Pawe L Gawrychowski

Garance Gourdel

Tatiana Starikovskaya

Teresa Anna Steiner

Compressed Consecutive Pattern Matching

Originating from the work of Navarro and Thankanchan [TCS 2016], the problem of consecutive pattern matching is a variant of the fundamental pattern matching problem, where one is given a text and a pair of patterns p 1 , p 2 , and must compute consecutive occurrences of p 1 , p 2 in the text. Assuming that the text is given as a straight-line program of size g, we develop an algorithm that computes all consecutive occurrences of p 1 , p 2 in optimal O(g

time. As a corollary, we also derive an algorithm that reports all co-occurrences separated by a distance d ∈ [a, b] in O(g + |p 1 | + |p 2 | + output) time and an algorithm that reports the top-k closest co-occurrences in O(g + |p 1 | + |p 2 | + k) time.

Introduction

In the classical pattern matching problem, one is given a pattern and a text, and must find all substrings of the text equal to the pattern. However, considering potential applications, it is advantageous to enable queries beyond simply identifying exact matches of a given pattern in the preprocessed text.

Recently, Navarro and Thankanchan [START_REF] Navarro | Reporting consecutive substring occurrences under bounded gap constraints[END_REF] suggested a generalisation of the pattern matching problem, where in addition to the pattern and the text one is given two integers a, b, and must find all pairs of consecutive occurrences of the pattern in the text separated by a distance d ∈ [a, b]. They showed that there is a O(n log n)-space index for this problem with optimal query time O(m + output), where n is the length of the text and m of the pattern.

Following their work, indexing for consecutive occurrences is receiving growing attention in the literature [START_REF] Bille | String indexing for top-k close consecutive occurrences[END_REF][START_REF] Bille | Gapped indexing for consecutive occurrences[END_REF][START_REF] Gawrychowski | Compressed indexing for consecutive occurrences[END_REF].

Bille et al. [START_REF] Bille | Gapped indexing for consecutive occurrences[END_REF] considered an even more general case of the problem, where a query consists of two different patterns p 1 , p 2 of total length m and two integers a, b, and one must find all pairs of consecutive occurrences of p 1 , p 2 in the text separated by a distance d ∈ [a, b]. For reporting the occurrences, they showed a linear-space data structure with Õ(m + n 2/3 output) query time. On the other hand, by reduction from the set intersection problem, they showed a lower bound suggesting that achieving query time better than Õ(m + √ n) for indexes of size Õ(n) is impossible, even if a = 0 is fixed.

Gawrychowski et al. [START_REF] Gawrychowski | Compressed indexing for consecutive occurrences[END_REF] showed that one can circumvent this lower bound in the case a = 0 assuming that the text is very compressible: assuming that the text is represented by a straight-line program (SLP) of size g, they showed a Õ(g 5)-space data structure with Õ(m + output) query time, where m is the total length of the patterns.

Unfortunately, the above upper bounds, despite their theoretical interest, are still far from providing an efficient solution. Motivated by this, we study the dual variant of the problem, where one must process the text and the patterns simultaneously. Note that if the text is uncompressed and has length n, the problem can be solved by classical online pattern matching in O(n + m + output) time by keeping the most recent occurrences of p 1 and p 2 . In this work, we show that for very compressible texts which can be represented by an SLP of size g ≪ n, we get a better runtime O(g + m + output) by extending the ideas of [START_REF] Ganardi | Pattern matching on grammar-compressed strings in linear time[END_REF]:

Theorem 1.
Given a text of length n on a constant-size alphabet represented by an SLP G of size g and patterns p 1 , p 2 of total length m, all consecutive occurrences of p 1 , p 2 in the text can be found in O(g + m + output) time assuming the word-RAM model with a machine word of size w = Ω(log n).

Using similar techniques, we derive an algorithm to output all consecutive occurrences with a bounded distance between them: Corollary 2. Given a text of length n on a constant-size alphabet represented by an SLP G of size g and patterns p 1 , p 2 of total length m, all consecutive occurrences of p 1 , p 2 in the text separated by a distance d ∈ [a, b] can be found in O(g + m + output) time assuming the word-RAM model with a machine word of size w = Ω(log n).

Finally, our techniques allow to derive an efficient solution for the variant of the problem suggested by Bille et al. [START_REF] Bille | String indexing for top-k close consecutive occurrences[END_REF], where one must report the top-k consecutive occurrences of p with smallest distances between them.

Corollary 3. Given an integer k, a text of length n on a constant-size alphabet represented by an SLP G of size g and patterns p 1 , p 2 of total length m, the k closest consecutive occurrences of p 1 , p 2 in the text can be found in O(g+m+k) time assuming the word-RAM model with a machine word of size w = Ω(log n).

Technical Overview. Our algorithm builds on and extends the work by Ganardi and Gawrychowski [START_REF] Ganardi | Pattern matching on grammar-compressed strings in linear time[END_REF], who gave the first O(g + m)-time algorithm for deciding whether a pattern p occurs in a string s represented by a context-free grammar G of size g. Their algorithm relies on the fact that for any occurrence of pattern p of length at least 2 in s, there exists a production A → BC in G, such that a suffix of the extension of B is a prefix of p and and a prefix of the extension of C is a suffix of p. They show how to efficiently compute information about prefixes (resp. suffixes) of non-terminals which contain the longest possible suffix (resp. prefix) of p. This information is called boundary information and is constructed for G bottom-up, starting at the terminals. To do so efficiently, the authors give a new data structure for efficiently answering batches of substring concatenation queries. Our algorithm extends this approach to reporting consecutive occurrences of patterns p 1 and p 2 .

Similarly to above, for any consecutive occurrence of p 1 and p 2 , there exists some production A → BC, such that the first position of the occurrence of p 1 is in the extension of B, and the last position of the occurrence of p 2 is in the extension of C. However, there are different cases to consider, depending on whether the occurrences of p 1 resp. p 2 are fully in the extension of B resp. C, or whether one or both of them start in the extension of B and end in the extension of C (called a crossing occurrence). To handle the different cases, we need to compute additional information for every non-terminal, including the left-and rightmost occurrence of both patterns in the extension of any non-terminal, all crossing occurrences of both patterns, and a two-level version of the boundary information. The two-level boundary information is necessary for the case where p 2 is a crossing occurrence, and we need to find its "predecessor occurrence" of p 1 , i.e. the rightmost occurrence of p 1 starting before p 2 . We show how to compute this information efficiently for all non-terminals via a bottom-up approach. For computing all crossing occurrences, we extend the work by Ganardi and Gawrychowski [START_REF] Ganardi | Pattern matching on grammar-compressed strings in linear time[END_REF], who only showed how to answer whether or not a crossing occurrence of a pattern exists in any non-terminal. We can find all crossing occurrences in the same time complexity, even if there are many in the same non-terminal, by using periodicity arguments. Then we show how to use this information to report all co-occurrences, which requires a careful case analysis and further periodicity arguments.

Preliminaries

A string s of length |s| = n is a sequence s[0]s [START_REF] Navarro | Reporting consecutive substring occurrences under bounded gap constraints[END_REF] . . . s[n -1] of characters from a finite alphabet Σ. In this work, we assume that the size of the alphabet is constant. A substring of a string s is a pair (i, j) where 0 ≤ i ≤ j < |s| and is identified with the string s[i . . . j] = s[i] . . . s [j]. We also use the notation s[i . . . j) and s(i . . . j] which stand for the substring s[i . . . j -1] and s[i -1 . . . j] respectively. We say that a substring s[i . . . j] is fully contained in another substring s

[i ′ . . . j ′] if i ′ ≤ i ≤ j ≤ j ′ .
We call a substring s[0 . . . i] a prefix of s and use a simplified notation s[. . . i], and a substring s[i . . . n -1] a suffix of s denoted by s[i . . .]. We say that x occurs in s at position i if x = s[i . . . i + |x|), alternatively we say i is an occurrence of x in s. Additionally, an occurrence i is fully included in a substring

f of s if s[i . . . i + |x|) is fully included in f .
An occurrence k 1 of p 1 together with an occurrence k 2 of p 2 form a consecutive occurrence (co-occurrence) (k 1 , k 2) of the strings p 1 , p 2 in a string s if there are no occurrences of p 1 in (k 1 , k 2] and no occurrences of p 2 in [k 1 , k 2). The distance k 2 -k 1 is sometimes referred to as a gap.

An integer π is a period of a string s of length n if s[i] = s[i + π] for all i = 0, . . . , n -1 -π. We say that s is periodic if its smallest period, referred to as the period of s, is at most |s|/2. We also exploit the well-known corollary of the Fine and Wilf's periodicity lemma [START_REF] Fine | Uniqueness theorems for periodic functions[END_REF]: Corollary 4. Let x, y be strings such that |x| ≤ 2|y|. If there are at least three occurrences of y in x, then all occurrences of y in x form an arithmetic progression with difference equal to the period of y. Proposition 5. Let p be an m-length string over a constant-size alphabet. Then, one can preprocess p in O(m) time to maintain the following queries in constant time: Given a substring p[i...j], find its leftmost and rightmost occurrences in p, as well as the total number of occurrences. Given two substrings p[i...j] and p[k...l], compute their longest common prefix and their longest common suffix.

Proof. We first construct the suffix tree of p in O(m) time [START_REF] Farach-Colton | On the sortingcomplexity of suffix tree construction[END_REF]. Belazzougui et al. [START_REF] Belazzougui | Weighted ancestors in suffix trees revisited[END_REF] showed that the suffix tree can be preprocessed in linear time so that, given a substring p[i...j], one can find the node u of the suffix tree labeled by p[i...j] in constant time. The leaves of the subtree of u correspond to the occurrences of p[i...j] in p. For each node, we can precompute in linear time in the size of its subtree, the leftmost and rightmost occurrences of its label. This is done by simply traversing the tree from the bottom to the top and propagating the information. We also preprocess the suffix trees in linear time so that it is possible to find the lowest common ancestor between two nodes in constant time [START_REF] Bender | The LCA problem revisited[END_REF]. Given two nodes u and v labelled by substrings p[i...j] and p[k...l], the length of the label of their common ancestor is the longest common prefix of p[i...j] and p[k...l]. Analogously, by building the suffix tree for the reverse of p, we can compute the longest common suffix of two substrings in constant time.

Corollary 6 (of Corollary 4 and Proposition 5). One can preprocess an m-length string p over a constant-size alphabet in O(m) time to maintain the following queries in constant time: Given a substring (i, j), such that j -i ≥ m/2, one can output the arithmetic progression of the occurrences of p[i...j] in p in constant time.

Grammars

Definition 1 (Straight-line program [START_REF] Kieffer | Grammar-based codes: A new class of universal lossless source codes[END_REF]). A straight-line program (SLP) is a contextfree grammar (CFG) consisting of a set of non-terminals X 1 , . . . , X q , a set of terminals, an initial symbol X q , and a set of productions, satisfying the following properties:

• A production consists of a left-hand side and a right-hand side, where the left-hand side is a non-terminal X i and the right-hand side is a sequence X j X k , where j, k < i, or a terminal;

• Every non-terminal is on the left-hand side of exactly one production.

The expansion S of a sequence of terminals and non-terminals S is the string that is obtained by iteratively replacing non-terminals by the right-hand sides in the respective productions, until only terminals remain. We say that G represents the expansion G of its initial symbol.

Definition 2 (Parse tree). The parse tree of a SLP is defined as follows:

• The root is labeled by the initial symbol;

• Each internal node is labeled by a non-terminal;

s x s y s u s v s p[m -|prefix p (s)| . . .] p[. . . |suffix p (s)| -1]
Figure 1: A p-boundary information for a string s that is not a substring of p.

• If S is the expansion of the initial symbol, then the i th leaf of the parse tree is labeled by a terminal S[i];

• A node labeled with a non-terminal A that is associated with a production A → BC has two children labeled by B and C, respectively.

The size of a grammar is the total size of all right-hand sides of all productions. The height of a grammar is the height of the parse tree.

Boundary information

Fix a pattern p of length m. In this section, we remind the notion of the p-boundary information for a string s, introduced by Ganardi and Gawrychowski [START_REF] Ganardi | Pattern matching on grammar-compressed strings in linear time[END_REF]. It constitutes information about the longest prefix resp. suffix of s containing a suffix resp. prefix of a pattern p. This information, if computed for the extension of a nonterminal A in G, can then be used to decide whether there is a crossing occurrence of p in A. The information is defined in such a way that given boundary information for strings s and t, the boundary information for st can be constructed in constant time, given additional data structures (see Algorithm 1). This allows efficiently computing boundary information for all non-terminals in G.

For a string s, let prefix p (s) be the longest prefix of s which is a suffix of p and suffix p (s) the longest suffix of s which is a prefix of p. If s occurs in p at position i, meaning s = p[i...i+|p|-1], then we define p-substring information for s as (i, i+|p|-1), and otherwise p-substring information for s is undefined (if p occurs multiple times in s, any occurrence defines a valid p-substring information for s). For a string s, a p-boundary information is defined as follows:

1. If s occurs in p, then it is simply p-substring information for s;

2. Otherwise, it is two substrings of p, x s and y s such that prefix p (s) is a prefix of x s y s which in turn is a prefix of s (p-prefix information), and two substrings of p, u s , v s such that suffix p (s) is a suffix of u s v s which in turn is a suffix of s (p-suffix information). (See Fig. 1.) For a string s, there are multiple ways p-boundary information can be constructed. We apply a recursive approach: for two strings s, t, assume to be given p-boundary information for s, t. Algorithm 1 (first described in [START_REF] Ganardi | Pattern matching on grammar-compressed strings in linear time[END_REF]) correctly constructs a pboundary information for c = st. Algorithm 1 A boundary information of c = st 1. If s is a substring of p and t is not, then the p-suffix information of c is the p-suffix information of t and we define the p-prefix information for c as follows:

(a) If sx t is a substring of p, then x c = sx t and y c = y t ;

(b) Otherwise, x c = s and y c = x t .

2. If t is a substring of p and s is not, then the p-prefix information of c is the p-prefix information of s and we define the suffix information for c as follows:

(a) If v s t is a substring of p then v c = v s t and u c = u s ;

(b) Otherwise, u c = v s and v c = t;

3. If s and t are both substrings of p, and c is a substring p[i . . . j] of p, then the p-boundary information is p-substring information for c, and we define it equal to (i, j). Otherwise, we put x c = u c = s and y c = v c = t.

4. If neither s nor t is a substring of p, then one can take p-prefix information for c equal to p-prefix information for s and p-suffix information to p-suffix information for t.

Definition 3 (Crossing occurrences). Let s, t be two strings. We say that a position i is a crossing occurrence of p in a string c = st if i is an occurrence of p in c and i ≤ |s| ≤ i+|p|-1. By extension, an occurrence i of p in the expansion A is a crossing occurrence of p for a non-terminal A of a grammar G, or simply a crossing occurrence for A, if A is associated with a production A → BC and i ≤ |B| ≤ i + |p| -1.

Ganardi and Gawrychowski [START_REF] Ganardi | Pattern matching on grammar-compressed strings in linear time[END_REF] showed that given a p-boundary information of two strings s, t one can efficiently decide whether there is a crossing occurrence of p in c = st. By extending their solution, we can report all such occurrences. Note that by Corollary 4, all crossing occurrences form an arithmetic progression.

Lemma 7. Assume to be given a p-boundary information of strings s k , t k for k ∈ [1, q]. One can compute all crossing occurrences of p in all strings s k t k , for k ∈ [1, q], in O(q + m) time. For each k, the output is represented as an arithmetic progression.

The proof of this lemma and our algorithm exploit the following fact: Fact 8 (see [5, Lemma 2.2, Theorem 1.3]). Let w be the size of the machine word. A string p of length m can be preprocessed in O(m) time so that:

• q substring concatenation queries on p can be answered in O(q + m/w) time. A substring concatenation query on a string p asks: Given two substrings u = p[i . . . j] and v = p[k . . . ℓ] of p, check whether uv occurs in p and, if so, return an occurrence;

• Given q substrings u 1 , . . . , u q of p one can compute prefix p (u i) and suffix p (u i) in O(q + m/w) time.

Compressed consecutive pattern matching

We are now ready to prove Theorem 1. Recall that the text is an n-length string over a constant size alphabet represented by an SLP G of size g ≪ n, and the patterns p 1 , p 2 have total length m. By scanning the patterns in O(m) time we can decide whether they contain characters outside of the alphabet of the text. If this is the case, there are no co-occurrences of p 1 , p 2 in the text. Below we assume that p 1 , p 2 are strings over the constant-size alphabet of the text.

The main strategy is to first compute all primary co-occurrences of p 1 and p 2 :

Definition 4 (Primary co-occurrence). Let A be a non-terminal of G associated with a production A → BC. We say that a co-occurrence (i, j) of

p 1 , p 2 in A is primary if i ≤ |B| ≤ j + |p 2 | -1.
We handle primary co-occurrences depending on whether the occurrence of p 1 is fully contained in B or a crossing occurrence, and whether the occurrence of p 2 is fully contained in C or a crossing occurrence. To do so, we preprocess the non-terminals of G to compute the boundary and secondary boundary information for p 1 and p 2 (see Section 4.1), all crossing occurrences, the leftmost and rightmost occurrences of p 1 and p 2 in any non-terminal. The secondary boundary information will be used in the case where there is a crossing occurrence of p 2 and we need to find the rightmost occurrence of p 1 starting before that occurrence.

Computing boundary information and crossing occurrences

We first use a linear-time pattern matching algorithm (e.g. the Knuth-Morris-Pratt algorithm [START_REF] Knuth | Fast pattern matching in strings[END_REF]) to check whether p 2 is a substring of p 1 . If it is, then every cooccurrence of p 1 , p 2 in the text is a pair (i, i + ℓ), where i is an occurrence of p 1 in the text and ℓ is the leftmost occurrence of p 2 in p 1 . (By definition, there is no occurrence of p 2 in [i, i + ℓ). Note also that there cannot exist an occurrence i < i ′ ≤ i + ℓ of p 1 , because then i + ℓ -i ′ < ℓ would be an occurrence of p 2 in p 1 , a contradiction with the choice of ℓ.) In other words, to find all co-occurrences of p 1 , p 2 in the text it suffices to find all occurrences of p 1 in the text, which can be done in O(g + m + output) time [START_REF] Ganardi | Pattern matching on grammar-compressed strings in linear time[END_REF].

Below we assume that p 2 is not a substring of p 1 . Define an array P such that for every j ∈ [0, |p 2 | -1], P [j] is the rightmost occurrence of p 1 in p 2 to the left of j if their is one, else -1. We call P the predecessor array. P can be computed in O(m) time by a linear-time pattern matching algorithm.

By [START_REF] Ganardi | Balancing straight-line programs[END_REF], we can restructure the SLP G representing the text in O(g) time to ensure that its height is O(log n), while its size increases by only a constant factor.

For every symbol A of G (a non-terminal or a terminal) associated with a production A → BC, we compute:

1. a p 1 -boundary information and a p 2 -boundary information for A; 2. All crossing occurrences of p 1 and p 2 for A, as well as the rightmost and the leftmost occurrences of p 1 and p 2 in A;

3. Furthermore, if p 2 -suffix information for A is (u A , v A), then we compute:

(a) a p 1 -boundary information of u A and v A , which we refer to as secondary boundary information;

(b) All crossing occurrences of p 1 for u A , v A , as well as the rightmost occurrence of p 1 in A starting before u A .

Proposition 9. There is a O(g)-time algorithm that computes boundary and secondary boundary information for all symbols of G.

Proof. We first compute boundary information. For a terminal, it suffices to check if it occurs in p. If it does and i is one of the occurrences, we define the p-substring information to be (i, i), else we define p-prefix information and the p-suffix information to be the empty strings. Let the k-th level L k of G be the set of its symbols whose parse tree has height k. We now apply Lemma 7 to compute all crossing occurrences for the non-terminals of G in O(g + m) time. By a second application of Lemma 7, we compute, for every non-terminal A of G, all crossing occurrences for pairs u A , v A , which constitute p 2 -suffix information for A, using the same amount of time.

Proposition 10. Given the boundary information and the crossing occurrences for all symbols of G, one can compute the rightmost and leftmost occurrences of p 1 and p 2 in the expansion of every symbol of G in O(g) time.

Proof. We explain how to compute the rightmost occurrences of p 1 , the rest can be computed analogously. The algorithm processes the symbols of G bottom-up. Consider a symbol A of G. If it is a terminal, then we can find the rightmost occurrence of p 1 in its expansion (if it exists) in O(1) time. Otherwise, assume that A is associated with a production A → BC. If C contains an occurrence of p 1 , then the rightmost occurrence of p 1 in A is the rightmost occurrence of p 1 in C (and we have already computed it). Otherwise, if there are crossing occurrences of p 1 for B, C, it is the rightmost such occurrence. And finally, if C does not contain an occurrence of p 1 and there are no crossing occurrences, then we copy the rightmost occurrence of p 1 in B.

We will need the following auxiliary claim: Observation 11. Given an arithmetic progression by its starting position, difference, and length, we can find the predecessor of a number z in that progression in constant time.

Proposition 12. There is a O(g + m)-time algorithm that computes, for each symbol A of G, the rightmost occurrence of p 1 in A before u A , where

(u A , v A) is p 2 -suffix information for A.
Proof. The algorithm processes the symbols of G bottom-up. Consider a symbol A of G. If it is a terminal, then (u A , v A) is either not defined if A occurs in p 2 , or u A = v A are both equal to the empty string. In the second case, the rightmost occurrence of p 1 in A before u A is 0, if A = p 1 , otherwise no occurrence of p 1 exists in A. Now, if there is a production A → BC, let (u B , v B) (resp., (u C , v C)) be the p 2 -suffix information for B (resp., C) that we computed using Algorithm 1. Note that they might not be defined, if B or C is a substring of p 2 . We review the cases of Algorithm 1:

In Cases 1 and 4, the p 2 -suffix information of A is the p 2 -suffix information of C. Therefore, the rightmost occurrence of p 1 before u A in A is either the last occurrence before u C = u A in C, or the rightmost crossing occurrence of p 1 for A, or the rightmost occurrence of p 1 in B, and we can compute it in constant time.

In Case 3, either (u A , v A) is undefined or u A = B, and therefore the rightmost occurrence of p 1 is undefined.

In Case 2a, u A = u B , and therefore the rightmost occurrence of p 1 in A before u A is either the rightmost occurrence of p 1 in B before u B or the rightmost crossing occurrence of p 1 for A that precedes u B , which can be found in constant time by Observation 11. In Case 2b, we have u A = v B . Thus, the rightmost occurrence before u A equals to one of the following: We can find the rightmost occurrence fully contained in u B = p 2 [i . . . j] by querying the predecessor array P for j -|p 1 | + 1, and the three other candidate occurrences have been already computed.

Reporting co-occurrences

We now show how to quickly report the co-occurrences.

Proposition 13. Consider a symbol A of G associated with a production A → BC. Let j < |B| ≤ j + p 2 -1 be an occurrence of p 2 in A. One can find the rightmost occurrence i ≤ j of p 1 such that i

+ |p 1 | -1 < |B| in O(1) time.
Proof. Let (u B , v B) be p 2 -suffix information for B. By definition, j belongs to u B v B . If j belongs to v B , then i is the rightmost existing one of the following candidates: If j is in u B , then i is the rightmost existing one of the following candidates:

1. The rightmost occurrence i ′ ≤ j of p 1 such that A[i ′ ...i ′ + |p 1 |) is fully contained in v B (
• The rightmost occurrence i ′ ≤ j of p 1 such that A[i ′ ...i ′ + |p 1 |
) is fully contained in u B (which we can find in O(1) time using the predecessor array P);

• The rightmost crossing occurrence i ′ ≤ j of p 1 for u B , v B (which we can find in O(1) time by Observation 11);

• The rightmost occurrence of p 1 in B starting before u B (which we have precomputed).

It follows that i can be computed in constant time.

For a node u of the parse tree of G, denote by off(u) the number of leaves to the left of the subtree rooted at u. Observation 14. Assume that p 2 is not a substring of p 1 , and let (i, j) be a cooccurrence of p 1 , p 2 in the text. In the parse tree of G, there exists a unique node u such its label A is associated with a production A → BC, and (i -off(u), j -off(u)) is a primary co-occurrence of p 1 , p 2 in A.

Lemma 15. Assume that p 2 is not a substring of p 1 and that we are given the information computed in Section 4.1. There is a O(g + m)-time algorithm that reports all primary co-occurrences of p 1 and p 2 in the expansions of the non-terminals of G. If there is more than one primary co-occurrence in the expansion of a non-terminal, they are output as O(1) arithmetic progressions.

Proof. Let A be a non-terminal associated with a production A → BC. We consider three types of co-occurrences of p 1 , p 2 in A:

1. The occurrence of p 1 is fully contained in B and the occurrence of p 2 in C; 2. The occurrence of p 1 is a crossing occurrence for B, C and the occurrence of p 2 is not; 3. The occurrence of p 2 is a crossing occurrence for B, C.

Let (i, j) be a co-occurrence of Type 1. It must have the property that i is the rightmost occurrence of p 1 fully contained in A[. . . |B|-1], j is the leftmost occurrence of p 2 in A[|B| . . .], and there are no occurrences of p 1 , p 2 in between. As we store all crossing occurrences for B, C, the rightmost occurrences of p 1 , p 2 in B and the leftmost occurrences of p 1 , p 2 in C, we can check whether (i, j) exists and compute it in O(1) time by Observation 11.

A co-occurrence (i, j) of of Type 2 must satisfy the following properties: For Type 3, consider two cases. First, consider the case when j is the leftmost crossing occurrence. Let i ′ ≤ j be the rightmost occurrence of p 1 such that i ′ + |p 1 | -1 < |B|, which we can find in O(1) time by Proposition 13, and i ′′ be the rightmost crossing occurrence of p 1 that is at most j, which we can find in O(1) time as well using Observation 11. By definition, the only candidate for a co-occurrence containing j is (i = max{i ′ , i ′′ }, j). By construction of i ′ and i ′′ , there can't be any occurrence of p 1 in (i, j] and it suffices to check whether there are occurrences of p 2 in [i, j). If there is such an occurrence, it must be the rightmost occurrence of p 2 in B, and we can check if it is the case in constant time.

Consider now the case when j is not the leftmost crossing occurrence of p 2 for A. By Corollary 4, all crossing occurrences of p 2 form an arithmetic progression. Let j 0 be the leftmost occurrence, d be the difference and ℓ the length of this progression. By Corollary 4, A[j 0 . .

. j 0 + ℓ • d + |p 2 | -1] is periodic with period d. Let 1 ≤ k ≤ ℓ
be the largest such that the occurrence j * = j 0 + k • d forms a co-occurrence with an occurrence i of p 1 . By definition of a co-occurrence, j 0 ≤ j * -d < i ≤ j * . Furthermore, since p 2 is not a substring of p 1 , we have i + |p 1 | -1 < j * + |p 2 | -1. Hence, by periodicity, (i -k ′ • d, j * -k ′ • d) is a co-occurrence for all 1 -k ≤ k ′ ≤ ℓ -k. (In particular, by maximality of j * , we have j * = j 0 + ℓ • d.) Hence, it suffices to find the co-occurrence for k ′ = 1-k, i.e. to find the occurrence of p 1 preceding j 0 +d. This can be done in constant time by Proposition 13. This case is illustrated in Figure 2.

By Fact 8, the algorithm takes O(g + m) time.

Finally, we report all co-occurrences of p 1 , p 2 in the text given the primary cooccurrences for the non-terminals of G. Using the approach of [13, Section 6.4]), it can be done in O(g + output) time. Observation 14 guarantees that we report all co-occurrences.

Gapped and top-k consecutive pattern matching

We now explain how to modify the algorithm to report only the co-occurrences with a bounded gap (Corollary 2) and only the top-k co-occurrences in the text (Corollary 3).

Bounded-gap co-occurrences. We run the algorithm of Section 4 in O(g + m) time to generate a description of all primary co-occurrences (the elements of this description are single co-occurrences and arithmetic progressions of co-occurrences with a fixed gap) and select the elements of this description with a gap in [a, b]. For each selected element, we apply the approach of [START_REF] Roy Christiansen | Optimal-time dictionary-compressed indexes[END_REF]Section 6.4]) to generate all co-occurrences with a gap in the interval [a, b] in time O(g + m + output).

Top-k co-occurrences. To report the top-k co-occurrences, we first generate a description of all primary co-occurrences (the elements of this description are single co-occurrences and arithmetic progressions of co-occurrences with a fixed gap) in O(g + m) time as in Section 4. Second, we arrange the elements of the description in a heap in O(g) time sorted by the gaps. Then, conceptually, we attach to each node of the heap a path containing the secondary co-occurrences that originate from the element stored in the node. We finally select the k co-occurrences with smallest gaps in O(k) time using Frederickson's heap selection algorithm [START_REF] Frederickson | An optimal algorithm for selection in a min-heap[END_REF]. The algorithm and its analysis requires the min-heap property, the fact that all nodes have constant degree, and to have quick access to the children of an already visited node. The first two properties are guaranteed by construction, and the method of [13, Section 6.4]) guarantees that the children of an already visited node can be accessed in constant amortised time.

 We apply Algorithm 1 to compute boundary information for the symbols of each level in turn, starting from level 0. Processing L k takes |L k | substring concatenation queries and O(|L k |) extra time. Since the height of G is O(log n), by Fact 8 we obtain O(k (|L k | + m/w)) = O(g + m) total time. The secondary boundary information is computed by applying Algorithm 1 on the substrings constituting the boundary information. In more detail, note that for any non-terminal A of G associated with a production A → BC Algorithm 1 computes the boundary information of A by either copying the boundary information of B or C or by concatenating the substrings constituting the boundary information of B and C a constant number of times. It follows that in total there are O(|L k |) copying and concatenation operations at level k. For each concatenation operation, we apply Algorithm 1 to update the boundary information. Processing L k hence takes O(|L k |) substring concatenation queries and O(|L k |) extra time. As above, this leads to O(k (|L k | + m/w)) = O(g + m) total time.

1 .

 1 The rightmost crossing occurrence of p 1 for u B and v B ; 2. The rightmost occurrence of p 1 fully contained in u B ; 3. The rightmost occurrence of p 1 preceding u B which is fully in B; 4. The rightmost crossing occurrence of p 1 for A preceding u B .

1 Figure 2 :

 12 Figure 2: Co-occurrences with crossing occurrences of p 2 forming an arithmetic progression.

 which we can find in O(1) time using the predecessor array P); 2. The rightmost crossing occurrence i ′ ≤ j of p 1 for u B , v B (which we can find in O[START_REF] Navarro | Reporting consecutive substring occurrences under bounded gap constraints[END_REF] time by Observation 11);3. The rightmost occurrence of p 1 that is fully in u B (which we can find in O(1) time using the predecessor array P);4. The rightmost occurrence of p 1 in B starting before u B (which we have precomputed).

 1. j cannot be in A[. . . |B| -1], since it is not a crossing occurrence and p 2 is not a substring of p 1 ; 2. Since i and j are consecutive, and i is a crossing occurrence, i must be the rightmost crossing occurrence and j must the leftmost occurrence of p 2 in A[|B| . . .] = C. We retrieve i, the rightmost crossing occurrence of p 1 , and j, the leftmost occurrence of p 2 in A[|B| . . .]. It remains to check that there is no occurrence of p 1 in (i, j] and no occurrence of p 2 in [i, j). If there is an occurrence of p 1 in (i, j], it can only be the leftmost occurrence of p 1 in A[|B| . . .] = C. If there is an occurrence of p 2 in [i, j), it can only be a crossing occurrence for A. Both conditions can be tested in constant time by Observation 11.

A Proof of Lemma 7

Consider two strings s, t. Let u, v be p-suffix information of s and x, y p-prefix information of t. To find all crossing occurrences of p in a string st, it suffices to look at occurrences in uvxy as uv contains suffix p (s) and xy contains prefix p (t).

We can also assume that u is a prefix of p and y a suffix of p because there is an occurrence of p in uvxy if and only if there is an occurrence of p in suffix p (u)vxprefix p (y).

Here and below, whenever we replace a string u with suffix p (u) and or a string y with prefix p (y), we assume to compute them using Fact 8.

By Corollary 4, the crossing occurrences of p form a single arithmetic progression. We will consider several cases and for each case will report an arithmetic progression of occurrences, but in the end they can be merged into a single one. We repeatedly make use of the following procedure: Proposition 16. Let ℓ be a prefix of p, r a suffix of p, and c a concatenation of at most three substrings of p. After O(m)-time shared preprocessing of p, one can report all occurrences of p in ℓc starting at positions i ≤ |ℓ|/2 and all occurrences in cr ending at positions j ≥ |c| + |r|/2 in constant time. The occurrences are output as an arithmetic progression.

Proof. We show how to proceed for the occurrences in s = ℓc, the proof for the occurrences in cr is symmetric. Assume that there is an occurrence of p at position i ≤ |ℓ|/2. As ℓ is a prefix of p, i = α • d, where 0 ≤ α ≤ |ℓ|/2d is an integer and d is the period of ℓ.

After a classical shared O(m)-time preprocessing the period of any prefix of p can be extracted in O(1) time [START_REF] Knuth | Fast pattern matching in strings[END_REF]. If d > |ℓ|/2, then the only candidate is i = 0 and we can test whether p occurs at this position using a constant number of longest common extension queries. We now assume d ≤ |ℓ|/2. Let α max ≤ |ℓ|/(2d) be the rightmost position such that α max For an occurrence i of p in u ′ vxy ′ , consider three (overlapping) cases: 1. The occurrence is fully contained in u ′ vx; 2. The occurrence fully contains vx; 3. The occurrence is fully contained in vxy ′ . Consider Case 1. By applying Proposition 16 on c = u ′ v and r = x, we can assume that |x| ≤ m/2. We then have three subcases: (a) either an occurrence of p is fully contained in u ′ v, or (b) it contains v, or (c) it is fully contained in vx. In Case 1(a), as |u ′ | ≤ m/4 and |v| ≤ m, any occurrence of p in u ′ v ends in the second half of v and hence we can report all occurrences by applying Proposition 16 once to u ′ and prefix p (v). Case 1(c) is analogous. We repeat the argument for Case 3. Thus, it remains to report all occurrences of p in a string h = ef g fully containing f , where |e|, |g| ≤ m/4, e is a prefix of p, g is a suffix of p, and f is a concatenation of at most two substrings of p.

If the length of f is smaller than m/2, then |h| < m and there are no occurrences of p in h. Assume now that |f | ≥ m/2.

Consider first the case when f is a substring of p given by its starting and ending positions, i.e. let f = p[i . . . j]. By Corollary 6, after O(m)-time shared preprocessing we can find the arithmetic progression of the occurrences of f in p in constant time. If there are only two occurrences, we test if they extend in e and g to an occurrence of p using two longest common prefix and suffix queries.

Assume now that there are at least three occurrences. Let p mid be the minimal substring of p which contains all occurrences of f . By Corollary 4, the period of p mid equals the period of f , d. Let p = p left p mid p right . Next, using two longest prefix and suffix queries, we compute the maximal substring f ′ of h that starts and ends with an occurrence of f . Namely, by Corollary 4, it suffices to check how far the periodicity in f extends beyond f : f ′ must be periodic with period d, must fully contain f , and must start at a position |e|-α•d and end at a position |e|+|f |+α•β for some integers α, β. Let h = e ′ f ′ g ′ . By Corollary 4, the occurrences of f in h start at positions

Now consider the case when f is given as the concatenation of two substrings of p, i.e. f = yu. We would like to reduce this case to the first one. For that, we need to find an occurrence of f in p. As |f | ≥ m/2, at least one of y, u has length greater or equal to m/4. Assume w.l.o.g. |y| ≥ m/4, the other case is symmetric. By Corollary 6, after O(m)-time shared preprocessing we can find a constant number of arithmetic progressions representing the set of all occurrences of y in p in constant time, as well as the period d of y equal to the difference of the progressions. In more detail, if |y| ≥ m/2, we apply Corollary 6 on p and y directly. If m/2 ≥ |y| ≥ 3m/8, we represent p as two 3m/4-length blocks overlapping by m/2 characters and apply Corollary 6 to each block and y (then |y| is at least half the length of a block, and every occurrence is definitely contained in one of the blocks). Finally, if 3m/8 ≥ |y| ≥ m/4, we consider m/2-length blocks overlapping by 3m/8 characters.

By one longest common extension query, we find the longest prefix of u periodic with period d, let its length be ℓ. Fix an arithmetic progression of occurrences of y and let q last be the last position in it. Let q be the leftmost position in this progression such that q + ℓ ≥ q last . Similarly to above, it can be shown that there is an occurrence of y in the progression followed by an occurrence of u iff q +|y| is followed by an occurrence of u. We can decide whether this is the case in constant time by one longest common extension query and if it is report q as an occurrence of yu thus reducing to the first case.