boundary information for c = st.

Algorithm 1 A boundary information of c = st

1. If s is a substring of p and t is not, then the p-suffix information of c is the
p-suffix information of t and we define the p-prefix information for c as follows:

(a) If sxt is a substring of p, then xc = sxt and yc = yt;

(b) Otherwise, xc = s and yc = xt.

2. If t is a substring of p and s is not, then the p-prefix information of c is the
p-prefix information of s and we define the suffix information for c as follows:

(a) If vst is a substring of p then vc = vst and uc = us;

(b) Otherwise, uc = vs and vc = t;

3. If s and t are both substrings of p, and c is a substring p[i . . . j] of p, then the
p-boundary information is p-substring information for c, and we define it equal
to (i, j). Otherwise, we put xc = uc = s and yc = vc = t.

4. If neither s nor t is a substring of p, then one can take p-prefix information
for c equal to p-prefix information for s and p-suffix information to p-suffix
information for t.

Definition 3 (Crossing occurrences). Let s, t be two strings. We say that a position i
is a crossing occurrence of p in a string c = st if i is an occurrence of p in c and
i ≤ |s| ≤ i+|p|−1. By extension, an occurrence i of p in the expansion A is a crossing
occurrence of p for a non-terminal A of a grammar G, or simply a crossing occurrence
for A, if A is associated with a production A → BC and i ≤ |B| ≤ i + |p| − 1.

Ganardi and Gawrychowski [5] showed that given a p-boundary information of
two strings s, t one can efficiently decide whether there is a crossing occurrence of p
in c = st. By extending their solution, we can report all such occurrences. Note that
by Corollary 4, all crossing occurrences form an arithmetic progression.

Lemma 7. Assume to be given a p-boundary information of strings sk, tk for k ∈
[1, q]. One can compute all crossing occurrences of p in all strings sktk, for k ∈ [1, q],
in O(q+m) time. For each k, the output is represented as an arithmetic progression.

The proof of this lemma and our algorithm exploit the following fact:

Fact 8 (see [5, Lemma 2.2, Theorem 1.3]). Let w be the size of the machine word. A
string p of length m can be preprocessed in O(m) time so that:

• q substring concatenation queries on p can be answered in O(q + m/w) time. A
substring concatenation query on a string p asks: Given two substrings u = p[i . . . j]
and v = p[k . . . ℓ] of p, check whether uv occurs in p and, if so, return an occurrence;

• Given q substrings u1, . . . , uq of p one can compute prefixp(ui) and suffixp(ui) in O(q+
m/w) time.

4 Compressed consecutive pattern matching

We are now ready to prove Theorem 1. Recall that the text is an n-length string over
a constant size alphabet represented by an SLP G of size g ≪ n, and the patterns
p1, p2 have total length m. By scanning the patterns in O(m) time we can decide
whether they contain characters outside of the alphabet of the text. If this is the
case, there are no co-occurrences of p1, p2 in the text. Below we assume that p1, p2
are strings over the constant-size alphabet of the text.

The main strategy is to first compute all primary co-occurrences of p1 and p2:

Definition 4 (Primary co-occurrence). Let A be a non-terminal of G associated with
a production A → BC. We say that a co-occurrence (i, j) of p1, p2 in A is primary
if i ≤ |B| ≤ j + |p2| − 1.

We handle primary co-occurrences depending on whether the occurrence of p1 is
fully contained in B or a crossing occurrence, and whether the occurrence of p2 is fully
contained in C or a crossing occurrence. To do so, we preprocess the non-terminals of
G to compute the boundary and secondary boundary information for p1 and p2 (see
Section 4.1), all crossing occurrences, the leftmost and rightmost occurrences of p1
and p2 in any non-terminal. The secondary boundary information will be used in
the case where there is a crossing occurrence of p2 and we need to find the rightmost
occurrence of p1 starting before that occurrence.

4.1 Computing boundary information and crossing occurrences

We first use a linear-time pattern matching algorithm (e.g. the Knuth-Morris-Pratt
algorithm [11]) to check whether p2 is a substring of p1. If it is, then every co-
occurrence of p1, p2 in the text is a pair (i, i+ ℓ), where i is an occurrence of p1 in the
text and ℓ is the leftmost occurrence of p2 in p1. (By definition, there is no occurrence
of p2 in [i, i + ℓ). Note also that there cannot exist an occurrence i < i′ ≤ i + ℓ of p1,
because then i+ℓ− i′ < ℓ would be an occurrence of p2 in p1, a contradiction with the
choice of ℓ.) In other words, to find all co-occurrences of p1, p2 in the text it suffices
to find all occurrences of p1 in the text, which can be done in O(g + m + output)
time [5].

Below we assume that p2 is not a substring of p1. Define an array P such that for
every j ∈ [0, |p2| − 1], P [j] is the rightmost occurrence of p1 in p2 to the left of j if
their is one, else −1. We call P the predecessor array. P can be computed in O(m)
time by a linear-time pattern matching algorithm.

By [12], we can restructure the SLP G representing the text in O(g) time to ensure
that its height is O(log n), while its size increases by only a constant factor.

For every symbol A of G (a non-terminal or a terminal) associated with a produc-
tion A → BC, we compute:

1. a p1-boundary information and a p2-boundary information for A;

2. All crossing occurrences of p1 and p2 for A, as well as the rightmost and the
leftmost occurrences of p1 and p2 in A;

3. Furthermore, if p2-suffix information for A is (uA, vA), then we compute:

(a) a p1-boundary information of uA and vA, which we refer to as secondary
boundary information;

(b) All crossing occurrences of p1 for uA, vA, as well as the rightmost occur-
rence of p1 in A starting before uA.

Proposition 9. There is a O(g)-time algorithm that computes boundary and sec-
ondary boundary information for all symbols of G.

Proof. We first compute boundary information. For a terminal, it suffices to check
if it occurs in p. If it does and i is one of the occurrences, we define the p-substring
information to be (i, i), else we define p-prefix information and the p-suffix information
to be the empty strings. Let the k-th level Lk of G be the set of its symbols whose
parse tree has height k. We apply Algorithm 1 to compute boundary information
for the symbols of each level in turn, starting from level 0. Processing Lk takes |Lk|
substring concatenation queries and O(|Lk|) extra time. Since the height of G is
O(log n), by Fact 8 we obtain O(

∑
k(|Lk| + m/w)) = O(g + m) total time.

The secondary boundary information is computed by applying Algorithm 1 on
the substrings constituting the boundary information. In more detail, note that
for any non-terminal A of G associated with a production A → BC Algorithm 1
computes the boundary information of A by either copying the boundary information
of B or C or by concatenating the substrings constituting the boundary information
of B and C a constant number of times. It follows that in total there are O(|Lk|)
copying and concatenation operations at level k. For each concatenation operation,
we apply Algorithm 1 to update the boundary information. Processing Lk hence
takes O(|Lk|) substring concatenation queries and O(|Lk|) extra time. As above, this
leads to O(

∑
k(|Lk| + m/w)) = O(g + m) total time.

We now apply Lemma 7 to compute all crossing occurrences for the non-terminals
of G in O(g + m) time. By a second application of Lemma 7, we compute, for
every non-terminal A of G, all crossing occurrences for pairs uA, vA, which constitute
p2-suffix information for A, using the same amount of time.

Proposition 10. Given the boundary information and the crossing occurrences for
all symbols of G, one can compute the rightmost and leftmost occurrences of p1 and p2
in the expansion of every symbol of G in O(g) time.

Proof. We explain how to compute the rightmost occurrences of p1, the rest can be
computed analogously. The algorithm processes the symbols of G bottom-up. Con-
sider a symbol A of G. If it is a terminal, then we can find the rightmost occurrence

of p1 in its expansion (if it exists) in O(1) time. Otherwise, assume that A is as-
sociated with a production A → BC. If C contains an occurrence of p1, then the
rightmost occurrence of p1 in A is the rightmost occurrence of p1 in C (and we have
already computed it). Otherwise, if there are crossing occurrences of p1 for B,C, it
is the rightmost such occurrence. And finally, if C does not contain an occurrence
of p1 and there are no crossing occurrences, then we copy the rightmost occurrence
of p1 in B.

We will need the following auxiliary claim:

Observation 11. Given an arithmetic progression by its starting position, difference,
and length, we can find the predecessor of a number z in that progression in constant
time.

Proposition 12. There is a O(g + m)-time algorithm that computes, for each sym-
bol A of G, the rightmost occurrence of p1 in A before uA, where (uA, vA) is p2-suffix
information for A.

Proof. The algorithm processes the symbols of G bottom-up. Consider a symbol A of
G. If it is a terminal, then (uA, vA) is either not defined if A occurs in p2, or uA = vA
are both equal to the empty string. In the second case, the rightmost occurrence of p1
in A before uA is 0, if A = p1, otherwise no occurrence of p1 exists in A. Now, if there
is a production A → BC, let (uB, vB) (resp., (uC , vC)) be the p2-suffix information
for B (resp., C) that we computed using Algorithm 1. Note that they might not be
defined, if B or C is a substring of p2. We review the cases of Algorithm 1:

In Cases 1 and 4, the p2-suffix information of A is the p2-suffix information of C.
Therefore, the rightmost occurrence of p1 before uA in A is either the last occurrence
before uC = uA in C, or the rightmost crossing occurrence of p1 for A, or the rightmost
occurrence of p1 in B, and we can compute it in constant time.

In Case 3, either (uA, vA) is undefined or uA = B, and therefore the rightmost
occurrence of p1 is undefined.

In Case 2a, uA = uB, and therefore the rightmost occurrence of p1 in A before uA

is either the rightmost occurrence of p1 in B before uB or the rightmost crossing
occurrence of p1 for A that precedes uB, which can be found in constant time by
Observation 11.

In Case 2b, we have uA = vB. Thus, the rightmost occurrence before uA equals
to one of the following:

1. The rightmost crossing occurrence of p1 for uB and vB;

2. The rightmost occurrence of p1 fully contained in uB;

3. The rightmost occurrence of p1 preceding uB which is fully in B;

4. The rightmost crossing occurrence of p1 for A preceding uB.

We can find the rightmost occurrence fully contained in uB = p2[i . . . j] by querying
the predecessor array P for j − |p1| + 1, and the three other candidate occurrences
have been already computed.

4.2 Reporting co-occurrences

We now show how to quickly report the co-occurrences.

Proposition 13. Consider a symbol A of G associated with a production A → BC.
Let j < |B| ≤ j + p2 − 1 be an occurrence of p2 in A. One can find the rightmost
occurrence i ≤ j of p1 such that i + |p1| − 1 < |B| in O(1) time.

Proof. Let (uB, vB) be p2-suffix information for B. By definition, j belongs to uBvB.
If j belongs to vB, then i is the rightmost existing one of the following candidates:

1. The rightmost occurrence i′ ≤ j of p1 such that A[i′...i′ + |p1|) is fully contained in
vB (which we can find in O(1) time using the predecessor array P);

2. The rightmost crossing occurrence i′ ≤ j of p1 for uB, vB (which we can find in O(1)
time by Observation 11);

3. The rightmost occurrence of p1 that is fully in uB (which we can find in O(1) time
using the predecessor array P);

4. The rightmost occurrence of p1 in B starting before uB (which we have precomputed).

If j is in uB, then i is the rightmost existing one of the following candidates:

• The rightmost occurrence i′ ≤ j of p1 such that A[i′...i′ + |p1|) is fully contained in
uB (which we can find in O(1) time using the predecessor array P);

• The rightmost crossing occurrence i′ ≤ j of p1 for uB, vB (which we can find in O(1)
time by Observation 11);

• The rightmost occurrence of p1 in B starting before uB (which we have precomputed).

It follows that i can be computed in constant time.

For a node u of the parse tree of G, denote by off(u) the number of leaves to the
left of the subtree rooted at u.

Observation 14. Assume that p2 is not a substring of p1, and let (i, j) be a co-
occurrence of p1, p2 in the text. In the parse tree of G, there exists a unique node u
such its label A is associated with a production A → BC, and (i− off(u), j − off(u))
is a primary co-occurrence of p1, p2 in A.

Lemma 15. Assume that p2 is not a substring of p1 and that we are given the in-
formation computed in Section 4.1. There is a O(g + m)-time algorithm that reports
all primary co-occurrences of p1 and p2 in the expansions of the non-terminals of G.
If there is more than one primary co-occurrence in the expansion of a non-terminal,
they are output as O(1) arithmetic progressions.

Proof. Let A be a non-terminal associated with a production A → BC. We consider
three types of co-occurrences of p1, p2 in A:

1. The occurrence of p1 is fully contained in B and the occurrence of p2 in C;

2. The occurrence of p1 is a crossing occurrence for B,C and the occurrence of p2 is not;

3. The occurrence of p2 is a crossing occurrence for B,C.

Let (i, j) be a co-occurrence of Type 1. It must have the property that i is the
rightmost occurrence of p1 fully contained in A[. . . |B|−1], j is the leftmost occurrence
of p2 in A[|B| . . .], and there are no occurrences of p1, p2 in between. As we store
all crossing occurrences for B,C, the rightmost occurrences of p1, p2 in B and the
leftmost occurrences of p1, p2 in C, we can check whether (i, j) exists and compute it
in O(1) time by Observation 11.

A co-occurrence (i, j) of of Type 2 must satisfy the following properties:

1. j cannot be in A[. . . |B| − 1], since it is not a crossing occurrence and p2 is not a
substring of p1;

2. Since i and j are consecutive, and i is a crossing occurrence, i must be the rightmost
crossing occurrence and j must the leftmost occurrence of p2 in A[|B| . . .] = C.

We retrieve i, the rightmost crossing occurrence of p1, and j, the leftmost occurrence
of p2 in A[|B| . . .]. It remains to check that there is no occurrence of p1 in (i, j] and
no occurrence of p2 in [i, j). If there is an occurrence of p1 in (i, j], it can only be the
leftmost occurrence of p1 in A[|B| . . .] = C. If there is an occurrence of p2 in [i, j), it
can only be a crossing occurrence for A. Both conditions can be tested in constant
time by Observation 11.

For Type 3, consider two cases. First, consider the case when j is the leftmost
crossing occurrence. Let i′ ≤ j be the rightmost occurrence of p1 such that i′ +
|p1| − 1 < |B|, which we can find in O(1) time by Proposition 13, and i′′ be the
rightmost crossing occurrence of p1 that is at most j, which we can find in O(1) time
as well using Observation 11. By definition, the only candidate for a co-occurrence
containing j is (i = max{i′, i′′}, j). By construction of i′ and i′′, there can’t be any
occurrence of p1 in (i, j] and it suffices to check whether there are occurrences of p2 in
[i, j). If there is such an occurrence, it must be the rightmost occurrence of p2 in B,
and we can check if it is the case in constant time.

Consider now the case when j is not the leftmost crossing occurrence of p2 for A.
By Corollary 4, all crossing occurrences of p2 form an arithmetic progression. Let j0
be the leftmost occurrence, d be the difference and ℓ the length of this progression.
By Corollary 4, A[j0 . . . j0 + ℓ · d + |p2| − 1] is periodic with period d. Let 1 ≤ k ≤ ℓ
be the largest such that the occurrence j∗ = j0 + k · d forms a co-occurrence with
an occurrence i of p1. By definition of a co-occurrence, j0 ≤ j∗ − d < i ≤ j∗.
Furthermore, since p2 is not a substring of p1, we have i + |p1| − 1 < j∗ + |p2| − 1.
Hence, by periodicity, (i−k′ ·d, j∗−k′ ·d) is a co-occurrence for all 1−k ≤ k′ ≤ ℓ−k.
(In particular, by maximality of j∗, we have j∗ = j0 + ℓ · d.) Hence, it suffices to find
the co-occurrence for k′ = 1−k, i.e. to find the occurrence of p1 preceding j0+d. This
can be done in constant time by Proposition 13. This case is illustrated in Figure 2.

By Fact 8, the algorithm takes O(g + m) time.

Finally, we report all co-occurrences of p1, p2 in the text given the primary co-
occurrences for the non-terminals of G. Using the approach of [13, Section 6.4]), it
can be done in O(g + output) time. Observation 14 guarantees that we report all
co-occurrences.

A B C
j0

p2

d

j0 + d j∗ j0 + ℓ · di

p1

Figure 2: Co-occurrences with crossing occurrences of p2 forming an arithmetic progression.

5 Gapped and top-k consecutive pattern matching

We now explain how to modify the algorithm to report only the co-occurrences with a
bounded gap (Corollary 2) and only the top-k co-occurrences in the text (Corollary 3).

Bounded-gap co-occurrences. We run the algorithm of Section 4 in O(g + m)
time to generate a description of all primary co-occurrences (the elements of this
description are single co-occurrences and arithmetic progressions of co-occurrences
with a fixed gap) and select the elements of this description with a gap in [a, b]. For
each selected element, we apply the approach of [13, Section 6.4]) to generate all
co-occurrences with a gap in the interval [a, b] in time O(g + m + output).

Top-k co-occurrences. To report the top-k co-occurrences, we first generate a
description of all primary co-occurrences (the elements of this description are single
co-occurrences and arithmetic progressions of co-occurrences with a fixed gap) in
O(g + m) time as in Section 4. Second, we arrange the elements of the description
in a heap in O(g) time sorted by the gaps. Then, conceptually, we attach to each
node of the heap a path containing the secondary co-occurrences that originate from
the element stored in the node. We finally select the k co-occurrences with smallest
gaps in O(k) time using Frederickson’s heap selection algorithm [14]. The algorithm
and its analysis requires the min-heap property, the fact that all nodes have constant
degree, and to have quick access to the children of an already visited node. The first
two properties are guaranteed by construction, and the method of [13, Section 6.4])
guarantees that the children of an already visited node can be accessed in constant
amortised time.

References

[1] Gonzalo Navarro and Sharma V. Thankachan, “Reporting consecutive substring oc-
currences under bounded gap constraints,” Theor. Comput. Sci., vol. 638, pp. 108–111,
2016.

[2] Philip Bille, Inge Li Gørtz, Max Rishøj Pedersen, Eva Rotenberg, and Teresa Anna
Steiner, “String indexing for top-k close consecutive occurrences,” Theor. Comput.
Sci., vol. 927, pp. 133–147, 2022.

[3] Philip Bille, Inge Li Gørtz, Max Rishøj Pedersen, and Teresa Anna Steiner, “Gapped
indexing for consecutive occurrences,” Algorithmica, vol. 85, no. 4, pp. 879–901, 2023.

[4] Pawel Gawrychowski, Garance Gourdel, Tatiana Starikovskaya, and Teresa Anna
Steiner, “Compressed indexing for consecutive occurrences,” in CPM, 2023, vol. 259
of LIPIcs, pp. 12:1–12:22.

[5] Moses Ganardi and Pawel Gawrychowski, “Pattern matching on grammar-compressed
strings in linear time,” in SODA, 2022, pp. 2833–2846.

[6] Nathan J. Fine and Herbert S. Wilf, “Uniqueness theorems for periodic functions,”
Proc. Am. Math. Soc., vol. 16, no. 1, pp. 109–114, 1965.

[7] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan, “On the sorting-
complexity of suffix tree construction,” J. ACM, vol. 47, no. 6, pp. 987–1011, 2000.

[8] Djamal Belazzougui, Dmitry Kosolobov, Simon J. Puglisi, and Rajeev Raman,
“Weighted ancestors in suffix trees revisited,” in CPM, 2021, vol. 191 of LIPIcs, pp.
8:1–8:15.

[9] Michael A. Bender and Martin Farach-Colton, “The LCA problem revisited,” in
LATIN. Springer, 2000, pp. 88–94.

[10] John C. Kieffer and En-Hui Yang, “Grammar-based codes: A new class of universal
lossless source codes,” IEEE Trans. Inf. Theory, vol. 46, no. 3, pp. 737–754, 2000.

[11] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt, “Fast pattern matching
in strings,” SIAM J. on Computing, vol. 6, no. 2, pp. 323–350, 1977.

[12] Moses Ganardi, Artur Jez, and Markus Lohrey, “Balancing straight-line programs,”
in FOCS. 2019, pp. 1169–1183, IEEE Computer Society.

[13] Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo
Navarro, and Nicola Prezza, “Optimal-time dictionary-compressed indexes,” ACM
Trans. Algorithms, vol. 17, no. 1, pp. 8:1–8:39, 2021.

[14] Greg N. Frederickson, “An optimal algorithm for selection in a min-heap,” Information
and Computation, vol. 104, no. 2, pp. 197–214, 1993.

A Proof of Lemma 7

Consider two strings s, t. Let u, v be p-suffix information of s and x, y p-prefix infor-
mation of t. To find all crossing occurrences of p in a string st, it suffices to look at
occurrences in uvxy as uv contains suffixp(s) and xy contains prefixp(t).

We can also assume that u is a prefix of p and y a suffix of p because there is an oc-
currence of p in uvxy if and only if there is an occurrence of p in suffixp(u)vxprefixp(y).
Here and below, whenever we replace a string u with suffixp(u) and or a string y with
prefixp(y), we assume to compute them using Fact 8.

By Corollary 4, the crossing occurrences of p form a single arithmetic progression.
We will consider several cases and for each case will report an arithmetic progression
of occurrences, but in the end they can be merged into a single one. We repeatedly
make use of the following procedure:

Proposition 16. Let ℓ be a prefix of p, r a suffix of p, and c a concatenation of
at most three substrings of p. After O(m)-time shared preprocessing of p, one can
report all occurrences of p in ℓc starting at positions i ≤ |ℓ|/2 and all occurrences in
cr ending at positions j ≥ |c|+ |r|/2 in constant time. The occurrences are output as
an arithmetic progression.

Proof. We show how to proceed for the occurrences in s = ℓc, the proof for the
occurrences in cr is symmetric. Assume that there is an occurrence of p at position
i ≤ |ℓ|/2. As ℓ is a prefix of p, i = α · d, where 0 ≤ α ≤ |ℓ|/2d is an integer and d is
the period of ℓ.

After a classical shared O(m)-time preprocessing the period of any prefix of p can
be extracted in O(1) time [11]. If d > |ℓ|/2, then the only candidate is i = 0 and we
can test whether p occurs at this position using a constant number of longest common
extension queries. We now assume d ≤ |ℓ|/2. Let αmax ≤ |ℓ|/(2d) be the rightmost
position such that αmax · d + m ≤ |s|. If there are none, then |s| < m and there are
no occurrences of p in s. Let k ≥ |ℓ| be the rightmost position such that p[0 . . . k− 1]
has period d; k can be computed by one longest common prefix and suffix query on p
and p[d . . .m − 1]. Furthermore, using O(1) more longest common prefix and suffix
queries, one can check if p[0 . . . k − 1] occurs at position αmax · d and if not, compute
the first mismatching position.

Consider first the case where p[0 . . . k − 1] occurs at position αmax · d. If k = m,
then p occurs at every position α · d with 0 ≤ α ≤ αmax. If k < m, then p cannot
occur at a position αd with α ≤ αmax by the maximality of k. It suffices to check
if p occurs at position αmax · d using O(1) longest common prefix and suffix queries
and report it accordingly. Now assume that p[0 . . . k − 1] does not occur at position
αmax · d and let p[0 . . . i − 1] be the longest prefix starting at position αmax · d in s,
meaning p[i] ̸= s[αmax · d+ i]. By construction, d is a period of s[0 . . . αmax · d+ i− 1].
Consequently, no occurrence of p[0 . . . k− 1] in ℓc can cross position i, meaning there
is no occurrence of p in ℓc starting at position α · d with α · d + k > αmax · d + i.
Thus, occurrences can only be at positions α · d ≤ αmax · d + i− k. If k = m, by the
d-periodicity of s[0 . . . αmaxd+ i− 1], any such position is valid and we can report the
occurrences as a single arithmetic progression. If k < m, the only possible candidate
is the maximal α · d such that α · d + k < αmax + i (by maximality of k), and we can
check whether there is an occurrence of p via O(1) longest common prefix and suffix
queries as above, and report it accordingly.

We start by applying Proposition 16 on ℓ = u and c = vxy to report all occurrences
starting before |u|/2 and then apply it again on ℓ = suffixp(u[|u|/2 . . .]) and c = vxy,
which gives all occurrences of p in uvxy starting before 3|u|/4. Symmetrically, we
can report all occurrences of p ending after |uvx| + |y|/4.

It remains to report the occurrences in u′vxy′, where u′ = suffixp(u[3|u|/4 . . .]) and
y′ = prefixp(y[. . . |y|/4]). As |u|, |y| ≤ m, we have |u′|, |y′| ≤ m/4. For an occurrence i
of p in u′vxy′, consider three (overlapping) cases: 1. The occurrence is fully contained
in u′vx; 2. The occurrence fully contains vx; 3. The occurrence is fully contained in
vxy′. Consider Case 1. By applying Proposition 16 on c = u′v and r = x, we can
assume that |x| ≤ m/2. We then have three subcases: (a) either an occurrence of
p is fully contained in u′v, or (b) it contains v, or (c) it is fully contained in vx. In
Case 1(a), as |u′| ≤ m/4 and |v| ≤ m, any occurrence of p in u′v ends in the second
half of v and hence we can report all occurrences by applying Proposition 16 once to
u′ and prefixp(v). Case 1(c) is analogous. We repeat the argument for Case 3. Thus,
it remains to report all occurrences of p in a string h = efg fully containing f , where

|e|, |g| ≤ m/4, e is a prefix of p, g is a suffix of p, and f is a concatenation of at most
two substrings of p.

If the length of f is smaller than m/2, then |h| < m and there are no occurrences
of p in h. Assume now that |f | ≥ m/2.

Consider first the case when f is a substring of p given by its starting and ending
positions, i.e. let f = p[i . . . j]. By Corollary 6, after O(m)-time shared preprocessing
we can find the arithmetic progression of the occurrences of f in p in constant time.
If there are only two occurrences, we test if they extend in e and g to an occurrence
of p using two longest common prefix and suffix queries.

Assume now that there are at least three occurrences. Let pmid be the minimal
substring of p which contains all occurrences of f . By Corollary 4, the period of pmid

equals the period of f , d. Let p = pleftpmidpright. Next, using two longest prefix and
suffix queries, we compute the maximal substring f ′ of h that starts and ends with an
occurrence of f . Namely, by Corollary 4, it suffices to check how far the periodicity
in f extends beyond f : f ′ must be periodic with period d, must fully contain f , and
must start at a position |e|−α ·d and end at a position |e|+|f |+α ·β for some integers
α, β. Let h = e′f ′g′. By Corollary 4, the occurrences of f in h start at positions
|e′| + α · d for integer 0 ≤ α ≤ (|f ′| − |f |)/d. Hence, if pleft is not empty, then the
only possible position where p can occur in h is |e′| − |pleft|, and we can test whether
it is the case using O(1) longest common prefix and suffix queries. If pright is not
empty, then the only possible position where p can occur in h is |e′|+ |f ′|− |pleftpmid|.
Otherwise, if both pleft and pright are empty, the arithmetic progression of occurrences
of p = pmid in h is simply |e′| + α · d for 0 ≤ α ≤ (|f ′| − |pmid|)/d.

Now consider the case when f is given as the concatenation of two substrings
of p, i.e. f = yu. We would like to reduce this case to the first one. For that, we
need to find an occurrence of f in p. As |f | ≥ m/2, at least one of y, u has length
greater or equal to m/4. Assume w.l.o.g. |y| ≥ m/4, the other case is symmetric. By
Corollary 6, after O(m)-time shared preprocessing we can find a constant number of
arithmetic progressions representing the set of all occurrences of y in p in constant
time, as well as the period d of y equal to the difference of the progressions. In more
detail, if |y| ≥ m/2, we apply Corollary 6 on p and y directly. If m/2 ≥ |y| ≥ 3m/8,
we represent p as two 3m/4-length blocks overlapping by m/2 characters and apply
Corollary 6 to each block and y (then |y| is at least half the length of a block, and every
occurrence is definitely contained in one of the blocks). Finally, if 3m/8 ≥ |y| ≥ m/4,
we consider m/2-length blocks overlapping by 3m/8 characters.

By one longest common extension query, we find the longest prefix of u periodic
with period d, let its length be ℓ. Fix an arithmetic progression of occurrences of y and
let qlast be the last position in it. Let q be the leftmost position in this progression such
that q+ ℓ ≥ qlast. Similarly to above, it can be shown that there is an occurrence of y
in the progression followed by an occurrence of u iff q+|y| is followed by an occurrence
of u. We can decide whether this is the case in constant time by one longest common
extension query and if it is report q as an occurrence of yu thus reducing to the first
case.

	Introduction
	Preliminaries
	Grammars

	Boundary information
	Compressed consecutive pattern matching
	Computing boundary information and crossing occurrences
	Reporting co-occurrences

	Gapped and top-k consecutive pattern matching
	Proof of Lemma 7

