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Abstract
Large networks are useful in a wide range of applications. Sometimes problem instances are
composed of billions of entities. Decomposing and analyzing these structures helps us gain new
insights about our surroundings. Even if the final application concerns a different problem (such
as traversal, finding paths, trees, and flows), decomposing large graphs is often an important
subproblem for complexity reduction or parallelization.

This report is a summary of discussions that happened at Dagstuhl seminar 23331 on “Re-
cent Trends in Graph Decomposition” and presents currently open problems and future direc-
tions in the area of (hyper)graph decomposition.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation→ Graph algorithms analysis; Theory of computation→ Parallel
algorithms; Theory of computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases (hyper)graph decomposition, algorithm engineering, multilevel
algorithms, embeddings, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs...

1 Corresponding Author
2 Corresponding Author

© Christian Schulz;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


Ajwani et al. 3

Contents

1 Introduction 4

2 Preliminaries 4

3 Balanced (Hyper)graph Decomposition and Variations 4
3.1 Balanced Hypergraph Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 (Hyper)DAG Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 (Hyper)graph Algorithms and ALP . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Sparse Matrix Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Scalable Distributed Memory Partitioning . . . . . . . . . . . . . . . . . . . . 8
3.6 Balanced Edge Partitioning for Distributed Graph Processing . . . . . . . . . 9
3.7 Provably Effective Graph/Hypergraph Coarsening . . . . . . . . . . . . . . . 9
3.8 Randomized Algorithms for Graph Sparsification and/or Coarsening . . . . . 10
3.9 Balanced Streaming Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.10 Exact Solvers for Large k (Hyper)graph Decomposition . . . . . . . . . . . . 10
3.11 Partitioning Stencils and Analyzing The Performance of Partitioning Tools . 11
3.12 Highly Spread Out Weights in Mesh Partitioning . . . . . . . . . . . . . . . . 13
3.13 Cartesian Mesh Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.14 Problems in Multilevel Graph Partitioning With Star Graphs . . . . . . . . . 14
3.15 Graph Partitioning with Ranked Vertices . . . . . . . . . . . . . . . . . . . . 14
3.16 Designing Multilevel Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 (Hyper)graph Clustering 18
4.1 Correlation Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Overlapping Edge-Colored Clustering . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Dense Graph Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Streaming Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Data Reductions and Learning 20
5.1 Data Reductions for (Hyper)Graph Decomposition . . . . . . . . . . . . . . . 20
5.2 Learning for Local Search in Multi-level (Hyper)graph Partitioners . . . . . . 21

6 Embeddings 21
6.1 Distance Estimation for Process Mapping . . . . . . . . . . . . . . . . . . . . 21
6.2 Space-Efficient Planar Graph Embedding . . . . . . . . . . . . . . . . . . . . 22
6.3 Finding Moore-Bound-Efficient Diameter-3 Graphs . . . . . . . . . . . . . . . 23

7 Parameterized Complexity 23
7.1 Parameterized Complexity of Layered Giant Graph Decomposition . . . . . . 23
7.2 FPT Approximation of Vertex Bisection . . . . . . . . . . . . . . . . . . . . . 25
7.3 FPT in Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4 Advancing the Parameterized View on Graph Modification . . . . . . . . . . 26



4 Open Problems in (Hyper)Graph Decomposition

1 Introduction

(Hyper)graphs provide a versatile framework to depict relationships among various entities.
This modeling approach spans across multiple domains, including but not limited to, social
media platforms, traffic management, neural networks, and large-scale simulations. However,
as data grows exponentially, there’s an ever-increasing need for scalable graph-processing
techniques. A critical step in many of these techniques is (hyper)graph partitioning, which
divides a (hyper)graph into k blocks of nearly identical size while minimizing the inter-block
edge count. Emphasizing balance, this partitioning often incorporates a balancing constraint
ensuring the weight of each block doesn’t exceed a certain threshold. In the last four decades,
there has been a tremendous amount of research in the area. See for example the book by
Bichot and Siarry [7], the survey by Schloegel et al. [67] or Kim et al. [32] as well as last
generic surveys on the topic by Buluç et al. [10] and more recently Çatalyürek et al. [14].
However, a wide range of challenges remain in the area. Thus we report currently open
problems and future directions in the area of (hyper)graph decomposition that have been
presented during Dagstuhl seminar 23331 on “Recent Trends in Graph Decomposition”.

2 Preliminaries

A weighted undirected hypergraph H = (V,E, c, ω) is defined as a set of n vertices V and a set of
m hyperedges/nets E with vertex weights c : V → R>0 and net weights ω : E → R>0, where
each net e is a subset of the vertex set V (i.e., e ⊆ V ). The vertices of a net are called pins.
We extend c and ω to sets in the natural way, i.e., c(U) :=

∑
v∈U c(v) and ω(F ) :=

∑
e∈F ω(e).

A vertex v is incident to a net e if v ∈ e. I(v) denotes the set of all incident nets of v. The
set Γ(v) := {u | ∃e ∈ E : {v, u} ⊆ e} denotes the neighbors of v. The degree of a vertex v is
d(v) := |I(v)|. We assume hyperedges to be sets rather than multisets, i.e., a vertex can only
be contained in a hyperedge once. Nets of size one are called single-vertex nets. Given a
subset V ′ ⊂ V , the subhypergraph HV ′ is defined as HV ′ := (V ′, {e∩V ′ | e ∈ E : e∩V ′ 6= ∅}).

A weighted undirected graph G = (V,E, c, ω) is defined as a set of n vertices V and a
set of m and edges E with vertex weights c : V → R>0 and edge weights ω : E → R>0. In
contrast to hypergraphs, the size of the edges is restricted to two. Let G = (V,E, c, ω) be a
weighted (directed) graph. We use hyperedges/nets when referring to hypergraphs and edges
when referring to graphs. However, we use the same notation to refer to vertex weights c,
edge weights ω, vertex degrees d(v), and the set of neighbors Γ. In an undirected graph,
an edge (u, v) ∈ E implies an edge (v, u) ∈ E and ω(u, v) = ω(v, u).

3 Balanced (Hyper)graph Decomposition and Variations

3.1 Balanced Hypergraph Partitioning
Multilevel Scheme. Although traditional coarsening algorithms work particularly well for
mesh graphs, their extension to hypergraphs has revealed a lack of understanding and can
easily destroy the structure of the hypergraph. It is important to invest in better coarsening
techniques tailored specifically to hypergraphs to preserve their structural properties. An
interesting avenue in that direction could be incorporating embeddings during coarsening. By
leveraging embeddings, coarsening algorithms could potentially achieve better representations
of hypergraph structures, leading to improved partitioning outcomes.

While spectral techniques were popular in the pre-multilevel era, pure spectral
partitioning was not deemed competitive afterwards – mainly due to high running
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times. With the increased performance of today’s machines and GPUs, it might be
worthwhile to revisit these approaches as multilevel refinement techniques. Recently,
unconstrained refinement (ignoring balance constraint while performing node moves)
with subsequent rebalancing has shown promising results. However, the design space
of these types of algorithms is far from being explored.

Methodology. Currently, we are lacking evaluations of real-world applications and work-
flows that use partitioning for load balancing and communication volume minimization.
Therefore, the impact of quality gains in partitioning in terms of running time improvements
for the applications are somewhat unclear. Moreover, in both graph and hypergraph parti-
tioning, we still don’t have a uniformly accepted balance constraint definition that works
well in the case of vertex weighted (hyper)graphs. There exist definitions that enforce a
lower bound on the block weights, add the weight of the heaviest vertex to the balance
definition, or simply require that each block must be non-empty. Given that finding a
balanced partition is an NP-hard problem even without optimizing an objective function, we
should investigate in a balance definition that guarantees the existence of a feasible solution
without providing too much leeway in the maximum allowed block weights.

High-Quality Distributed-Memory Partitioning. In recent years, several publications
demonstrated that shared-memory partitioning algorithms can achieve the same solution
quality as their sequential counterparts. However, the same quality gap still exists between
sequential and distributed-memory solvers.

Bottleneck Objective Functions. For parallel computations, we assign the nodes of a
(hyper)graph evenly to processors in a computing cluster. This should balance the com-
putational load across the cluster. However, this does not bound the communication
between processors, which can also become a sequential bottleneck if some PEs have to
communicate significantly more than others. Therefore, we should investigate in tech-
niques for optimizing bottleneck objective functions.

The One Partitioning Tool Idea. The graph- and hypergraph partitioning problems come
in many different flavors: weighted vs. unweighted (hyper)graphs, directed vs. undirected
hypergraphs, different objective functions, single vs. multi-objective, single vs. multi-
constraint, partitioning with fixed vertices, partitioning with variable block weights, etc.
Can we join forces and build (upon) a single open-source multilevel framework that is easily
extensible to foster the research and development of new partitioning heuristics such that
we can have a single tool that actually is able to solve all of these problems?

3.2 (Hyper)DAG Scheduling

Let a HyperDAG (or, alternatively, a DAH – directed acyclic hypergraph) represent a
computation and be given by a set of vertices and directed hyperedges, i.e., H = (V,N ).
Here, V = S ∪ T ∪ O while every directed hyperedge n ∈ N consists of a source and an
arbitrary number of destination vertices; i.e., n ∈ V × P(V), where P(V) is the power set
of V. The vertices S are the input (source) data of the computation, the outputs are in
O, while intermediate computations are captured by computing tasks in T .

Scheduling the computation on a parallel system with p processing units requires assigning
each vertex v ∈ V a time step tv and a location sv ∈ {0, 1, . . . , p− 1} that define when and
where to execute the intermediate computation in the case of v ∈ T , or when and where
an input (or output) should be available in the case of v ∈ S (or v ∈ O).

Let us initially consider a machine model that costs communication and computation,
though does not consider weights for simplicity of presentation – i.e., each data element
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v ∈ S ∪ O uniformly costs some unit storage; v ∈ T generates intermediate data that costs
the same unit storage; and v ∈ T costs some unit time to compute.

Approaching the scheduling problem from a hypergraph partitioning point of view gen-
erates a mutually disjoint V0, . . . ,Vp−1 partition of V under some allowed load imbalance
ε, and minimizes the traditional λ − 1-metric

∑
ni∈N (λi − 1); i.e., minimizes the commu-

nication volume of data units between parts of the partition3. However, even a perfectly
balanced and optimal partitioning may lead to a division of the HyperDAG across the
p compute units that exposes no parallelism whatsoever. One solution is to divide the
HyperDAG into s layers L0, . . . ,Ls−1, where vertices v ∈ L≤i are predecessors of those
in L>i, and then to partition each layer separately. Recent results show, amongst other
results, that the resulting HyperDAG partitioning problem is NP-hard, and also that no
polynomial-time approximation algorithm exists [52]. An additional problem is determining
an appropriate s, which is a hard problem on its own.

Optimal Scheduling. Similar in motivation to the sparse matrix partitioning problem in
Section 3.4 in this paper, one challenge is to find optimal schedules for real-world HyperDAGs.
A collection of problems may be found in open HyperDAG_DB repository4, which welcomes
additional problem submissions. Determining optimal schedules enables efficient execution
of oft-repeated computations, such as those in training neural networks; enables gauging the
effectiveness of current heuristics for online scheduling, such as those used within run-time
systems like OpenMP or Cilk; and enables inspiring better on-line heuristics by looking
at optimal examples. This direction implies finding better ILP formulations and improved
pruning strategies for use with optimal scheduling algorithms. Pruning strategies may
furthermore rely on data-driven methods, see e.g., Juho et al. [39], trained using entries
of the HyperDAG database that have been solved to optimality.

Models and Hardness. The hardness results previously presented depend on assumptions
on the underlying machine and cost models. Indeed, other choices may reveal differing
hardness results– for example, the same recent work shows that removing the layer-wise
constraint in favor of a makespan constraint on the HyperDAG partitioning results in
an optimization problem where evaluating whether said constraint has been violated is
an NP-hard problem in itself [52]. A fundamental challenge thus is to identify what ma-
chine and cost model choices 1) result in significantly harder optimization problems, 2)
affect the search space underlying the optimization problem and how, and 3) have op-
timal schedules that relate to one another and how.

Example modeling choices include whether time step assignment takes place at the unit
vertex granularity or in bulk (e.g., assigning multiple tasks to a single layer); whether data
between vertices are moved individually or in bulk; whether communication in a time step
charges constant latency, a cost proportional to a size, or both; whether communication size
corresponds to volume or h-relations5; whether communication may overlap with computation;
or whether communication throughput and latency (when costed) are uniform across the p
processing units, or instead hierarchical or even topology-dependent. More detailed initial
considerations on such modeling options appear in a pre-print [51].

To make each of the three above challenges more concrete, we briefly follow with known
examples: 1+2) electing a machine model where vertex-to-time-step assignment happens in

3 Here, λi is defined as the connectivity of the ith hyperedge, i.e., the number of parts of the partition the
vertices in that hyperedge span.

4 https://github.com/Algebraic-Programming/HyperDAG_DB/
5 the maximum of incoming and outgoing messages to or from any partition at a given time step.

https://github.com/Algebraic-Programming/HyperDAG_DB/
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bulk and layer-wise, leads to fewer variables in an ILP formulation and thus to a reduced
search space; yet, paradoxically, also has stronger known hardness results compared to
non-layered hypergraph partitioning [52]; 3) there is at most a factor two difference between
optimal BSP solutions6 with overlapping communications versus those without.

3.3 (Hyper)graph Algorithms and ALP
Algebraic programming, or ALP for short, enables writing programs with explicit algebraic
information passed into the programming framework. Examples of such algebraic information
are binary operators and their properties such as associativity, commutativity, etc., as well
as richer algebraic structures such as monoids and semirings. A semiring embodies the
rules under which linear algebra takes place, but allows its generalization to any pair of
additive and multiplicative operations under which those rules hold; for example, while the
plus-times semiring enables standard numerical linear algebra, the min-plus semiring enables
shortest-paths computations. The following two observations are core to GraphBLAS: a)
most graph algorithms can be expressed in (generalized) linear algebra; and b) our deep
understanding of optimizing sparse linear algebra (thus) applies to graph computations.

The recent nonblocking mode of ALP/GraphBLAS performs fusion of linear algeb-
raic primitives under any algebraic structure, at run-time. It achieves up to 16.1× and
12.2× speedup over the similar state-of-the-art frameworks of SuiteSparse:GraphBLAS
and Eigen on ten matrices for the PageRank algorithm, with similar results for a Con-
jugate Gradient (CG) solver and sparse deep neural network inference [46, 45]. Other
recent work introduces support for dense linear algebra, matrix structures (e.g., triangular),
and views (e.g., permutations or outer products) [71]. It furthermore enables automatic
distributed-memory execution of sequential ALP code [86, 68].

ALP Accelerating Graph Algorithms. With the new extensions, both the applicability and
performance of the ALP framework has increased, and should enable the acceleration of graph
algorithms that previously only had sequential or otherwise un-optimized representations.
To aid porting efforts, ALP not only supports the auto-parallelization of linear algebraic
formulations of graph problems, but also that of vertex-centric ones [82].

One challenge is to find graph algorithms that, despite recent advances, remain hard to
express using generalized linear algebra, or graph algorithms that are expressible yet do not
achieve high performance. Examples include k-core decomposition and p-spectral clustering,
the former done successfully [41] and the latter still partially relying on non-ALP code [53].

Graph Algorithms Accelerating ALP. Techniques exist to accelerate sparse matrix com-
putations using hypergraph partitioning, either on distributed-memory [13, 80, 57], shared-
memory [83, 84], or both simultaneously [87, 85]. However, based on the computation, either
the hypergraph representation of a sparse matrix must be adapted, the minimization objective
modified, or both; see, e.g., Ballard et al. [5] who consider sparse matrix–matrix (SpMSpM)
multiplication rather than sparse matrix–vector (SpMV) multiplication, as most preceding
cited works. Thus for ALP as a programming model, the challenge lies in how these models
and optimization techniques may be combined – preferably transparently to the programmer
– to optimize the arbitrary sequences of computations and inputs that ALP encounters.

For example, while we may readily reuse known techniques to optimize any program
consisting of SpMV multiplications with the same input matrix and some vector opera-

6 with BSP, compute tasks and communication are considered in bulk, communication charges both latency
and size, communication size is given by h-relations, and latency as well as throughput parameters are
uniform [78].
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tions, the framework must be smart to select a different model and optimization objective
when it concerns SpMSpM multiplication instead. Furthermore, relying on such existing
work requires ALP to translate between different partitionings whenever differing oper-
ations or differing input matrices are encountered.

Ideally, however, the framework co-optimizes across multiple primitives and inputs that
it encounters. The following avenues seem possible: 1) dynamically building fine-grained
(hyper)DAG representations, followed by partitioning, (Hyper)DAG partitioning [50, 59], or
scheduling (see also the related problem 3.2); 2) employing a coarse-grained parameterized
representation of the computation and employing analytic choices, or 3) some mixture
of the preceding avenues. Difficulties with the first solution likely relate to the scale of
the resulting optimization problem. For the second, while work in nonblocking ALP/-
GraphBLAS execution shows that such approaches may be effective [45], it is unclear
how they may extend to arbitrary primitives and inputs. A successful solution thus may
well lie with the third option, and require mixed fine- and coarse-grained representations
combined with both combinatorial and analytic techniques.

3.4 Sparse Matrix Partitioning
Given an m× n matrix A with N nonzeros, the sparse matrix partitioning problem seeks a
partition of A into p disjoint parts A = ∪p−1

i=0Ai such that the number of nonzeros in part Ai

satisfies |Ai| ≤ (1 + ε)
⌈

N
p

⌉
for 0 ≤ i < p, where ε ≥ 0 is a given load-imbalance parameter.

Important questions for the area of sparse matrix partitioning as well as graph and hypergraph
partitioning are: How good is heuristic bipartitioning compared to exact bipartitioning? How
good is recursive bipartitioning into k parts compared to direct k-way partitioning?

To answer these questions, we can solve a set of small- and medium-size problem in-
stances to optimality using an exact algorithm either based on the branch-and-bound
(BB) approach, or on an integer linear programming (ILP) approach. To answer the
first question, a set of 839 matrices has been bipartitioned by the programs Mondriaan-
Opt [58] and MatrixPartioner [34]. To answer the second question, an exact bipartitioner
has been employed within a recursive bipartitioning program for k = 4 and it has been
compared with an exact direct 4-way partitioner using the program General Matrix Par-
titioner (GMP) [31] and the commercial ILP solver CPLEX.

We would like to scale up these initial results, to reach larger problems and be able
to answer the main questions with more confidence. Since for k = 2 the bipartitioner
MP works best, we ask whether its algorithm and implementation can be further im-
proved. Parallelization should also help to enlarge our database of solved problems. One
might interpret this database as a training set for learning (by either machines or hu-
mans) about properties of optimal solutions.

For k > 2, we surprisingly found that a basic formulation as an ILP solved by a
commercial ILP solver was far superior to the BB solver GMP, and this poses the ques-
tion what we can learn from the ILP solvers. Furthermore, can we use them for certain
types of sparse matrix/graph partitioning? Finally, can we improve the basic formula-
tion of the ILP to solve even larger problems?

3.5 Scalable Distributed Memory Partitioning
Scalability of high quality parallel (hyper)graph partitioning remains an active area of research.
In particular, achieving good scalability and quality on large distributed memory machines
is still a challenge, but even on shared-memory machines, scalability to a large number of
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threads seems difficult. Even more difficult is aligning the inherent complexity and irregularity
of state-of-the-art algorithms with the restrictions of GPUs or SIMD instructions. Another
conundrum is that, for good memory access locality during partitioning, (hyper)graphs need
to already be partitioned reasonably well. Hierarchies of supercomputers have to be taken
into account during partitioning. This can be done by using multi-recursive approaches
taking the system hierarchy into account or by adapting the deep multilevel partitioning
approach sketched above to the distributed memory case. When arriving at a compute-
node level, additional techniques are necessary to employ the full capabilities of a parallel
supercomputer. For example, many of those machines have GPUs on a node level. Recently,
researchers started to develop partitioning algorithms that run on GPUs and, while of
independent interest, partitioning algorithms developed for this type of hardware can help
in that regard. Hence, future parallel algorithms have to compute partitions on and for
heterogeneous machines. On the other hand, algorithms should be energy-efficient and
performance per watt has to be considered. Lastly, future hardware platforms have to be
taken into consideration when developing such algorithms. One way to achieve this will be
to use performance portable programming ecosystems like the Kokkos library [76].

3.6 Balanced Edge Partitioning for Distributed Graph Processing

The generally accepted formulation of the edge partitioning problem imposes a load balancing
constraint on the number of edges per partition (cf., e.g., [47], [48]): ∀pi ∈ P : |pi| ≤ α ∗ |E|k

for a given α ≥ 1, α ∈ R, where |pi| denotes the number of edges in partition pi. However,
balancing only the number of edges does not always lead to good load balancing in distributed
graph processing, as shown in [49]. In some cases, it is better to balance the number of vertex
replicas – vertex copies produced whenever incident edges are placed in different partitions.
The open problem is to achieve an edge partitioning that is balanced both in the number
of edges and vertices while minimizing the vertex replication factor. First thoughts in that
direction may lead to the formulation of a multi-constraint partitioning problem.

3.7 Provably Effective Graph/Hypergraph Coarsening

Today almost all of the state-of-the-art graph and hypergraph partitioning tools utilize
multi-level approaches that are comprised of three phases: coarsening, initial partitioning and
uncoarsening/refinement. Even though numerous different coarsening techniques have been
proposed and many are shown to be effective in multi-level partitioning, we still do not have
a provably effective and efficient coarsening technique for graph or hypergraph partitioning
problems. The situation is more dire for directed graph and hypergraph partitioning for
acyclic partitioning. Keeping acyclicity during coarsening is a desirable property, yet, it is com-
putationally expensive to ensure and maintain acyclicity, with flexible coarsening techniques.

Today we also do not have a well-defined objective for coarsening. In other words, we
do not have well-agreed upon desirable properties of the coarsened graph. Overall we want
to solve a partitioning problem, but in multi-level partitioning the overall success of the
algorithm is a complex function of the three phases of the multi-level approach. We have
many counterexample results showing that the best initial partitioning solution does not
always yield the best result. Hence, it is even more difficult to define a goal for coarsening.

In undirected graph and hypergraph partitioning, many successful tools use randomized
heavy edge matching/clustering techniques, where vertices are visited in random order,
and they are matched with their unmatched neighbor with the heaviest connection. This
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randomization helps to “maintain” the graph’s structure. Hence, one potential direction
for successful coarsening techniques is randomized algorithms (see Section 3.8).

3.8 Randomized Algorithms for Graph Sparsification and/or Coarsening
Randomized algorithms on networks often involve sampling nodes, edges, or subnetworks [24,
25, 35, 72]. These sampling techniques are used as subroutines (1) for the solution of
fundamental problems on networks, such as connected components, the assignment problem,
breadth-first search on long-diameter graphs, or global minimum cut, and (2) for graph
learning problems trained with variants of mini-batch stochastic gradient. These problems
are widely encountered in the US DOE applications, e.g., the use of the assignment problem
in optimal transport (transforming probability distributions) for cosmology, the use of
connected components in genomics problems. Sketching and sparsification, which are other
randomization techniques used for networks, can be used to find approximate solutions
for higher-level problems where the network problem is a subroutine. The computational
science applications include domain-decomposition solvers, iterative solvers, preconditioning
for sparse systems using approximate factorization. Sampling and sketching can also be used
as a coarsening technique in multilevel graph partitioning. Unfortunately, the impressive
advances in the theory of randomized algorithms for networks has not been translated
into practical demonstrations. There are ample research opportunities to bridge this gap
between theory and practice, and hence, to produce high-quality software running on modern
HPC hardware with demonstrations on application codes.

3.9 Balanced Streaming Partitioning
In streaming edge partitioning, edges are presented one at a time in a stream and must
be assigned to a partition irrevocably at the moment they are encountered. Degree-based
hashing has been proven effective for streaming edge partitioning, however, its potential
benefits in the context of streaming vertex partitioning remain to be explored. An open
problem is to investigate the benefits and challenges associated with using degree-based
hashing techniques specifically for streaming vertex partitioning.

Another notable limitation in the current literature on streaming partitioning algorithms
is the predominant focus on common ordering strategies for the input (hyper)graph, such as
random ordering, breadth-first search, and depth-first search orders. While these ordering
strategies provide valuable insights into the performance of partitioning algorithms, they
may not fully capture the challenges posed by real-world scenarios. Therefore, it is an open
problem to experimentally test streaming partitioning algorithms under adversarial node
and edge orderings, particularly in the context of buffered streaming algorithms, where
locality has a large impact on the quality of the result.

An open problem in the field of streaming process mapping is to address the problem
when the underlying topology cannot be faithfully represented as a hierarchy, but only as a
graph or hypergraph. Existing streaming algorithms either ignore the topology, i.e., solve the
graph partitioning problem, or optimize directly for hierarchical topologies. However, many
real-world scenarios involve complex interconnections that form graph-based topologies.

3.10 Exact Solvers for Large k (Hyper)graph Decomposition
Solving the graph bipartitioning problem to optimality using branch-and-bound algorithms
has recently been shown to be highly effective if the optimum solution value is very small.
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(b) The matrix of the mesh.

Figure 1 The 2D mesh resulting from the discretization of a square domain with the five-point
stencil, using 5 points in each dimension, and the corresponding matrix after a row-by-row ordering
of the mesh points.

For example, Delling et al. [20] can solve instances with millions of vertices to optimal-
ity in a reasonable amount of time. It is still open whether such solvers also exist for
balanced (hyper)graph partitioning problems where k is significantly larger than 2. The
difficulty here comes from the fact that larger values of k introduce a large amount of
symmetry in the problem, i.e., if you have some partition of the graph, then any per-
mutation of the block ids is also a partition of the graph that has the same balance and
objective. Another problem of current solvers is how to handle dense instances or, more
precisely, instances in which the objective function is large.

3.11 Partitioning Stencils and Analyzing The Performance of
Partitioning Tools

We investigate the scalability of the graph- and hypergraph-based sparse matrix parti-
tioning methods in terms of being able to obtain high quality solutions in large prob-
lem instances. The quality measure that we are interested is the connectivity−1 metric,
which usually measures the total volume of communication when vertices represent data
items/computations and the hyperedges represent the dependencies. Ideally, theoretical
investigations help explain the scalability or success of the methods. However, the cur-
rent algorithms in use are too sophisticated to lend themselves to such an approach. We
are thus looking for sound experimental methodology.

One approach is to take a subclass of problems, develop special partitioners, and compare
the hypergraph partitioners with those. We take five-point stencil computations in two-
dimensions (2D) for which we have a special linear-time partitioner [26, 77] and see how
good the current partitioning methods are on these cases. We compare the performance of
hypergraph partitioners on these. A rectangular 2D domain is discretized with the five point
stencil and a mesh of size X×Y is obtained whose points are placed at integer locations. Two
points (x1, y1) and (x2, y2) of the resulting mesh are neighbors iff |x1 − x2|+ |y1 − y2| = 1.
A sample mesh resulting from the discretization of a square domain with five points in each
dimension is shown in Figure 1a. The figure also shows the connections of a point. After
an ordering of the mesh points, one can obtain an X × Y by X × Y matrix. The matrix
obtained from the shown mesh after a row-major ordering is shown in Figure 1b.

A partitioning of the points of the meshM corresponds to a row-wise or a column-wise
partitioning of the associated matrix AM. Without loss of generality let us focus on the
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(a) The K = 4-way parti-
tion of the 16 × 16 obtained
by the special routines [26].
Connectivity−1 is 58.
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(b) The K = 4-way parti-
tion of the 16 × 16 mesh ob-
tained by PaToH, suboptimal
(connectivity−1 is 61).
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(c) The K = 4-way partition
of the 16 × 32 mesh by the ba-
sic diamonds [8, Section 4.8],
which is believed to be asymp-
totically optimal. Here though
the connectivity−1 is 126 and
PaToH obtains 93.

Figure 2 Partitioning the 16 × 16 mesh with different routines; the basic diamonds cannot
partition this mesh, but can partition a larger one.

row-wise partitionings of AM. The standard column-net hypergraph HCN model [11] can
be used for this purpose. Partitioning the vertices of the hypergraph HCN among K parts
will therefore correspond to partitioning the stencil computations among K processors; the
connectivity−1 metric of the cut will measure the total communication volume; and the
balance of part weights in terms of vertices will correspond to balance of the loads of the
processors. We assume unit vertex weights here, the effect of having less operations on the
border points of the mesh will be ignored for simplicity (and is negligible).

With the special partitioning methods by Grandjean and Uçar, we obtain the total commu-
nication volume listed in Table 1 for square X×X meshes. While the communication volume
listed in the table is obtained with the routine itself, we note that it is given by the formula

2×
(⌊

n√
2

⌋
+ n

)
+ 4 , (1)

which is claimed to be optimal for X > 16 in the table (for X = 16, the optimal
communication volume is claimed to be 57).

The communication volume formula (1) requires some conditions on X, which we do not
give here. Are the connectivity−1 values given in Table 1 optimal for a perfectly balanced
4-way partitioning of the two mesh of X ×X points discretizing a square domain with a
five point stencil? For the 16× 16 mesh, Gurobi solver [28] also finds a cut of value 57 in a
few minutes under an additional constraint to assign the four corners to four different parts.
The solution obtained by the Gurobi solver is at the close neighborhood of what is shown in
Figure 2a; the method of Grandjean and Uçar is easily updated to mimic Gurobi’s result.

Another point that arise from the given 4-way partitioning is that these partitions cannot
be obtained in a recursive bisection scheme where each step greedily optimizes the cut
hyperedges with perfect balance. This is so, as the first cut vertically cuts the mesh into
two equally sized parts with perfect balance and optimal cut. Simon and Teng [70] delve
more into this point in the context of graph partitioning.

We note that more results of the sort are given elsewhere [26]. The same reference
also surveys some results from the literature, including references on discrete isoperimetric
problems [81], which can be used to guide algorithms. Two things are of particular note:
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X 16 64 256 1024 2048
PaToH 61 249 985 4034 7999

Vol 58 222 878 3500 6996

Table 1 The partitioning of the X ×X mesh of five-point stencils with perfect balance using
the method of Grandjean and Uçar [26] obtains the numbers given in row “Vol” as connectivity−1
metric of the cut. PaToH’s results are in the row “PaToH”— they do not have perfect balance.
Apart from 58 in the last line, the other numbers are claimed to be optimal. For the X = 16 case
the optimal value is claimed to be 57.

in the corners, the optimal parts are triangle-like, as in two corners in Figure 2a, and in
the interior the optimal parts are diamond-like as in Figure 2c.

Bisseling and McColl [9] propose digital diamonds to partition similar meshes with wrap-
around connections. Digital diamonds are `1-spheres defined with a center (cx, cy) and a
radius ρ. Such a diamond contains all mesh points (px, py) where with |px−cy|+ |py−cy| ≤ ρ.
Grandjean and Uçar give formulas for the total communication volume when one uses digital
diamonds. They also specify conditions on mesh and part sizes under which a partition
by digital diamonds are possible. Basic diamonds proposed by Bisseling [8, Section 4.8]
trim off two borders from the digital diamonds to address partitioning of another set
of mesh and part sizes—these conditions as well as the total volume of communication
are also specified by Grandjean and Uçar. Digital diamonds and basic diamonds are
believed to be asymptotically optimal in terms of the total communication volume, but
obtain disconnected partitions on the borders of the mesh when there are no round-around
connections—which is not desirable in certain applications.

Another approach is to take general sparse matrices boost the data in a way, reason
about it and evaluate the performance of hypergraph partitioners on these. For example,
suppose we partition a matrix A row-wise into k parts, and obtain a total communication
volume of TV units in SpMxV. Then, if we partition the matrix B = [A,A] row-wise again
into k parts, then the first partition should be good for B with 2 × TV communication
volume. If our partitioning tool is good, such a performance is expected; if the answers
were not TV vs 2× TV , we could either improve the partition of A or B. Similarly, a k-way
row-wise partition of C = [A;A]—this time two copies of A are stacked to have twice as many
rows—should have a communication volume of TV units. Some experimental investigation
with PaToH [12] using these matrix repetition schemes [77] reveals a good behavior. What
else can we say about the behavior of partitioning tools on more general problems?

3.12 Highly Spread Out Weights in Mesh Partitioning

Many distributed numerical simulations rely on mesh partitioning to improve the balance of
their computations on every computing unit, thus increasing their efficiency and scalability.
A mesh is modeled by its dual graph or hypergraph as input to a partitioner: each vertex
corresponds to a cell of the mesh, and the vertex weight is the computing cost of this
cell. Good quality hexahedral meshes have a reasonably regular topology, mostly looking
like a 2D or 3D grid. However, the vertex weight distribution can be highly spread out
for various applications like Monte-Carlo particle transport simulations. For this kind of
instance, classic multi-level approaches of the existing graph partitioner can have some quality
issues, symmetric to the ones observed in Section 3.11. Multi-level graph partitioners focus
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on topological properties, and here, taking more into account vertex weight distribution
should lead to better and faster obtained partitions.

3.13 Cartesian Mesh Partitioning

Directly addressing data in memory is crucial in achieving high performance when running
on modern architectures, especially on GPU. Grids allow direct access to neighbor cells
for mesh computations, making stencil computations like the one presented in Section 3.11
very efficient. However, standard partitioning approaches lead to non-rectangular parts,
making distributed applications less efficient. Thus, a new problem is partitioning a grid
into parts that are all a subgrid or a set of subgrids. Such a partitioning model will also
work to partition block structured meshes that often arise for hexahedral meshes.

3.14 Problems in Multilevel Graph Partitioning With Star Graphs

The partitioning community has long focused on instances with a regular structure, e.g.,
mesh graphs or instances from circuit design. However, it becomes more and more important
to find high-quality solutions for instances with an irregular structure, such as those derived
from social networks. Surprisingly, we found a subclass of these instances where current state-
of-the-art partitioning algorithms compute solutions that are far from optimal. The identified
instances – referred to as star instances – are characterized by a core of a few highly-connected
nodes (core nodes) with only sparse connections to the remaining nodes (peripheral nodes).

One example of such an instance is the Twitter graph. Here, we found that partitioning
the nodes into low- and high-degree vertices (≤ median degree) induces a bipartition that
cuts half the edges as any of the existing multilevel partitioning tools. We identified several
other social networks where we observed the same behavior. Thus, it becomes increasingly
important to develop efficient partitioning techniques that can handle such instances.

From a theoretical perspective, we were already able to present an (R+ 1)-approximation
for star instances, where R is the ratio of an approximation algorithm for the min-knapsack
problem. This is a remarkable result since there exists no constant factor approxima-
tion for the general graph partitioning problem.

3.15 Graph Partitioning with Ranked Vertices

For some graph algorithms, there is an implicit rank over the vertices. For instance, 2-hop
indexing generates a label cover that can be used for answering pairwise shortest-distance
queries. Classical algorithms, e.g., Pruned Landmark Labeling (Pll) [1] and its variants,
leverage a ranking that has a drastic impact on the number of entries stored at local vertex
indexes. In the distributed setting, the amount of entries in the cut, i.e., the ones replicated
and/or communicated among the nodes, depends on this ranking. Especially when the number
of nodes is high, this communication can create a bottleneck. For distributed execution,
ranking the vertices also changes the loads on each part. In that sense, another problem at
hand is given the rank, the amount of data stored at each vertex needs to be estimated well
enough so that the part weights incur an acceptable level of imbalance. Hence, the problem
is given a graph G = (V,E), what is the best vertex ranking and partitioning pair that yields
the best performance in terms of execution time and maximum memory used at each node?
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3.16 Designing Multilevel Algorithms

In a variety of fields, computational optimization challenges often arise when modeling
large and complex systems, presenting significant hurdles for solving algorithms, even when
high-performance computing resources are deployed. These obstacles are frequently due to a
multitude of factors such as an extensive number of variables and the complexity in describing
each variable or interaction. Problems involving combinatorial and mixed-integer optimization
add extra layers of complexity. Specifically, the presence of integer variables frequently results
in NP-hard problems, particularly in contexts where nonlinearity and nonconvexity are factors.

A widely adopted strategy for tackling these challenges involves the use of iterative
algorithms. While these algorithms may be grounded in divergent algorithmic paradigms,
they often exhibit a similar pattern: rapid improvement during initial iterations followed
by a phase of slower progress. In the realm of iterative algorithms, utilizing first-order
optimization techniques like gradient descent or methods that rely on limited observable
data, such as local search, often leads to a local optimum that is usually suboptimal when
compared to the true global optimum. Additionally, the algorithms employed within each
iterative cycle are not always exact, further complicating the optimization process. To
speed up these algorithms at each iterative step, various strategies including heuristics,
parallelization, and different ad hoc techniques are commonly employed, albeit often at
the expense of solution quality. Being trapped in local optimum of unacceptable quality
is one of the most important issues of such algorithms.

Multilevel methodologies have been introduced to address the challenges of large-scale
optimization, offering a strategy that reduces the chances of being trapped in low-quality
local optimum. These techniques are complementary to stochastic and multistart approaches,
which also help the algorithm escape local optima. While there’s no one-size-fits-all pre-
scription for designing multilevel algorithms, their core philosophy revolves around global
considerations while executing local actions based on a hierarchy of increasingly simpli-
fied representations of the original complex problem.

In practice, a multilevel algorithm initiates the optimization process by generating
a hierarchy of progressively simplified (or coarser) problem representations. Each
subsequent coarser level aims to approximate the problem at the current level but
with fewer degrees of freedom, facilitating a more efficient solution process. After
solving the coarsest problem, its solution is extrapolated back to the more detailed
level for further refinement – a phase termed as “uncoarsening.” Employing this
multilevel approach frequently results in substantial improvements in both compu-
tational efficiency and the quality of solutions. There are many broad impact open
questions in designing multilevel algorithms for (hyper)graphs some of which we mention here.

Distance between vertices. In order to coarsen the problem, a critical issue is to design a
distance (or similarity) function between nodes. The question is simple: how to introduce a
similarity function that will effectively find subsets of nodes that share the same solution
(e.g., in the context of graph partitioning it is about predicting that nodes will be assigned
the same part)? Incorrectly chosen subsets of nodes will mislead coarsening and will make
the uncoarsening to work much harder which will result in increased complexity and poor
results. In the same time, sophisticated distance functions are not supposed to destroy the
overall complexity of the multilevel algorithm. Examples of such advanced solutions are
spectral-based [16, 61, 69] and low-dimensional representations [73]. They work very well on
the partitioning, ordering [66] and clustering multilevel schemes. However, there is also a lot



16 Open Problems in (Hyper)Graph Decomposition

of evidence that these algorithms are not perfect and do not fit all scenarios.

Density of coarse levels. This remains one of the most crucial issues in multilevel algorithms.
In many problems and coarsening schemes the more we coarsen the problem, the more dense
graphs are obtained unless we deliberately take actions to sparsify them. On the one hand,
such dense representations often may approximate the original problem better. On the other
hand, the complexity of refinement at the corresponding levels of uncoarsening becomes
prohibitive. For example, in the algebraic multigrid inspired multilevel approach for graph
linear ordering this issue was simply patched by reducing the interpolation order [64] which
is a pretty blind solution. It was slightly improved in graph partitioning [65] by using a
better node distance function in combination with the small interpolation order but more
sophisticated and theory-grounded approaches are required. In a similar 2-dimensional layout
problem, the authors switched to more regular coarsening with the geometric multigrid [60].
In general, dense graphs are problematic for most existing multilevel algorithms that mostly
designed for sparse instances and require special treatment such as other coarsening schemes
or special hardware [43].

Maximization problems. A particularly interesting class of problems for which multilevel
algorithms have not reached their advanced stage is maximization problems such as max
cut, maximum independent set, and maximum dominating set. A traditional coarsening
approach quickly generates dense coarse levels and becomes impractical. Recent work on
sophisticated node distance functions and sparsification improve the situation [3] but after
a certain number of levels the quality of coarse levels becomes either poor (if sparsified)
or intractable (otherwise). Rethinking of the coarsening ideas is required for this class of
problems as such approaches as inverting graphs quickly become impractical.

When to stop the refinement? Perhaps there is no multilevel algorithm whose developers have
not asked this question. Overall, there is no theory-grounded work related to optimization
on (hyper)graphs that answers this question. Apart from the complexity issue, on the first
glance it may look trivial that in the ideal refinement, the employed local optimization
solvers should be optimal. However, there is a lot of practical evidence that terminating
refinement before reaching the best possible local solution is beneficial to the final global
suboptimal solution.

Advanced types of multilevel cycles. In multilevel schemes, the V-cycle coarsening-
uncoarsening is the most basic and widely used cycle for this purpose, but several other
advanced cycles aim to improve the efficiency and effectiveness of multilevel methods. Most
widely used of them are: (1) the W-cycle is a more advanced version of the V-cycle that
provides a more aggressive approach to solving the coarser problems. In a W-cycle, a
refinement and full deeper W-cycle is performed at each coarser level before moving back to
the finer level. This allows for more thorough refinement at lower levels, often leading to
better convergence properties compared to the V-cycle. (2) The F-cycle method creates
the hierarchy of coarse representations and starts at the coarsest level and works its way
up to the finest grid, solving the problem at each level by applying another full V- or
W-cycle. It combines with V-cycles or W-cycles at each level for better optimization of
coarse levels. Both F- and W-cycles are particularly effective for problems where an initial
coarse approximation is not easy to obtain. Both cycles usually exhibit better then in
V-cycle quality which comes at additional cost of complexity. The W-cycles are usually
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more expensive but do exhibit a good quality [62, 63]. Finding robust criteria on when to
recursively apply one or another type of advanced cycle (if at all) is very important in
multilevel algorithms as their running time is increased with the advanced cycles.
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4 (Hyper)graph Clustering

4.1 Correlation Clustering
In the correlation clustering problem the input is a graph with edges labeled with + and −
(or simply with +1 and −1). + indicates that the endpoints of the edge should be in the
same cluster, and − means that the endpoints of the edge should be in different clusters.
The goal of correlation clustering is to find a clustering that respects as many of these
requirements as possible. Of course respecting all of them is in general not possible, and
so a commonly studied objective is to minimize the number of disagreements.

There is a big discrepancy between the theory work on correlation clustering and what
is done in practical solutions. For example, while the famous PIVOT algorithm provides
3-approximation for complete graphs, if the algorithm is run on a sparse graph (i.e., one
where + edges induce a sparse graph) the algorithm often gives a solution that is worse
than leaving each node in a cluster of size 1. Better approximation algorithms are known,
but they are not as scalable, as they rely on solving an LP or SDP. In the case of weighted
or not-complete graphs the best known approximation ratio is O(logn).

Despite all of these theoretical advances, the solutions that are implemented in prac-
tice are based on local swaps and a multilevel approach. In particular, the basic opera-
tion that these algorithms make is moving a node to a neighboring cluster, only if this
increases the overall objective. This way, the algorithm essentially treats the objective
function as a blackbox and does not leverage all the structural properties of the prob-
lem, which are used to give approximation algorithms.

While the practical implementations are quite scalable, there is probably room for
improvement, as the number of logical rounds needed to obtain a good solution goes in
hundreds. This in particular makes these algorithms not easy to use in distributed settings.

An interesting open problem is to bridge the gap between theory and practice for
correlation clustering with the goal of obtaining better practical implementations. Specifically,
it would be interesting to develop algorithms requiring fewer rounds, which will make them
amenable to an efficient distributed implementation.

4.2 Overlapping Edge-Colored Clustering
Edge-Colored Clustering is a categorical clustering framework [2] whose input is an
edge-colored hypergraph and output is an assignment of colors to nodes which minimizes
the number of edges where any vertex has a color different from its own (mistakes). We are
interested in variants of this problem which allow budgeted overlap. Specifically, the following
three notions were defined in [17]. LocalECC allows up to b of color assignments at each
node. GlobalECC allows one “free” color assignment for each node, plus b additional
assignments across all nodes. RobustECC allows each node to either receive exactly 1 color,
except that at most b nodes are assigned every color. Equivalently, at most b nodes are deleted.

Each of these problems generalizes ECC, with equivalence for the first coming at b = 1
and for the latter two at b = 0. Consequently, they are each NP-hard (Angel et al. [2]). We
(Crane et al. [17]) showed that greedy algorithms give an r-approximation on the number
of edge mistakes, where r is the maximum hyperedge size. Further, for LocalECC, a
(b + 1)-approximation can be achieved with LP-rounding. More generally, we ask about
bicriteria (α, β)-approximations, where α is the approximation factor on edge mistakes and
β is the approximation factor on the budget b, and show that all three variants have such
approximation algorithms, though the factors are no longer constants for GlobalECC.
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Open Problems: Are these ideas relevant for any practical applications? Where? What can
we assume about the inputs in those settings? Are there constant-factor single-criteria approx-
imations for the Global and Robust versions? Does GlobalECC have a constant-constant
bicriteria approximation? More generally, bicriteria inapproximability is an interesting
and relatively unexplored direction. We saw that empirically these approximations per-
formed much better in practice than the guarantees. Is there some sort of structure in
real-world instances that we can model to improve our analysis?

4.3 Dense Graph Partition

Dense Graph Partition, introduced by Darley et al. [19], models finding a community struc-
ture in a social network. Formally, given an undirected graph G = (V,E), the task is finding a
partition P = {P1, . . . , Pk} of V , for some k ≥ 1, of maximum density. With E(Pi) denoting
the number of edges among vertices in Pi, the density of P given by d(P) =

∑k
i=1

|E(Pi)|
|Pi| .

Note that there is no restriction on the number of communities which yields some difference
to the problem of partitioning into cliques. While there exists a partition into exactly k
sets of density (n− k)/2 if and only if the input graph can be partitioned into k cliques [6],
there can be a partition into less than k sets with a density higher than (n− k)/2 even if the
input cannot be partitioned into k cliques. Alternatively, Dense Graph Partition can
be modeled from a game theoretic perspective. Aziz et al. [4] study the Max Utilitarian
Welfare problem where the vertices in a graph G = (V,E) are agents, and each agent
x ∈ V validates its coalition P ⊆ V with x ∈ P by 1

|P | |{u ∈ P | {u, v} ∈ E}|. Maximizing
social welfare for this model is equivalent to Dense Graph Partition.

It is known that maximum matching is a 2-approximation [4], and there are a few improve-
ments on specific graph classes: polynomial-time solvability on trees [19], 4

3 -approximation
on maximum degree 3 graphs, and EPTAS for everywhere dense graphs [6]. This in par-
ticular gives rise to the questions: Can the 2-approximation be improved, at least on
some more non-trivial graph classes? Does there exist a polynomial-time approximation
scheme on general instances? Is it true that there is always an optimum solution where
all parts induce a graph of diameter at most 2, a so-called 2-club clustering? What is
the complexity on graphs of bounded treewidth?

4.4 Streaming Graph Clustering

Streaming Graph Clustering is commonly defined as follows: given a graph G = (V,E),
find a clustering C : V → N that maximizes a quality score such as modularity, using at
most O(|V |) memory. In the one-pass version, E is an ordered list of edges and each edge
can be read only once. A popular heuristic for this problem is SCoDA [29].

This matches well with real-world applications where graphs are discovered over time,
e.g. in online social networks, as well as for graphs which are too large to cluster us-
ing standard O(|E|) memory algorithms. However, the one-pass version is quite limiting
and often results in low clustering quality [38].

The Incremental Graph Clustering model [38] is a buffered variant of the one-
pass model where the ordered edge list is subdivided into batches. Unlike in buffered
streaming graph partitioning [21], the batches are assumed to be given and not selected
by the algorithm. Edges in a batch are read and processed in memory together. The
algorithm can use O(|E|) memory, but we require that running time for processing each
batch does not depend on |E|, only on the size of the batch.
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The Neighborhood-to-community link counting (NCLiC) [38] is a heuristic for
this variant. For modularity clustering, it provides strong modularity retention
compared to offline algorithms. It applies the Leiden Algorithm to each new batch
and then merges it with the already processed graph.

Open Problems: The NCLiC algorithm keeps track of the approximate number of neighbors
in each cluster. If a vertex changes community it will update its neighbors with a probability
that depends on its degree. Skipping some updates allows maintaining the required running
time, but introduces a reduction in clustering quality. Is there a data structure that allows
keeping exact counts of the neighboring clusters without violating the running time constraint?

Another open question is: is it possible to modify NCLiC to use at most O(|V |) memory
while retaining most of the modularity retention qualities?

5 Data Reductions and Learning

5.1 Data Reductions for (Hyper)Graph Decomposition
Most balanced (hyper)graph partitioning formulations are NP-hard: it is believed that no
polynomial-time algorithm exists that always finds an optimal solution. However, many
NP-hard problems have been shown to be fixed-parameter tractable (FPT): large inputs can
be solved efficiently and provably optimally, as long as some problem parameter is small.
Over the last two decades, significant advances have been made in the design and analysis
of fixed-parameter algorithms for a wide variety of graph-theoretic problems. Moreover, in
recent years a range of methods from the area have been shown to improve implementations
drastically. For example for the maximum (weight) independent set problem [27]. Here, data
reductions rules transform the input into a smaller one that still contains enough information
to be able to recover the optimum solution. For the maximum independent set problem,
this enabled highly scalable exact solvers that can solve instances with millions of vertices
to optimality. For balanced partitioning this has currently not been carefully investigated.
However, here are some very simple data reduction rules. For example, removing a vertex of
degree one, then solving the smaller subproblem with same balance constraint and afterwards
assigning the vertex to a block with leftover capacity, is a valid data reductions rule. This
yields the natural open questions: are there more and highly effective data reduction rules for
balanced (hyper)graph partitioning problems? These rules could be helpful in two ways: they
could speedup current heuristic solvers, e.g. multilevel (hyper)graph partitioning algorithms,
and they could help to build more scalable exact partitioning algorithms (see Section 3.10).

After all reduction rules for kernel computations have been applied, the final smaller
instance can still be too large to be solved to optimality within a reasonable time bound.
This is a serious problem as the overall goal of the algorithms is to solve the given problem
instance. The idea of lossy kernelization is as follows: when no more reductions can be
applied, i.e. a problem core has been computed, one may shrink the input further while
guaranteeing that the optimal solution value changes only slightly. Then a good approximate
solution of the reduced input can be lifted to a good approximate solution of the original
input. This has recently been done for the vertex cover problem [40]. The natural question
that arises is can these techniques be applied to balanced (hyper)graph partitioning as well?

As the (lossy) kernel/core still contains the optimum solution (or some approximation
thereof) in some sense, this has a large potential to speed up the (multilevel) heuristic while
not sacrificing solution quality. Additionally, running a fast algorithm on the large kernel can
help to identify parts of the instances that are likely to be in a good solution. Those parts
can then be put into a partial solution and the remaining instance can be reduced recursively.
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It could also be possible to use machine learning to learn lossy reductions for a wide-range
of problems in this area. For example, one could use learning to predict if two vertices
should be clustered together or to decide if an edge is a cut edge or not. The basic idea
is then to use a classification model to learn which parts of the input can be pruned, i.e.
are unlikely or highly likely in an optimum solution. In the first case, a solution omits
this part of the input, in the latter case this part of the input will be included in the
solution. For example, [39] propose to use machine learning frameworks to automatically
learn lossy reductions for the maximum clique enumeration problem and [74] shows that
this learning-to-prune framework is effective on a range of other combinatorial optimization
problems. The classification model can be a deep neural network in an end-to-end framework
or a classifier with significantly fewer parameters such as SVM or random forest if a deeper
integration of machine learning and algorithmic techniques is done. The latter will require
carefully engineered features based on existing heuristics.

5.2 Learning for Local Search in Multi-level (Hyper)graph Partitioners
Machine learning techniques can also be used to learn more efficient refinement steps. Existing
refinement steps in multi-level graph partitioning techniques rely on solving a flow problem
or iterative moves of Kernighan–Lin or Fiduccia–Mattheyses heuristic. However, solving flow
problems can be quite slow (given the number of times it is called). Similarly, the number
of possible moves that need to be explored for finding a good step using Kernighan–Lin or
Fiduccia–Mattheyses can be quite high. It is worthwhile exploring if learning techniques can
be used to predict good regions where the flow algorithm can focus. This can improve the
trade-off between the time to solve the flow problem and the gain from it for the refinement
part. For the case of the Kernighan–Lin or Fiduccia–Mattheyses heuristic, the interesting
question is whether learning techniques such as reinforcement learning can be used to learn a
good sequence of moves for these local search heuristics. This has the potential to reduce the
search space that needs to be explored to find good local moves. For training the learning
techniques, the R-MAT graph generator from the Graph500 benchmark can be used.

6 Embeddings

6.1 Distance Estimation for Process Mapping
Process mapping is a super-problem of graph partitioning, in which vertices of some source
graph S have to be assigned (i.e., mapped) to vertices of some target graph T , by way
of a mapping function τS,T : V (S) −→ V (T ), so that an objective function is minimized.
In the field of parallel computing, source graphs commonly represent computations to be
performed, usually multiple times in sequence, while target graphs represent processing
elements and interconnection networks of multi-processor and/or multi-computer hardware
architectures. The objective function to minimize is the amount of data to be exchanged
across the interconnection network, so as to reduce its congestion, provided that every
processing element in V (T ) receives roughly the same number of vertices of S (or, more
generally, equivalent vertex weights with respect to its compute power), to minimize com-
putation imbalance. In this context, partitioning some graph S into k parts amounts to
mapping S onto K(k), the complete graph of order k, since in this case all processing
elements are at the same distance from all the others.

In the Dual Recursive Bipartitioning (DRB) algorithm [54] used by the Scotch software,
computing the mapping of S onto T requires to be able to estimate the shortest-path
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distance in T between any two vertex subsets of V (T ) called the subdomains of V (T ). These
subdomains are not arbitrary, since they result from recursively bipartitioning the graph T
into pieces of roughly the same size in a way that minimizes the cut of the interconnection
network. Being able to compute the distance between any two subdomains allows the DRB
algorithm to estimate the penalty of assigning some vertex v of S to either one of two sibling
subdomains of T , by estimating the distance between these subdomains and those to which
all the neighbor vertices v of u have already been mapped. When the recursive bipartitioning
of T is perfectly balanced, the number of subdomains of T is 2|V (t)| − 1.

A way to quickly obtain the distance between any two subdomains of some target graph
T is to pre-compute a distance matrix between all of them, of a size in O(|V (T )|2). While
this solution works for small target graphs, it is no longer applicable when mapping onto big
parts of very big target architectures. To solve this problem, one has to find a more compact
(in terms of data storage) and quick (in terms of retrieval time) method to produce these
distance estimates. An important condition on these approximations is that distances should
become more accurate as subdomains are smaller and closer to each other in T .

In [55, 56], it has been shown that, for target architectures for which the recursive biparti-
tioning of subdomains, and the distances between subdomains, can be computed algorithmic-
ally, by way of explicit functions (e.g., for regular vendor architectures such as meshes, butterfly
graphs, etc.), a bipartition tree, created by way of recursive matching and coarsening of the
whole target graph, allows one to represent any subset, even disconnected, of the processing
elements of these target architectures. The DRB algorithm can therefore be applied to them.

However, for irregular architectures (e.g., those represented by irregular graphs), the
question remains open. It can be expressed in the following form: “How can one get cheaply
(both in terms of memory and computation time) approximate distances between any pair
of the subgraphs yielded by the recursive bipartition of some irregular graph?”

6.2 Space-Efficient Planar Graph Embedding
When one opens up a publication regarding planar graph bisections, one often reads a
sentence akin to: Without loss of generality, assume that the input graph is embedded in
the plane and maximal planar. Famous works that makes use of this specific property is the
balanced separator theorem due to Lipton et al. [42], which states that every planar graph has
a balanced vertex separator of size O(

√
n). Standard recursive bisection algorithms for planar

graphs are based on this theorem, which are able to construct the entire recursive bisection
in linear time [33]. Often it is easy to assume such an embedding, as it can be computed in
linear time using O(n logn) bits of space, i.e., a linear number of words. In sub-linear space
settings one can compute an embedding in polynomial time (albeit with an extremely large
polynomial degree). Now, the question remains: what can one achieve when aiming for a
linear time algorithm, while using o(n logn) bits, or ideally, O(n) bits? The standard linear
time algorithms are quite involved, but on the most basic level many of them use a simple
depth-first tree and compute a constant number of, but seemingly critical, variables per vertex.
Even when aiming for a much lower goal: check if the input graph is planar within O(n logn)
time while using o(n logn) bits, there is no obvious way to tackle this problem. As graphs
grow larger and larger, such questions of space-efficiency become of higher interest. Especially
with the direct application of graph partitioning algorithms that rely on such embeddings.
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6.3 Finding Moore-Bound-Efficient Diameter-3 Graphs
In graph theory, given a graph with degree d and diameter k, the largest number of vertices
in that graph can be determined using the Moore bound. Recent technological advances in
photonics technology have greatly increased the number of links – or degree d – of the network
routers, improving the scalability of large supercomputers. While Moore-bound-optimal
diameter-2 graphs have recently been engineered to span a few thousand nodes [36], emerging
AI and graph applications are demanding larger configurations. Unfortunately, diameter-3
graphs are still elusive, with Moore’s bound efficiencies of only 15%. The construction of
more efficient diameter-3 graphs would directly impact the design of emerging photonics
systems for large scale graphs [36, 37], data analysis, and AI applications.

7 Parameterized Complexity

7.1 Parameterized Complexity of Layered Giant Graph Decomposition
Direction 1: An important theme – or challenge – for theoretical computer science, that has
been recognized for decades, is the observation that has been made prominently by Richard
Karp and others that we don’t really understand very well natural input distributions. It
is remarkable how well sometimes very simple heuristics work in practice for problems that
are known to be NP-hard. There must be some sort of structure, but what is it? And
if we knew, could we exploit that in designing algorithms?

A striking example of this was described by Karsten Weihe in an old paper entitled,
"On the Differences Between Practical and Applied" which was about Weihe’s experience
doing quite practical computing for a simple Hitting Set application in real-world comput-
ing where his project was tasked with computing a minimum number of stations that
could service all of the trains of Germany.

The model is a straightforward bipartite graph, with trains on one side, and stations on the
other, and an edge if a train t stops at a station s. There are two simple pre-processing vertex
deletion rules: (1) If N(s) is a subset of N(s′), then delete s. (2) If N(t) is a subset of N(t′)
then delete t′. Weihe found that these two simple reduction rules cascade back-and–forth on
the gigantic real-world train graphs, and one ends up with (using PC terminology) a kernelized
instance that consists of disjoint connected components that have size at most around 50, so
the problem can be solved optimally by analyzing the connected components separately.

From the standpoint of parameterized complexity theory, we could simply declare the
structural parameter of interest to be: k =“the maximum connected component size of the net-
work G′ that results when opportunities to apply the two reduction rules have been exhausted”.
This would be perfectly legal in the mathematical framework of PC — we could call the para-
meter the Weihe-width of the Hitting Set instance and have a pretty good FPT algorithm
for computing what we could call a Weihe-width decomposition. This is legal, but from a
traditional parameterized algorithms and complexity perspective, not entirely satisfying.

At the expense of quadratic blowup one can combinatorially reduce the very important
medical- and bio-informatics problem of Feature Selection to Hitting Set in the
following natural way. We now have enormous amounts of information concerning the genes
that are being expressed into RNA, and so each patient in our hypothetical hospital has
a gene activation profile. And each patient either does, or does not, have cancer.

We want to know a small subset of the genes to pay attention to so that we can accurately
predict the outcome. On the one side, we have a vertex for each pair of patients that have
differing outcomes, and on the other side, we have one vertex for each gene. It is surprising
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that Weihe’s two reduction rules work quite practicably, in this very different real-world
large data context. What is going on, and how can we generalize? Open Problem: Can a
Weihe-width k decomposition of a graph of size n be computed in truly linear FPT time?

A second open problem begins by reconsidering the most central example of an
FPT graph problem, Vertex Cover, that has inspired in various ways a surprising
amount of theoretical work in the parameterized complexity research community. For
example, the recent work reported at IJCAI 2020 on the parameterized complexity
paradigm of solution diversity began with an initial FPT result about the naturally
parameterized Diverse Vertex Cover problem.

A (parameterized) vertex cover of a graph is a set of k vertices V ′ of G = (V,E) such
that the largest connected component of G′ = G− V ′ is size one! In other words, deleting
the vertices of V ′ kills off all the edges of G, yielding, if we want to call it that, a very
nice decomposition of G′ into clusters of extremely high data-integrity and coherence, as
each connected component consists of a single vertex.

It might seem that the Vertex Cover problem is so simple that it might be irrel-
evant for giant graphs. But by setting thresholds for declaring edges, it has been used
very effectively in stages in very large dataset bioinformatics, e.g., Dehne’s CLUSTAL W
package for multiple sequence alignment [15].

A key point is that the successful CLUSTAL W algorithm begins by decomposing a sparse
graph constructed by making edges between vertices (data objects) that are emphatically
NOT similar. The impulse would be to seek cliques of compatible vertices, but here is
exploited that the naturally parameterized Clique and Vertex Cover problems are
parametrically dual, and from that point the CLUSTAL W algorithm proceeds in stages
with an initial decomposition based on a vertex cover cutset on a sparse graph based on
thresholding the NOT similarity that makes an edge in the initial graph.

The following problem explores a generalization where the resulting connected components
(“clusters”) satisfy other simple integrity requirements. It is called Vertex Decomposition
into Small Dominator Clusters: given a graph G = (V,E). and parameter (k, d), the
question is can we delete k vertices from G, obtaining G′ such that every connected com-
ponent of G′ has domination number at most d? It is interesting to start by asking if
this might be FPT for the vector parameter (k, d). But, if we fix k = 0, then the prob-
lem is W[2] - complete. We can still hope for a parameterized tractability result, where
d is allowed to play an XP-role in the exponent of the polynomial and for fixed d, with
parameter k we get FPT. Open Problem: Is this FPT? And if so, can the corresponding
decomposition be computed in truly linear FPT time for d = 1?

Note that we could define endlessly many interesting and largely unexplored parameterized
problems in a similar manner where the decomposition is modeled by connected components
formed by essentially a cutset. And there is also the possibility of interestingly layered
decompositions of this kind. For example in the Layered Vertex Cover problem: given
a graph G = (V,E). and parameter (k, k′, k′′) the question is can we delete k vertices
from G, obtaining G′ such that every connected component C of G′ has the property
that: k′ vertices can be deleted from C resulting in a graph C ′′ such that each connected
component of C ′′ has a vertex cover of size at most k′′?

Or perhaps our particular application intention might be naturally served by deleting k
vertices so that the resulting connected components have nice properties governed by a
parameter t, and these components can be further decomposed into connected components
with a different nice property governed by t′ and so on.
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Direction 2: The theme of fairly simple and elemental decompositions based on vertex- and
edge-cutsets is important.

Direction 3: Since the size n of the networks (graphs) targeted in this application area is
huge, the attention should be focused on truly linear-time FPT, that is, processing that is
simply of O(n) cost, regardless of any parameterization k that we might want to consider.
Polynomial time O(nc) with no exponential costs associated to the parameter k, is the best
kind of FPT. For very large graphs, we need c = 1. Slightly more generally, we might
consider reasonable FPT processing time-costs of the form O(nc + f(k)), where again the
exponent of the polynomial part is c = 1, which we will call truly linear time FPT. This
is an area of PC structural complexity theory little explored. There is a small amount
of relevant recent work by Jianer Chen and coauthors.

7.2 FPT Approximation of Vertex Bisection
Edge (resp. Vertex) Bisection is one the fundamental graph partitioning problems, where given
a graph G and an integer k, the goal is to find a set of at most k edges (resp. vertices), say S,
such that the vertex set of G\S can be partitioned into two almost equal parts V1 and V2, that
is ||V1|−|V2|| ≤ 1, and there are no edges between a vertex of V1 and V2, that is E(V1, V2) = ∅.

In the regime of parameterized complexity, Edge Bisection admits a fixed-
parameter tractable (FPT) algorithm parameterized by the solution size k. In
particular, it admits an algorithm running in time 2O(k log k)nO(1) [18], where n

is the number of vertices in the input graph.

Open Problem 1: One can solve Edge Bisection, for fixed k, in linear time? Preferably,
is there an algorithm solving Edge Bisection in 2O(k log k)n-time?

Open Problem 2: Does Edge Bisection admit an algorithm with running time 2O(k)nO(1)?
Or can one show that there is no algorithm for this problem that runs in time 2o(k log k)nO(1)

under reasonable complexity assumptions?

In contrast to Edge Bisection, Vertex Bisection is known to be W[1]-hard [44], that is
it is unlikely that it admits an FPT algorithm parameterized by k. On the kerneliza-
tion front, Edge Bisection cannot admit a polynomial kernel under reasonable complex-
ity assumptions [79]. This leads of interesting questions regarding the fixed-parameter
tractability and/or kernelization with approximations for these problems. In particu-
lar, the following questions remain intriguing.

Open Problem 3: Does Edge Bisection admit a polynomial α-lossy kernel, for some α > 1?
Are there lossy reduction rules that help in solving the problem practically?

Open Problem 4: Does Vertex Bisection admit an FPT-approximation algorithm?
That is, in time f(k, ε)nO(1), can one find a set of at most (1 + ε)k vertices, say
S, such that V (G \ S) = V1 ] V2, ||V1| − |V2|| ≤ 1 and E(V1, V2) = ∅, or report
that there is no such set S of size at most k?

Open Problem 5: In scenarios where Vertex Bisection pops up in practical usage, can we
identify some structure on the instances? For example, can we say that the graphs in
interesting instances belong to some nice graph class, or “is close to” being in a graph
class (this could, for example, be formalized using distance to triviality measures), or have
some bounded parameter. If such an identification is possible, studying these scenarios
theoretically may lead to interesting insights about the problem.
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7.3 FPT in Decomposition

The first open question here is if Densest k-Subgraph FPT parameterized by modular-
width? Given a graph G and an integer k, the Densest k-Subgraph problem asks for a
subgraph of G with at most k vertices maximizing the number of edges. It is known that
this problem is FPT by stronger parameters such as neighborhood diversity and twin cover,
yet it is W[1]-hard by weaker clique-width. Modular-width is defined using the standard
concept of modular decomposition [23]. Any graph can be produced via a sequence of the
following operations: (O1) Introduce: Create an isolated vertex. (O2) Union G1 ⊕ G2:
Create the disjoint union of two graphs G1 and G2. (O3) Join: Given two graphs G1
and G2, create the complete join G3 of G1 and G2. That is, a graph G3 with vertices
V (G1) ∪ V (G2) and edges E(G1) ∪ E(G2) ∪ {(v, w) : v ∈ G1, w ∈ G2}. (O4) Substitute:
Given a graph G with vertices v1, . . . , vn and given graphs G1, . . . , Gn, create the substitution
of G1, . . . , Gn in G. The substitution is a graph G with vertex set

⋃
1≤i≤n V (Gi) and edge

set
⋃

1≤i≤n E(Gi) ∪ {(v, w) : v ∈ Gi, w ∈ Gj , (vi, vj) ∈ E(G)}. Each graph Gi is substituted
for a vertex vi, and all edges between graphs corresponding to adjacent vertices in G are
added. These operations, taken together in order to construct a graph, form a parse-tree
of the graph. The width of a graph is the maximum size of the vertex set of G used in
operation (O4) to construct the graph. The modular-width is the minimum width such that
G can be obtained from some sequence of operations (O1)-(O4). Finding a parse-tree of
a given graph, called a modular decomposition, can be done in linear-time [75].

The second open question is whether we can develop a framework of approximate modular
decomposition applicable to real-world datasets? Unfortunately, most real-world graphs tend
to have larger modular-width. It would be beneficial if we can efficiently build non-exact parse
trees with much lower width but without losing much information. Possible avenues of explor-
ation include graph editing, a relaxed definition of the parse-tree, and a data-driven approach.

7.4 Advancing the Parameterized View on Graph Modification

One of the most explored topics in parameterized complexity are so called distance to triviality
problems (see, for example, [22, 30]). The intuitive question behind these problems is always
“can we make a small change to our input so that it takes on some property?”. In terms
of graph problems, one can state a meta-problem as follows, where P is a graph property
Vertex-Deletion-To-P: given a graph G, an integer k as well as a parameter k, the question
is can we delete at most k vertices from G, such that the resulting graph has property P?

For many graph properties for which one can consider this meta-problem, either tractable
algorithms or complexity lower bounds are known. On the other hand, in some application
areas it could be useful to delete as many vertices as possible, while ensuring that the
resulting graph has a certain property. This leads to the Max-Vertex-Deletion-To-P problem:
given a graph G, an integer k as well as a parameter k, the question is can we delete at
least k vertices from G, such that the resulting graph has property P?

While the change to the problem statement is deceptively simple, we have to this date
no complexity-theoretic insight into this class of problems. Note that this problem also
differs from the widely used kernelization techniques, as in kernelization, we ask for the
resulting input size to be bounded by, for example, f(k). As parameterized complexity
can be seen as providing a mathematically rigorous framework of preprocessing through
the rich methods of kernelization techniques and algorithmics for distance to triviality
problems, extending this framework to further variants of preprocessing seems very natural
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and could provide further complexity-theoretic and algorithmic insights. These techniques
could potentially be useful in the area of (hyper)graph decomposition.
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