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Abstract

In this paper, a method based on Bayesian inference is proposed to conjointly estimate the
following two fields of thermophysical parameters. The first is a thermal characteristic time
directly linked to the thermal diffusivity and the thickness, whereas the second is the Biot num-
ber, which is directly linked to the heat loss and thermal conductivity. This method is robust to
noise and leads to very good estimations of the parameters, with an algorithm that is very fast
and less time consuming than a classical minimization method. At the end of the study, a setup
and a methodology are also presented to estimate the average value of the thermal conductivity
of an unknown material.
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1 Introduction

1 Introduction

Thermal diffusivity is one of the main parameters in the thermal characterization of materials.
The method proposed by Parker [1] is one of the oldest thermal methods used for the characteri-
zation of diffusion by rear face flash. The hypotheses considered in Parker’s method are that the
excitation flux is uniform over the entire surface and is of short duration (Dirac-type excitation
in time). The material is also considered adiabatic. Under these conditions, the maximum sen-
sitivity to thermal dispersion is reached at the half-rise time t1/2 of the normalized thermogram.
Parker’s method is still widely used because of its implementation simplicity and its large ap-
plication domain because it can be used for insulators as well as for conductors. However, the
assumptions that it requires are not always realistic; in particular, adiabatic boundary conditions
are rarely verified. Indeed, the conductive heat losses at material surfaces are rarely negligible.
Since this method was presented, several methods were subsequently proposed to take into
account the thermal losses for diffusivity estimation. Among them, the method proposed by
Balageas [2] was to focus the study near the time origin, where the influence of heat loss is low.
Other methods proposed by Degiovanni et al. use particular points of the thermogram during
the rising time or the temporal moments between two points to estimate the diffusivity [3, 4, 5].
Another example is the method of partial times with convective losses proposed by Degiovanni
[6] or the approach of asymptotic expansions proposed by Mourand [7]. Most of these methods
use particular points or areas of the thermograms to estimate the diffusivity. Other works pro-
posed estimating the thermal diffusivity with whole thermograms using least-squares methods
by minimizing the residual composed of the norm of the difference between the measured data
and the theoretical model [8, 9, 10, 11]. Most recently, a method was developed [12, 13] to cal-
culate the thermal diffusivity as well as a global estimation of the heat losses. These parameters
are estimated through the Biot numbers and calculated from the ratio between the integrals of
the complete temperature trends of the two faces. One of the difficulties of all these methods
is their sensitivity to noise level. During the last two decades, Bayesian methodologies were
developed [14, 15], which have the advantage of being minimally sensitive to noise. In these
works, the Markov chain Monte Carlo method (MCMC) is used.
In this paper, a method based on Bayesian inference is proposed to locally and conjointly esti-
mate the two parameters on each point of the material with whole thermograms without using
the MCMC methods but with the generation of a base that represents the physical model. This
method is compared to the classical minimizations method using least squares, and the perfor-
mances are compared, particularly on the estimation precision and the time computation of the
algorithm. At the end of this work, a methodology is also proposed to quantify the average
value of the thermal conductivity of a material.
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2 Methodology for the simultaneous estimation of the heat loss and the diffusivity

2 Methodology for the simultaneous estimation of the heat
loss and the diffusivity

2.1 Experimental setup

Originally, the experimental setup proposed by Parker was made with a thermocouple. Now,
with the advance of the technology, a classical rear face flash system is associated with an IR
camera. The setup used in this paper is presented in figure 1.

Fig. 1: Schema of the experimental setup.

The flash lamp comes from Uniblitz and has an energy E of 1600 J. The lamp is synchronized
with the IR camera by using an analogical TTL link to perform a pretrigger mode before the
flash. The IR camera is an MCT longwave (λ = 9-11µm) FLIR SC7600 with a matrix sensor
of 320×256 pixels and a pitch of 30×30 µm2. With the lenses used and the sample distance,
the resulting spatial resolution was 280×280 µm2 per pixel.

2.2 Direct model

In the rear flash experiment, the sample is subjected to a heat pulse of energy Q0 (J·m−2) on its
front face z = 0. The convective losses are modeled by the heat transfer coefficients h0 and he
(W·m−2·K−1) for the front and rear faces, respectively, as illustrated by figure 2.

Fig. 2: Schema of the material.
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2.2 Direct model

The governing equations [16] are then given by:

∂T (z, t)

∂t
= a

∂2T (z, t)

∂z2

−λ∂T (z, t)

∂z

∣∣∣∣
z=0

= Q0δ(t)− h0T (0, t)

−λ∂T (z, t)

∂z

∣∣∣∣
z=e

= heT (e, t)

(1)

where a is the diffusivity coefficient (m2·s−1), λ is the thermal conductivity (W·m−1· K−1) and
e the thickness of the material (m).

In the Laplace domain, equation 1 takes the following form:

p θ(z, p) = a
d2θ(z, p)

dz2

−λdθ(z, p)
dz

∣∣∣∣
z=0

= Q0 − h0θ(0, p)

−λdθ(z, p)
dz

∣∣∣∣
z=e

= heθ(e, p)

(2)

As presented in equation 3, we can introduce the τ (s) parameter and the dimensionless Biot
numbers for the rear face Bi0 and the front face Bie:

τ =
e2

a
; Bi0 =

h0e

λ
; Bie =

hee

λ
, (3)

Equation 2 can easily be solved in terms of the rear face Laplace temperature:

θ(e, p) =
e

λ

2Q0
√
pτe−

√
pτ(

Bi0 +
√
pτ
) (
Bie +

√
pτ
)
−
(√

pτ −Bi0
) (√

pτ −Bie
)
e−2
√
pτ

(4)

In this paper, the heat losses are assumed to be identical on the front and rear faces; therefore,
Bi0 = Bie = Bi. As λ = aρCp, where ρ (kg·m−3) and Cp (J·K−1·kg−1) are the density and
specific heat of the material, respectively, equation 4 can be simplified and written as:

θ(e, p) =
2Q0

eρCp

τ
√
pτe−

√
pτ(

Bi+
√
pτ
)2 − (√pτ −Bi)2 e−2√pτ (5)

A numerical inverse Laplace transform can then be performed on equation 5 by using the
Stehfest algorithm [17, 16] to calculate the temperature in the temporal domain.

In the flash method, the quantity of energyQ0 is hard to quantify because it is not directly related
to the light energy quantity that is radiated by the flash lamp. Actually, the energy received by
the sample is also a function of the optical properties as the absorption of the sample. To
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2.3 Sensitivity study with respect to the parameters

remove this parameter, the temperature is normalized. The thermogram is then normalized by
the maximum value of the temperature, which leads to a temperature variation between 0 and
1. Thanks to this normalization, the temperature is only dependent on the Biot number and the
parameter τ .

2.3 Sensitivity study with respect to the parameters

In this paper, the objective is the estimation of both the diffusivity a and the heat losses h on a
sample. However, the parameters τ andBi have the advantage of being more universal. Indeed,
a fixed value of τ can correspond to different couples (a, e) of diffusivities and thicknesses.
Therefore, the estimation of the parameter τ enables the estimation of the diffusivity a if the
thickness e is known, or inversely, the estimation of the thickness e if the diffusivity a is
known. Likewise, a fixed Biot number can correspond to a large number of couples (h, e, λ),
and the estimation of each of these parameters can be made. In particular, if the thickness e is
known, a characteristic length corresponding to a convecto-conductive ratio can be estimated.
Thus, throughout the rest of the paper, the study will be conducted with the parameters τ andBi.

A sensitivity study with respect to the parameters τ and Bi is therefore performed in this part
to highlight the influence of each of these parameters on the temperature. Several thermal
responses are computed with the help of equation 5 by varying these parameters. Figure 3.a
presents the normalized thermograms for Bi = 0.2 and for different τ between 10 and 100,
whereas Figure 3.b illustrates the normalized thermograms for τ = 100 and for Bi varying
between 0 and 2. The study of the influence of each of the two parameters (τ, Bi) is performed
with the help of the partial derivatives of the thermal responses with respect to these two param-
eters. Figure 3.c illustrates the partial derivatives ∂T/∂τ of each of the thermograms of Figure
3.a, whereas Figure 3.d illustrates the partial derivatives ∂T/∂Bi of each of the thermograms
of Figure 3.b.

For a fixed Biot number, the higher the value of τ (i.e. the smaller the diffusivity a for a fixed
thickness), the later the maximum temperature is reached. Predictably, as concluded by Parker
[1], the maximum sensitivity with respect to the τ parameter, given by the maximum of the
partial derivatives illustrated in figure 3.c, is reached at the half rise time t1/2 of each normalized
thermogram (illustrated in figure 3.a).

Conversely, for a fixed parameter τ , the higher the Biot number (i.e. the higher the heat losses),
the sooner the maximum temperature is reached. The maximum sensitivity with respect to the
Biot number is reached after the rise time of the temperature. Predictably, for small values of
Bi, the sensitivity of the thermal response with respect to this parameter is low, but the higher
the values of Bi are, the less the influence of this parameter is negligible. To emphasize this
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2.3 Sensitivity study with respect to the parameters

point, the estimation of the τ parameter with the Parker method is performed for different values
of Biot numbers between 0 and 2 and for τ = 100.

(a) (b)

(c) (d)

Fig. 3: Sensitivity study with respect to the parameters τ and Bi. Normalized temperatures for (a)
Bi = 0.2 constant and different values of τ and (b) τ = 100 constant and different values of Biot
number. Partial derivatives of the thermograms with respect to (c) the parameter τ for a fixed Biot
number and (d) the Biot number for a fixed τ .

The method proposed by Parker [1] consists of determining the thermal diffusivity a of the
material with the help of equation 6:

a = 0.139
e2

t1/2
, (6)

where a (m·s−2) is the diffusivity coefficient and e (m) is the depth of the material. This equation
can be written with the τ parameter as:

τ =
t1/2

0.139
. (7)
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2.4 Estimation methodology with Bayesian inference

The Parker estimation of the τ parameters and the absolute errors performed as percentages are
illustrated in figure 4 for the different Biot numbers.

Fig. 4: Estimation of the τ parameter (diffusivities) with the Parker method for different Biot numbers
(heat losses) and the corresponding absolute errors (in percentage).

τ is underestimated when Bi is a nonnull value (i.e. in presence of heat losses). Moreover,
the higher Bi is, the higher the error performed on the estimation of τ . For Bi = 2, the error
is almost 40%, which is nonnegligible. This result is explained by the fact that the maximum
temperature is reached sooner with increasing values of Bi, and therefore, the value t1/2 is
underestimated. The estimation of the Biot number is thus required to obtain a good estimation
of the τ parameter.

2.4 Estimation methodology with Bayesian inference

The method generally used for the estimation of both of the parameters is an inversion. The
Levenberg-Marquardt (LM) algorithm [18] is usually computed for this problem because of its
ease of implementation. However, for a large number of measures, the inversion algorithm can
be time consuming. In this paper, a methodology based on Bayesian inference is proposed as
an alternative and compared to LM inversion.

The problem of sample characteristics estimation can be defined in each pixel of the image as
follows: knowing the measured temperature evolution Tm(t) at z = e (front face), determine
the Biot number Bi and the parameter τ , i.e., the couple β = (τ, Bi).
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2.4 Estimation methodology with Bayesian inference

The methodology proposed in this paper uses Bayesian inference, a probabilistic method based
on the Bayes relation [19]:

πposterior(β|Tm(t)) =
π(Tm(t)|β) · πprior(β)

π(Tm(t))
(8)

• πposterior(β|Tm(t)) is the posterior probability density, i.e. the conditional probability of
β, given the measured temperature Tm(t).

• πprior(β) is the prior density, which is the a priori information about β prior to the
measurements.

• π(Tm(t)|β) is the likelihood function, which expresses the likelihood of different tem-
perature measurement outcomes Tm(t) with β given.

• π(Tm(t)) is the model evidence or the marginal probability density of the measurements,
which plays the role of a normalizing constant.

Bayesian inference is then a stochastic approach that results in a probability density function
providing a probability weight to each possible variable β. In this paper, the evidence is not
considered. Indeed, even if its computation does not represent a tricky issue due to the analytical
nature of the direct problem, the knowledge of the more probable β in each pixel, independent
of the normalization, is sufficient to reconstruct the sample diffusivity and loss coefficient fields.
For the prior, which allows us to account for the a priori knowledge of β, only a limitation of
the parametric space (τ, Bi) in the variation range of the parameters is considered to be as
general as possible. The prior is taken as a uniform probability of the variation range of each
parameter [τmin, τmax] and [Bimin, Bimax] with a null probability outside. Finally, in this case,
the posterior probability density is directly linked to the likelihood function [20]:

πposterior(β|Tm(t)) ∝ π(Tm(t)|β),β ∈ [τmin, τmax]× [Bimin, Bimax] (9)

The likelihood function π(Tm(t)|β) is defined as follows:

π(Tm(t)|β) ∝ exp

(
− 1

2Γ2
||Tm(t)− Tr(t,β)||22

)
, (10)

where Tr(t,β) is the front face temperature of reference computed using the direct model
defined in section 2.2 for β ∈ [τmin, τmax] × [Bimin, Bimax], and Tm(t) is the measured front
face temperature at each pixel. Γ is the standart deviation and is set at 1 in this paper.

In this case, as the forward problem is analytical and few parameters are considered, the like-
lihood function is built by directly sampling the discretized parametric space (τ, Bi). This
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3 Presentation and study of the method

allows us to not have to rely on Markov chain Monte Carlo methods, which are commonly used
when the large computation time of the forward problem prevents the exploration of the entire
parameter space [20, 21, 22, 23].

3 Presentation and study of the method

3.1 Application on numerical examples

In this section, the thermograms are numerically computed for different (τ, Bi) to evaluate the
performance of the proposed Bayesian methodology. To study the Bayesian method, three
thermal responses are studied with different couples of parameters (τ , Bi):

• T1, with τ = 100 s and Bi = 0.1.

• T2, with τ = 100 s and Bi = 0.5.

• T3, with τ = 50 s and Bi = 1.

White noise is added to each of these temperatures to simulate a real thermogram. These thermal
responses are illustrated in figure 5.a for a low noise level (SNR = 200) and in figure 5.b for a
high noise level (SNR = 20).

(a) (b)

Fig. 5: Normalized thermograms for the three different couples (τ,Bi) presented: (a) SNR = 200 and
(b) SNR = 20.

Generation of the numerical reference base

For the Bayesian method, a numerical base that contains the temperature of reference Tr(t,β)

is used in equation 10. According to the needs, this base can be calculated beforehand in
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3.1 Application on numerical examples

the form of an abacus or can be generated at the same time as the estimation. The only es-
sential point of this base is that the time interval and the time discretization of thermograms
in the base must be the same as those of the measured thermograms Tm(t). Conversely, re-
garding the choice of the parameters β, there are no real constraints for the base, except that
it is recommended to have a sufficiently broad spectrum so that it can approach the real solution.

For the generation of the base, the idea is to use the Parker method to focus the Bayesian
estimation around a first estimation τ0 instead of searching in the whole range of existing
parameters τ . For the example illustrated by figure 5, as it is supposed we have a better a

priori knowledge for the diffusivity than for the heat loss thanks to the Parker method, the base
is generated with 100 values of τ linearly distributed on the interval [20, 200] and 100 values
of Bi linearly distributed on the interval [0, 2] to have 10000 different thermograms with a
unique couple (τ, Bi). To understand the physical correspondence, for a sample of thickness
e = 1 cm, τ varying from 20 to 200 corresponds to the diffusivity a varying on the interval
[0.5, 5] × 10−6 m2·s−1. Bi varies from 0 to 2 for a sample of conductivity λ = 1 W·m−1·K−1

(a PVC, for example), corresponds to the heat loss h (W·m−2·K−1) varying on the interval
[0, 200].
The complete calculation of such a base takes 5.1 s on a 2.3 GHz quad-core i7 laptop with 16
GHz of RAM.

Implementation of the estimation algorithm

The Bayesian method, as depicted in part 2.4, is then performed for each of the three ther-
mograms and for each noise level, illustrated by figure 5 with the help of the generated base.
For the three thermograms, the likelihoods are then computed from equation 10. The posterior
probabilities are obtained for each couple (τ, Bi) of the base. The obtained repartition of poste-
rior probabilities for the thermogram T3 is presented in figure 6.a for the case with SNR = 200

(low noise level) and in figure 6.b for SNR = 20 (high noise level).
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3.1 Application on numerical examples

(a) (b)

(c) (d)

Fig. 6: Posterior probabilities for the thermogram T3 for each value of the β couple: Representation in
image (a) for SNR = 200 and (b) for SNR = 20. Representation in 3D (c) for SNR = 200 and (d) for SNR
= 20.

The probabilities are higher for a low noise level (figure 6.a and figure 6.c) than for a high noise
level (figure 6.b and figure 6.d); however, the form of the probability repartition is the same,
and therefore, the position of the maximum of probabilities remains the same. This maximum
probability corresponds to the best estimation of the couple of parameters (τ, Bi). The influence
of noise level is therefore low. From the location of the maximum of the posterior probabilities,
the corresponding couple of parameters can be extracted. For the 3 examples, the reconstructed
temperatures with the estimated parameters are illustrated in figure 7 for the two distinct noise
levels. For comparison, the estimation of the two parameters has been made in parallel with the
Levenberg-Marquardt minimization method.
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3.2 Parametric study and noise influence

(a) (b)

Fig. 7: Normalized thermal responses and their estimations with Bayesian inference and minimization:
(a) slightly noised temperature and (b) highly noised temperature.

The reconstructed thermograms with the estimated parameters fit the measured thermograms
with a very good accuracy, for any noise level, for the Bayesian method. However, for the high
noise level, the minimization can lead to a bad estimation, as seen for the thermogram T1. To
compare the errors made by the two methods, a parametric study for large numbers of τ and Bi
was performed for different noise levels.

3.2 Parametric study and noise influence

In this part, the two methods are performed for broad values of couples (τ , Bi) and for different
noise levels. As in the previous part, the “real thermograms“ are computed numerically, and
white noise is added to simulate a real measure. Then, the estimation of the couple (τ , Bi)
is made with the two methods (minimization and Bayesian). For the minimization, the initial
conditions are given by Parker for τ , and Bi takes n equal to 1. This methodology is performed
for each couple (τ , Bi), and the absolute error is calculated between the estimated and real
parameters. The fields of errors are illustrated in figure 8 for each parameter and for the two
methods for an SNR = 20.

For the minimization, for SNR = 20, there is a large area located for τ ∈ [60, 120] and for
Bi ∈ [0.1, 0.6] where the error is high, both for the τ and the Bi parameter. As shown in figure
8.a., the error is approximately 35% for the τ parameter, and in figure 8.c, it can be higher than
100% for the Bi parameter. For the Bayesian method, this area is not specific, and the errors
are much lower: less than 5% for τ and less than 20%, as illustrated in figure 8.b and figure 8.d,
respectively.
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3.2 Parametric study and noise influence

(a) (b)

(c) (d)

Fig. 8: Fields of error estimations on the parameters τ and Bi for SNR = 10. Error on the estimation
of τ with a) the minimization and b) the Bayesian method. Error on the estimation of Bi with c) the
minimization and d) the Bayesian method.

For the minimization method, this “area of error“ is dependent on the initial condition of the
minimization. The location of this area is indeed decaled for different initial conditions for
Bi. Likewise, the intensity of the error is dependent on the SNR. To illustrate these results, the
evolution of the error as a function of the SNR is presented in figure 9 for point 1, which is
located in figure 8. This point corresponds to the couple (τ , Bi) = (70, 0.3). For both methods,
the error made on the τ parameter is represented with a continuous line, whereas the error made
on Bi is represented with a dashed line. For the minimization method, the error decreases when
the SNR increases.
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4 Experimental case on high insulated media

Fig. 9: Errors in the estimation of τ and Bi as a function of the SNR (logarithmic scale) for point 1
presented in figure 8.

For the Bayesian method, the errors are almost constant and almost independent of the noise
level. For the Bayesian method, it is also important to note that the error depends on the
chosen interval between two parameters of the generated base because it gives precision to the
estimation. It can be noted that it is always possible to generate a second refined numerical base
around the estimated couple (τ, Bi) to obtain a better estimation if needed, in the same manner
as presented in [24].

Another point to discuss is the time computation of the algorithm. Once the base is generated,
the Bayesian algorithm to perform the estimations on the three thermograms takes 0.07 s,
whereas the LM algorithm takes 0.18 s. In this case, the difference is negligible, but for larger
values of thermograms, the difference will be important, as will be presented in the next part.

Thus, the Bayesian method enables the estimation (τ, Bi) parameters with very good precision.
This method is easy to implement and minimally sensitive to noise.

4 Experimental case on high insulated media

In this part, the results obtained on an experimental case are presented. The studied sample is
composed of two juxtaposed materials of the same thickness e = 3 mm but different diffusivi-
ties: a PVC and a foam, as illustrated by figure 10. The theoretical values of diffusivity for the
PVC is around 2× 10−7 m2·s−1 whereas it is 1.5× 10−7 m2·s−1 for the Foam. The objective is
to determine the parameters τ and Bi on each pixel of the surface. In this example, a foam and
a PVC were chosen because the thermal conductivity for an insulator (foam) tends toward zero,
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4 Experimental case on high insulated media

and therefore, the Biot number increases. The ratio between the two Biot numbers will enable
the estimation of the thermal conductivity of the foam, as will be presented at the end of this
part.

Fig. 10: Photography of the studied material.

The experimental setup used for this example is presented in part 2.1. The study was focused
on the sample on a rectangle of dimensions 8× 7 cm2, with a resolution of 280 µm2 per pixel.
The camera frequency rate was fixed to 10 Hz, and the final acquisition time was fixed at 60 s.

On each pixel, a first estimation τ0 is made with the Parker method, and the obtained results are
illustrated in figure 11. For both materials, the estimations are similar, τ ≈ 40 s at each pixel.

(a) (b)

Fig. 11: Estimation of the parameters τ on each pixel of the sample with the Parker method: a) with a
scale between 20 and 100 and b) with a scale centered at approximately 40.

The distinctive line that can be seen in figure 11 at y = 0, where the τ estimation seems lower,
is an artefact because the junction between the two materials (foam + PVC) was not perfect.

Then, to perform the Bayesian methodology, the implementation on a base, as depicted in
part 2.4, is performed. For this example, the base is generated with 50 values of τ linearly
distributed on the interval [20, 100] (which is around the value τ = 40 estimated with the Parker
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4 Experimental case on high insulated media

method) and 30 values of Bi logarithmically distributed on the interval [0, 6], which leads to
1500 different thermograms with a unique couple (τ, Bi). The calculation of this base takes
2 s.

The estimation of the couple (τ, Bi) is then performed on each pixel with the Bayesian method-
ology. In parallel, the same estimation is performed with an inversion with the LM algorithm,
where the initial values for τ at each pixel are the values given by the Parker method. The
results are given by figure 12. Figure 12.a and Figure 12.b illustrate the τ parameters with the
minimization and Bayesian methodology, respectively, and Figure 12.c and Figure 12d. the
estimation of Biot number.

(a) (b)

(c) (d)

Fig. 12: Estimation of the parameters τ on each pixel of the experimental material by a) minimization
with the LM algorithm and b) Bayesian method. Estimation of the adimensional Biot numberBi on each
pixel of the sample with c) minimization and d) Bayesian method.

It can be observed that the results on the estimations for the couple (τ, Bi) are very similar for
the two different methods of estimation. The depth of each material is 3 mm, then the estima-
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4 Experimental case on high insulated media

tion of the thermal diffusivity can be made on each point with equation 3. The average value
of the diffusivity is 1.99 × 10−7 m2·s−1 for the PVC and for the foam it is 1.47 × 10−7 m2·s−1

which are consistent with the theoretical values.

To evaluate the accuracy of the estimation, the focus is on points PPV C and PFoam of the sam-
ple, the first one on the PVC and the second on the foam, represented in figure 12.a. The
thermograms measured by the IR camera are illustrated in figure 13 as well as their fit with the
estimated (τ, Bi) for both the minimization and the Bayesian methodology. The estimation of
the τ parameter with the Parker method and the reconstructed parameter is also presented.

Fig. 13: Measured thermograms at pixels PPV C and PFoam of figure 12.a and their fit with the Bayesian
method and with LM minimization.

The Parker estimation leads to the same value of τ for the two pixels (PVC and Foam). The
two resulting thermograms are then superposed and do not fit the measured thermograms, even
during the rising time of temperature, as shown in figure 13. These results are consistent with
the conclusion drawn by part 2.3. Figure 13 shows that the estimation of the couple (τ, Bi)
is better with the Bayesian method than with the LM minimization because the reconstructed
thermograms with the estimated parameters fit the measured thermograms with better accuracy.

Moreover, the high difference between the two methods is the computation time: the complete
estimation of the couple (τ, Bi) on each pixel of the sample was taking at 2 h 35 min for the LM
algorithm, whereas it was only 20 min with the Bayesian methodology, with similar precision.
This difference is explained by the type of algorithm. Minimization methods such as the LM
algorithm require the inversion of matrices, which is of high complexity, whereas Bayesian
methodology is based on the subtraction of thermograms, which is of minimal complexity.
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4 Experimental case on high insulated media

Relative estimation of the thermal conductivity

The Biot number is dependent on the heat loss h, the thickness e and the thermal conductivity
λ of the studied material. In the previous experiment, the thickness e was the same for the PVC
and the foam. The two materials were placed in the same environment; therefore, the heat loss
coefficient h can be assumed to be identical. Then, the ratio between the Biot numbers leads to
the ratio between the thermal conductivity of the two materials, as presented by equation 11:

BiFoam
BiPV C

=
λPV C
λFoam

(11)

Thus, the estimation of the couples (τ, Bi) for two juxtaposed materials enables a ratio between
the thermal conductivities of these two materials. If the conductivity of one of the materials is
known, the second conductivity can then be estimated.

The ratio between the Biot numbers and the mean Biot number of the PVC is determined on the
results obtained in figure 12.d and illustrated in figure 14. The mean value of BiPV C is 0.11 in
this example.

Fig. 14: Ratio between the Biot numbers of the Foam and the mean Biot numbers of the PVC leading to
the ratio values of the thermal conductivity between the two materials.

The mean Biot number ratio obtained for the foam is 26.9, which means that the thermal con-
ductivity of the PVC is 26.9 times greater than the thermal conductivity of the foam. This
result is consistent with the materials used; the thermal conductivity of a PVC is approximately
10−1 W.m−1. K−1, whereas the foam used is approximately 2-3×10−2 W.m−1.K−1. This setup
can then be used as a first estimation method for the thermal conductivity of any material in
addition to the thermal diffusivity. This methodology can be compared to the hot disk transient
plane source (TPS) methods [25, 26, 27] that allow the estimation of the thermal conductivity,
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5 Conclusion

the thermal diffusivity and the specific heat capacity in a single measurement. Conductivity and
diffusivity are tested directly, and specific heat is calculated from the former two.

5 Conclusion

A method based on Bayesian inference was proposed to conjointly estimate the following two
fields of thermophysical parameters: a thermal characteristic time τ directly linked to the ther-
mal diffusivity and the thickness and the Biot number, directly linked to the heat loss and the
thermal conductivity. This method is robust to noise and leads to very good estimations of
the parameters, with results comparable to a classical minimization method. This method is,
however, very fast and less time consuming. A setup and methodology are also presented to
estimate the average value of the thermal conductivity of an unknown material.
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