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The notion of adopt-commit object [29] is of pivotal importance in understanding the
consensus problem. This object models an attempt of the processes to agree on some
common value, and precisely captures the cost of the fast path a process takes during
a solo run. In this paper, we address the problem of implementing an adopt-commit object
in the shared memory model in the minimal number of write operations. We consider
that the number of processes (n), their identities (c), as well as the size of the input set
(m) may all vary.
Our first contribution is an algorithm that executes three write operations, a value we show
optimal in the general case. We also prove that this number reduces to two when either
m is known and bounded, or n identities are available. In the corner case where n = 2, and
either c = 2 or the input set is finite, a single write suffices.
Further, we introduce Janus, an elegant adopt-commit implementation that executes O (n)

shared memory operations, including O (
√

n) writes. Building upon Janus, we explain how
to design an adopt-commit object that executes O (

√
n − c + 1) write operations. We prove

that this last value is tight when the number of registers in use is bounded and m is
unknown.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Reaching agreement is a fundamental problem in distributed computing. Roughly speaking, it requires a set of processes
to decide upon some subset of their input values. Consensus [28], k-set agreement [20] and total order broadcast [18] all 
belong to this class of problems. These tasks are the key building blocks of many of the systems at work in today modern 
computing infrastructures.

It is well-known that as soon as one of the processes may fail-stop, agreeing necessitates additional mechanisms than 
asynchronous read/write shared memory [11,28,40,41,51], namely either the enforcement of synchrony assumptions [19], or 
the use of hardware synchronization primitives [39]. To sidestep this problem, several researchers starting from Lamport [44]
have proposed to execute a tentative fast path solely composed of read/write operations before calling a more expensive 
mechanism. Exploiting good runs is the prolific idea behind the notions of splitter [48], conflict detector [5], and solo-fast 
algorithms [7] that execute only read/write operations in the absence of contention.

In this context, a central question is to measure precisely the cost of this fast path. Several parameters are of interest 
here, including the number of processes (n), how many identities are available in the system (c ≤ n), and the total number 

✩ A preliminary version of this work appeared in the proceedings of the 15th International Conference On Principles Of Distributed Systems (OPODIS’11)
under the title “Anonymous Agreement: The Janus Algorithm” by the same authors.
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Table 1
The solo-write complexity of adopt-commit objects (n ≥ 2 is the number of processes, c ∈ [1, n]
the number of their identities, and m ≥ 2 the size of the input set).

Solo-write complexity Space bounded

(n = 2) ∧ ((c = 2) ∨ (m < ∞)) 1 yes

Section 4(c = n) ∨ (m < ∞) 2 yes

Any n, c and m.
3 no

�(
√

n − c + 1) yes Section 6

of input values (m). For instance, we would like to understand the benefits of having a distinct identity for each process 
(c = n), in comparison to the case where processes are anonymous (c = 1).

In this paper, we focus our attention on processing the fewest writes in the fast path. Our rationale behind this choice 
is the key observation that writing is generally more expensive than reading. For instance, in the current cache-coherent 
architectures, each write may invalidate the remote caches, increasing the miss rate and deteriorating performance [38,52]. 
Upcoming memory technologies are expected to widen this gap [32].

Contributions. The notion of adopt-commit object translates an attempt of the processes to agree on a common input value 
[29,54]. When implemented with solely read/write operations, it precisely captures the fast path of an agreement task. With 
more details, as consensus fulfills the specification of adopt-commit, any lower bound result on the complexity of adopt-
commit objects directly applies to consensus as well [5]. This paper establishes several tight results on the write complexity 
of adopt-commit objects. Table 1 summarizes our contributions.

– We first show that two writes are necessary and sufficient in the case where the input set is bounded or n identities
are available. Moreover, if the system consists of only two processes and the same conditions hold, a single write is
possible.

– Then, we present an adopt-commit object that executes three write operations, a value we prove to be optimal in the
general case.

– Our previous algorithm has a step complexity of O (m) operations and uses O (m) registers. As the set of proposed
values can be arbitrarily large, such a solution might not always be practical. To sidestep this problem, we propose
Janus, an adopt-commit algorithm that executes O (n) shared memory operations. Janus accommodates with any set of
input values and any number of identities. It exhibits a write complexity of O (

√
n) operations. When processes do not

have identities, both values are asymptotically tight.
– Our last result combines the two previous solutions to leverage efficiently the presence of process identities. In detail,

we design a solution that first solves conflicts between processes having the same identity, then moves to an agreement 
among processes with distinct identities. A process executing this algorithm writes to O (

√
n − c + 1) registers. We 

also prove a lower bound of �(min(
log(m)

log(log(m))
,
√

n − c + 1)) write operations for adopt-commit objects that employ a 
bounded amount of registers. This shows that our algorithm is (asymptotically) optimal in the case where the input set 
is not bounded.

Roadmap. We survey the literature in Section 2. Section 3 presents our model of distributed system and the related as-
sumptions. We detail three algorithms with constant solo-write complexity in Section 4. The Janus algorithm is introduced 
in Section 5. Section 6 details the case of systems where multiple distinct identities co-exist. Section 7 closes this paper.

2. Related work

Anonymous and homonymous systems. In the common case, the processes that compose a distributed system have unique 
identities and may differentiate one from another. In an anonymous system, they instead execute the very same code. 
When provided with the same input, they are consequently indistinguishable. Anonymity is sometimes unavoidable in 
practice [26], as for instance with tiny devices [3], or file sharing applications [21]. Dealing with anonymity adds a new 
challenging dimension to distributed computing. It questions the benefits of having identities while relieving from the 
burden of managing them.

Under partial anonymity, some processes may share the same identifier. This notion was first introduced by Yamashita 
and Kameda [53] in the context of the leader election problem. The term homonyms was coined by Delporte-Gallet et al. [23]
in their study of byzantine systems.

Multiple papers [5,6,14,22,36,37,50] try to circumvent the computational power of anonymous systems. Guerraoui and 
Ruppert [37] study shared memory distributed systems in the presence of both anonymity and failures. They propose 
several constructions for fundamental abstractions such as timestamping, snapshots and obstruction-free consensus. Attiya 
et al. [6] characterize failure-free tasks that are solvable using registers when the processes in the system are unknown. 
Using bivalence and covering arguments, they prove that consensus in such environments requires more than �(log n)

atomic registers, and at least �(log n) total work.
2
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Aspnes and Ellen [5] prove that in the presence of anonymous processes the solo time complexity of adopt-commit 
objects belongs to �(min(

logm
log log m ), n). This paper pursues this line of research, showing several tight results on the write 

complexity of adopt-commit objects. Our results not only depend on the number of proposals (m) and of processes (n), but 
also on the number of identities (c) available in the system.

Anonymous memory extend anonymity to the case of registers. In this distributed computing model, processes do not 
share a common knowledge of the registers. This means that a shared register named x by a process might be called y by 
another process. Some recent works (e.g., [33]) study how to deanonymize memory, for instance by electing a distinguished 
leader process to execute such a task.

The consensus problem. Consensus is a fundamental abstraction in fault-tolerant distributed computing. Informally, the 
processes, each starting with a private value, are required to agree on one of these initial values. For shared memory 
systems, it is well known that asynchronous fault-tolerant consensus is impossible as soon as at least one process may fail 
by crashing [46]. Trivially, consensus is thus impossible in homonymous, asynchronous and failure-prone shared memory 
systems. The same impossibility holds for message passing asynchronous systems [28].

Since the publication of the above result, several approaches have been identified to overcome this impossibility, includ-
ing randomization (e.g., [9]), strengthening the model with timing assumptions (e.g., [25]) or failure detectors (e.g., [18]) 
and strong synchronization primitives [39]. For anonymous systems, randomization [15], failure detectors [10,12,22], as well 
as additional synchrony assumptions [22] have been investigated to solve consensus.

Most consensus algorithms employ a round-based pattern to reach an agreement among the processes. In a nutshell, this 
pattern works as follows: When it enters a round r, a process p fetches the values which were proposed at round r − 1. 
Process p picks one of these values (say v) as its proposal for round r. Then, p decides v if either (1) it reaches alone round 
r [18,29,35,45], or (2) no value other than v was proposed at rounds r − 1 and r − 2 [22,37]. In the converse case, p moves 
to the next round.

On the write complexity of consensus. For each process, the Paxos consensus algorithm [45] employs two single-writer 
multiple-readers registers: one to indicate the current round of the process, and another for its associated proposal. The 
solo path of Paxos contains two write operations [35]. We show in Section 4 that this value cannot be improved.

In the binary consensus problem, only 0 and 1 can be proposed. Abrahamson [1] studies this problem in the probabilistic-
write model, where processes have distinct identities to label the registers. When processes are anonymous, Attiya et al. [8]
show that �(log(n)) steps are necessary in solo runs. Delporte-Gallet and Fauconnier [22] propose an algorithm that ac-
commodates any number of anonymous processes and executes two write operations in a solo run. This construction relies 
on the notion of weak (add-only) set, and is similar to the “two-track race” algorithm depicted in [37]. As we shall see 
hereafter, a single write operation is achievable when n = 2, but in the general case, anonymous processes need at least two 
write operations to reach an agreement over two values.

By translating an optimal binary consensus algorithm into a multi-valued one (see [49] for this reduction), we obtain a 
general solution that executes O (log m) write operations. The algorithm of [47] accesses a splitter object then a decision 
register in its fast path. As a splitter object requires two writes operations when processes have distinct identities, this 
approach executes a total of three writes. Theorem 3 in Section 4.1 proves that this value is optimal for the general case, 
that is when we have no assumption on m, n or c. In Section 4.2, we present the first algorithm that matches this lower 
bound.

Aspnes and Ellen [5] propose two asymptotically time-optimal implementations of adopt-commit objects, one that re-
quires the knowledge of m and another which needs the value of n. In a solo execution, the former solution writes to 
O (

logm
log logm ) registers and the latter to O (n). This last solution is algorithmically close to the leaky repository introduced by

Delporte-Gallet et al. [24].
Building upon the above results, Capdevielle et al. [16] studies the solo-write complexity of k-set-agreement. For con-

sensus (k = 1), and either space-bounded or input-oblivious algorithms, the authors prove that the solo-write complexity 
belongs to �(min(

log(m)
log(log(m))

, 
√

n)).1 To state this tight bound, the authors use a fast path consisting of an algorithmic simi-
lar to [13,31], before calling a compare-and-swap object. In Section 6, we generalize this result to the case of homonymous 
systems, obtaining the tight bound �(min(

log(m)
log(log(m))

, 
√

n − c + 1)). The construction that matches this bound is built above 
the Janus algorithm, an efficient anonymous adopt-commit algorithm that we cover in Section 5. This paper also considers 
the case of countable yet unbounded input sets. Section 4 shows that, quite surprisingly, it is possible to achieve a constant 
solo-write complexity in this situation.

3. Preliminaries

This section presents our system model then the two distributed tasks we are mostly interested with, namely consensus
and adopt-commit.

1 An algorithm is input oblivious when it always accesses the same sequence of base objects (here the registers) during a solo run whatever is its input.
3
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3.1. Model

In this paper, we focus on the usual shared memory model, where processes are asynchronous, crash-prone, and com-
municate with the help of linearizable registers. We recall the elements of this model below.

Shared memory model. We assume a system � of n ≥ 2 deterministic processes. Processes are aware that c ∈ [1, n] iden-
tities are used in the system and that such identities range in [1, c]. Processes that share the same identity are said to be 
homonyms [23]. If a single identity is available in the system, processes are anonymous and in which case they follow the 
exact same code. In the opposite case (c = n), we say that processes are onymous. For some process p, a clone of p is a 
process homonymous to p that executes in lock-step with p until a certain point [27]. Notice that processes might know 
initially the value of n. This is mentioned where appropriate.

Processes communicate via a shared memory of multi-writer multi-reader (MWMR) linearizable registers. During a com-
puting step, a process reads/writes either a shared, or local, register. A step is a tuple (p, o) where p is the process taking 
the step, and o its operation. In our algorithms, we use upper-case identifiers for shared registers and lower-case identifiers 
for local ones. The universal set of steps together with the concatenation operator “.” and the empty execution ε forms the 
infinitary free monoid. This monoid (E, .) consists in all the finite (or infinite) sequences of steps [30]. Every sequence of 
steps in this monoid is called a run, or an execution. We say that an execution is solo when a single process takes steps in 
it. An execution is admissible for some distributed algorithm A when it applies to some initial state of A. We note 
 the 
partial order induced by “.”, i.e., λ 
 λ′ means that λ prefixes λ′ .

On the course of an execution, a process may unexpectedly halt, or crash, and in such case it ceases taking steps. A 
process that does not crash is said to be correct. We consider that up to n − 1 processes may fail during an execution. 
An execution is fair when all the correct processes take an unbounded amount of steps. All the fair executions that are 
admissible for some algorithm A define the executions of A.

Time complexity. We measure the time complexity of a distributed algorithm during solo executions [2,16]. More precisely, 
the solo-step complexity is the worst case number of non-local steps during solo admissible executions, and the solo-write 
complexity is the worst-case number of non-local write steps in these executions. For some distributed algorithm A, TIME(A)

and WTIME(A) are respectively the solo-step and solo-write complexity of A.
The solo-write complexity is our main complexity measure. The rationale behind this choice is threefold. First, since 

there is no deterministic wait-free solution to consensus in an asynchronous read/write shared memory system [40], the 
worst-case number of steps is arbitrary large. As a consequence, we need to consider “good runs”. Second, it is observed 
in practice that processes rarely contend in parallel systems [43]. As a consequence, solo executions are the common case 
when calling a one-shot task such as consensus. Thirdly, there are performance benefits in executing (inexpensive) read and 
write operations in the fast path, and resorting to a strong read-modify-write primitive only if contention occurs [47]. This 
argument is especially true for read operations, as reads are commonly faster than writes (e.g., with caching).

Distributed task. A distributed task T is defined with a set I of input n-vectors, a set O of output n-vectors and a map 
� from I to 2O . If the input value of a process p in I ∈ I equals ⊥, then p does not participate to the input vector I . 
Similarly if O [p] equals ⊥, p does not decide in O . For any distributed task T = (�, I, O), we require that (i) a process may 
not decide ((∀p : O ′[p] ∈ {O [p], ⊥} ∧ (I, O ) ∈ �) → (I, O ′) ∈ �), as well as (ii) a process that does not participate, does not 
decide ((I[p] = ⊥ ∧ (I, O ) ∈ �) → O [p] = ⊥).

Let Values be the universal set of (non-⊥) values taken by the input and output n-vectors. As we consider distributed 
deterministic Turing machines, Values is recursively enumerable. We note m ≥ 2 the cardinality of Values, that is either some 
natural, or ℵ0, the cardinality of N . Hereafter, and without lack of generality, we shall be considering that Values = {0, 1, . . .}.

An algorithm A solves a distributed task T when starting from some input n-vector u ∈ I , it constructs a valid output 
n-vector v ∈ �(u). In this paper, we restrict our attention to wait-free solutions [42]. Such solutions ensure that in every
execution a correct process outputs some value after a bounded amount of steps.

Reduction. We say that a distributed task T reduces to task T ′ when from some algorithmic solution of T ′ , we may 
construct a solution to T that differs only by a constant number of write steps during solo executions. In which case, we 
shall note it T < T ′ . If both T < T ′ and T ′ < T hold, tasks T and T ′ are equivalent from the perspective of the solo-write 
complexity, denoted hereafter T ≡ T ′ .

3.2. Distributed agreement

In what follows, we define the distributed tasks we are interested with. These tasks might also be specified as concurrent 
objects using interval-linearizability [17].

Consensus. Consensus (CONS) is a distributed task defined by the unique operation propose(u). A process p that invokes 
propose(u) is proposing u to consensus. When propose(u) returns a value v to p, we say that p decides v . Consensus requires 
4
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that in every run: (Agreement) Two processes never decide different values; and (Validity) If a process decides some value 
v , then v is proposed before.

Adopt-commit. The usual approach to solve consensus is to execute successive rounds during which processes try to agree 
on some of the proposed values (see, e.g. [18,25,45]). The notion of adopt-commit (AC) object [29] models an attempt of the 
processes to agree. More precisely, starting from v ∈ Values a process that executes adoptCommit(v) should return a response 
of the form (b, v ′), where b ∈ {commit, adopt} and v ′ ∈ Values. In addition, the following properties must hold: (Validity) 
If (−, v) is returned, then some process previously invoked adoptCommit(v); (Agreement) If (commit, v) is returned, then 
every decision has the form (−, v); and (Convergence) If every process proposes the same value v , then (commit, v) is the 
only possible decision. In particular, if a process executes adoptCommit(v) solo, it must return (commit, v).

Reducing consensus to adopt-commit. We can solve consensus by successively entering adopt-commit objects, proposing 
to the next object the value that was returned (adopted or committed) by the previous one [54]. The alpha of consensus 
[34] and the notion of ratifier [4] also capture this algorithmic idea. We recall such a construction in Algorithm 1.

Algorithm 1 Reducing Consensus to Adopt-Commit – code at process p.
1: Shared Variables:
2: R // An unbounded array of adopt-commit objects
3:
4: Procedure propose(u)

5: i ← 0
6: while true do
7: ( f , u) ← R[i].adoptCommit(u)

8: if f = commit then
9: return u

10: i ← i + 1

In detail, Algorithm 1 employs an unbounded array of adopt-commit tasks R . When a process p proposes a value to 
consensus, it enters the first task R[0]. If the task R[0] returns a committed value, process p decides it. Otherwise, process 
p adopts this value as its new proposal, and proposes it to R[1], etc.

In Algorithm 1, the implementations of adopt-commit objects may vary between two entries of array R . For instance, 
R[0] can rely only on registers while R[1] uses compare-and-swap.

From the above construction, we know that consensus reduces to the adopt-commit abstraction. The reduction also holds 
in the converse way: when a process execute adoptCommit(u), we simply propose u to consensus and return (commit, v), 
where v is the value decided in consensus. This yields to the following theorem:

Theorem 1 ([29]). WTIME(CONS) = WTIME(AC).

At the light of this result, we may simply focus on the adopt-commit abstraction to solve efficiently consensus. This is 
the approach we follow in the reminder of this paper. With more details, we first explain how to solve adopt-commit in 
three write operations. Then, we prove that this value is optimal when there is no storage constraint. Further, we depict
Janus, a solution that executes �(n) solo work and �(

√
n) write operations, while using O (

√
n) registers. Combining the

previous algorithms, we then detail how to leverage the presence of identities to solve the problem in �(
√

n − c + 1) write
operations.

4. Implementing adopt-commit with optimal write complexity

In what follows, we prove that adopt-commit requires three write operations and present a matching algorithm. We also
consider two corner cases of interest that allow to reach a faster agreement. First, in the case where (n = 2) ∧ (c = 2 ∨ m <
ℵ0) we show that writing to a single register is possible. Second, when (c = n ∨ m < ℵ0), we argue that two writes are 
necessary and sufficient.

4.1. Lower bound results

For starters, we observe that if solely the values 0 and 1 are proposed, we can implement adopt-commit in a few writes. 
For instance, the algorithm of Aspnes and Ellen [5] requires two writes in that case. As we shall see shortly, we may even 
attain a single write operation under those very circumstances.

Additional notations. Given some set P ⊆ � and two executions λ and λ′ , we say that λ is indistinguishable from λ′ to P , 
written λ P

∼ λ′ , when every process p ∈ P executes the same steps during the two executions. At the light of this definition, 
if λ is admissible for some algorithm A and λ �∼ λ′ , then λ′ is also admissible for A.
5
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We note λ � (commit, u) (respectively, λ � (adopt, u)), when some process commits (resp. adopts) value u during the 
execution λ. In what follows, the notation pu refers to some process starting with input u, and σu is its associated solo 
execution. The sets ws(u) and rs(u) are respectively the registers read and written during σu .

From the specification of an adopt-commit object, every process that invokes adoptCommit(u) solo should return 
(commit, u). The indistinguishably result below is a straightforward consequence of this observation.

Proposition 1. For any two distinct input values u and v, rs(u) ∩ ws(v) �= ∅.

Proof. By contradiction. If rs(u) ∩ ws(v) = ∅, then σv .σu
pu
∼ σu . Thus the execution σv .σu is admissible. However, the 

conjunction of σu � (commit, u) and σv .σu � (commit, v) leads to the contradicting fact that σv .σu does not satisfy agree-
ment. �

Below, we establish that every adopt-commit implementation executes at least two write operations. We also show 
that this boils down to one in the case where the system consists of a pair of processes with distinct identities. To some 
extent, our proof is a formal treatment of the intuition given by Lamport [44] in his seminal work on fast mutual exclusion 
algorithms.

Theorem 2. If (n = 2) ∧ ((c = 2) ∨ (m < ℵ0)) then WTIME(AC) = 1; otherwise WTIME(AC) ≥ 2.

Proof. Let us consider a system made up of two processes � = {p0, p1}. The fact that we need at least one write follows 
from Proposition 1. Then, let us consider that one of the following assumptions holds.

(m < ℵ0) To obtain a matching algorithm when Values is bounded, we map each value u to a register R[u]. Initially, all the 
registers contain ⊥ /∈ Values. A process that proposes value u writes u to R[u]. Then, it reads all the registers R[v] with 
v �= u. If some value v appears in a register, the process adopts it. (Notice that since n = 2 at most a single value v may 
be in that case.) Otherwise, the process commits value u.

(c = 2) In the case where c = 2, we employ the exact same idea. The process identities are used in lieu of the values, a 
process with identity i writing initially its proposal to register R[i].

Next, we prove the second part of the theorem, that is if (n > 2) or (c = 1 ∧ m = ℵ0) holds, we need at least two writes 
to the registers. We proceed by contradiction, assuming that at most one write is executed.

(n > 2) Fix two values u and v . Execution σu (respectively, σv ) is of the form φ0
u .w0

u .φ1
u (resp., φ0

v .w0
v .φ1

v ), where φ0
u and φ1

u
(resp., φ0

v and φ1
v ) are sequences of read operations, and w0

u (resp., w0
v ) is the unique write operation. (Case ws(u) =

ws(v).) Let us note λ the execution φ0
vσu .w0

v .φ1
v . This execution is clearly admissible. In addition, we have λ pv

∼ σv and 
λ

pu
∼ σu . This leads to λ � (commit, u) and λ � (commit, v); a contradiction. (Case ws(u) �= ws(v).) Defining λ = φ0

u .σv .w0
u

and λ′ = φ0
v .σu .w0

v , we know that λ � (commit, v), while λ′ � (commit, u). Let us then observe that the registers end-up 
in the same state in λ and λ′ . Hence, for some process p /∈ {pu, pv} we have λ p

∼ λ′; a contradiction.
(c = 1 ∧ m = ℵ0) Recall that since c = 1, the input value determines the solo execution. Fix some value w . The run σw

is bounded. On the other hand for any value u ∈ Values, Proposition 1 tells us that rs(w) ∩ ws(u) �= ∅. Hence, by the 
pigeonhole principle, there exists two values u and v such that ws(u) = ws(v) holds. As a consequence, we may apply 
the same reasoning as above. �

We now focus our attention to the case where Values is unbounded (or unknown to the processes) and prove a larger 
lower bound. More precisely, we show that every adopt-commit solution executes at least three write operations in the 
general case.

Proposition 2. If n > 2, then there do not exist u and v such that (i) pu and pv are distinct, and (ii) σu and σv write only to two 
registers in the same order.

Proof. By contradiction. First of all, let us observe that for some value u, we may write σu = φ0
u .w0

u .φ1
u .w1

u .φ2
u . Then, fix 

u, v matching the premises of the proposition. We define λu = φ0
v .σu .w0

v and λv = φ0
v .(φ0

u .w0
u .φ1

u).(w0
v .φ1

v .w1
v .φ2

v ).w1
u Both 

of these runs are clearly admissible. Since σu
pu
∼ λu , we have that λu � (commit, u). It follows that for any λ, with λu 
 λ, 

λ � (−, u) holds. On the other hand, σv
pv
∼ λv , from which it follows λv � (commit, v). As a consequence, for any λ, with 

λv 
 λ, λ � (−, v) holds. Then, choose some process q /∈ {pu, pv}; this is possible as n > 2. We observe that λu
q
∼ λv . A 

contradiction. �
From Proposition 2, we deduce the following result:
6
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Proposition 3. Consider that n > 2 and c < n, and let A be some implementation of adopt-commit with WTIME(A) = 2. For any 
subset U ⊆ Values, if |U | = ℵ0 then |⋃u∈U ws(u)| = ℵ0 .

Proof. Consider for the sake of contradiction that 
⋃

u∈U ws(u) is bounded. Applying the pigeonhole principle to U , we may 
deduce that for two values u and v , σu and σv write to the two same registers in the same order. If pu = pv , since c < n
we may replace pu with a clone. As a consequence, the premises of Proposition 2 holds. A contradiction. �

We are now ready to prove that three writes are necessary in the general case.

Theorem 3. If n > 2, c < n and |Values| = ℵ0 then WTIME(AC) > 2.

Proof. By contradiction. Choose some u ∈ Values. Since pu returns after a finite number of steps, rs(u) is bounded. From 
Proposition 1, for every v ∈ Values \ {u}, rs(u) ∩ ws(v) �= ∅. As a consequence, we can apply the pigeonhole principle to 
rs(u) and {ws(v) : v ∈ Values ∧ v �= u}. It follows that for there exists R ∈ rs(u) and some unbounded set U ⊆ Values with 
{R} ⊆ ⋂

v∈U ws(v).
Consider 

⋃
v∈U ws(v), the set of registers written in (σv)v∈U . Since U is unbounded, we deduce from Proposition 3 that 

(σv)v∈U write to an unbounded amount of registers that are not R . We may thus define U ′ ⊆ U unbounded such that:

∀v, w ∈ U ′ : ws(v) ∩ ws(w) = {R} (1)

From which we construct a series (uk)k∈N ⊆ U ′ satisfying:

∀k ∈N : rs(uk) ∩ (
⋃
k′>k

ws(uk′)) ⊆ {R} (2)

This construction goes as follows: Pick some u0 ∈ U ′ . As rs(u0) is bounded, U ′ is unbounded and (1) holds, we may find 
U0 ⊆ U ′ \ {u0} unbounded satisfying (2). Repeat the previous steps starting from some u1 ∈ U0.

Our next step is to show that for every k ≥ 0, the register written first in σuk , i.e., w0
uk

following the notation introduced 
above, is not register R . For the sake of contradiction, assume that this holds for some uk and consider λ = φ0

uk
.σuk+1 .w

0
uk

. 

Applying (2), λ 
puk
∼ φ0

uk
.w0

uk
and thus execution λ′ = λ.φ1

uk
.w1

uk
.φ2

uk
is admissible. However, λ � (commit, uk+1), λ 
 λ′ and

λ′ � (commit, uk); a contradiction.
Now fix some l ∈ N . Define λ = φ0

ul+1
.w0

ul+1
.φ1

ul+1
.σul .w

1
ul+1

as well as λ′ = φ0
ul

.σul+1 .w
0
ul

. Both runs are admissible due 
to equations (1) and (2), as well as the fact that R is not the first written register. We have λ � (commit, ul), while λ′ �
(commit, ul+1). Moreover, all the registers end-up in the same state in both λ and λ′ . Hence, for any process p /∈ {pl, pl+1}, 
it is true that λ p

∼ λ′ . Since such a process might exist (as n > 2), we reach the desired contradiction. �
4.2. Matching algorithm for the general case

We now present an adopt-commit object that executes only three write operations. Our construction is based on the 
notion of conflict detector introduced in [5]. We first present this abstraction then detail our approach and prove its cor-
rectness.

4.2.1. Conflict detector
Aspnes and Ellen [5] introduce the notion of conflict detector to further decompose an adopt-commit object. An m-

valued conflict detector (CD) supports a single operation, check(u), with u ∈ Values. This object returns true to indicate a 
conflict, that is when another value than u was checked, or false if no conflict occurs. More precisely, the following two 
properties hold: (Convergence) In any execution in which all check() operations have the same input value, they all return 
false; and (Conflict Detection) In any execution that contains a check(u) operation and a check(v) operation, if v �= u then at 
least one of these two operations returns true.

We now recall the implementation of an adopt-commit object with the help of a conflict detector, as proposed in [5]. 
Algorithm 2 lists the pseudo-code of the approach. To execute propose(u), a process p first inquiries the conflict detector, 
raising the shared flag F if a conflict occurs. Then, p fetches the content of the decision register D in variable d. If the 
retrieved value is null, process p stores its proposal in both registers D and variable d. In the next step of Algorithm 2, p
checks the content of flag F . If the flag indicates that no conflict occurs, the content of d is committed and otherwise it is 
adopted.

At the light of Algorithm 2, we know that WTIME(AC) ≤ WTIME(CD) + 1. Notice that as the converse reduction obviously 
holds without any additional operation, we have the following result:

Theorem 4 ([5]). AC ≡ CD
7
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Algorithm 2 Reducing Adopt-Commit to Conflict Detector [5] – code at process p.
1: Shared Variables:
2: C // A conflict detector
3: D // Initially, ⊥.
4: F // Initially, false.
5:
6: Procedure adoptCommit(u)

7: if C .check(u) then
8: F ← true
9: d ← D

10: if d = ⊥ then
11: D ← u
12: d ← u
13: if F = true then
14: return (adopt, d)

15: return (commit, d)

Algorithm 3 Conflict detector in two writes – code at process p.
1: Shared Variables:
2: ∀r ∈ [0, m] : R[r] = ⊥ // An array of m + 1 MWMR atomic registers
3:
4: Procedure check(u)

5: R[u + 1] ← u
6: for all i ∈ [0, u] do
7: if R[i] /∈ {u, ⊥} then
8: return true
9: if i = 0 then

10: R[0] ← u

11: return false

4.2.2. The construction
Algorithm 3 presents a conflict detector that executes two write operations during a solo execution. Similarly to the 

algorithm proposed in [5], this algorithm employs the idea that processes with distinct inputs access registers in distinct 
orders. Differently from [5], Algorithm 3 does not write to all the registers it encounters.

In detail, our algorithm works as follows: We consider an array of m +1 registers R[0], . . . , R[m]. Upon a call to check(u), 
a process p first writes value u to register R[u + 1], then it reads all the registers from R[0] to R[u]. If at some point in 
time, process p reads a non-null value that differs from u, p immediately returns true (line 8). Otherwise, p does not detect 
a conflict and returns false (line 11). To signal its presence, p writes u in register R[0] over the course of the execution 
(line 10).

Theorem 5. Algorithm 3 implements a wait-free CDobject, with WTIME(Algorithm 3) = 2 and TIME(Algorithm 3) ∈ O (m).

Proof. We first show that Algorithm 3 satisfies the two properties of a conflict detector.

– (Convergence) During an execution of Algorithm 3, if all the check() operations have the same argument, say u, then
no other value than u is ever written to the registers. Hence, the test at line 7 is never true, and line 8 never occurs.
Therefore, every correct process that executes check(u) eventually reaches line 11 and returns false

– (Conflict Detection) By contradiction. Consider some run λ during which check(u) and check(v) return both false, with
u �= v . These two operations are executed by two processes pu and pv , and we note respectively λu and λv the sequence
of steps made by each process in λ. Furthermore, and without lack of generality, we assume that u < v .
Given some register R[i], let us note ri a read from R[i] and wi a write to R[i]. At the light of Algorithm 3, λu contains
operations wu+1 and r0, while λv includes ru+1 and w0. In both λv and λu , the test at line 7 does not trigger. Since pv
never writes to register R[u + 1], it follows that ru+1 <λ wu+1. As process pu reads register R[0] before writing it, we
deduce r0 <λ w0. On the other hand, the pseudo-code of Algorithm 3 tells us that wu+1 <λu r0 and w0 <λv ru+1. We
deduce that <λ is not an order; a contradiction.

At the light of its pseudo-code, Algorithm 3 is wait-free and contains two write operations. For some value u ∈ Values, 
Algorithm 3 executes u read operations. Hence, the solo step complexity of Algorithm 3 belongs to O (m). �

The solo step complexity of Algorithm 3 is independent from n, but when m = ℵ0 it is not bounded. Such a result is 
unavoidable since Aspnes and Ellen [5] prove that �(min(

log(m)
log(log(m))

, n)) is a lower bound.
Algorithm 3 executes a total of two write operations. From the construction presented in Algorithm 2, we obtain an 

adopt-commit object exhibiting a solo-write complexity of three operations. Theorem 3 proves that this result is optimal in 
the general case.
8
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Algorithm 4 Detecting a conflict in a single write – code at process p.
1: Shared Variables:
2: ∀r ∈ [0, m − 1] : R[r] = false // An array of m MWMR atomic registers.
3:
4: Procedure check(u)

5: R[u] ← true
6: for all i ∈ [0, m − 1] \ {u} do
7: if R[i] = true} then
8: return true
9: return false

4.2.3. A corner case
When Values is bounded, or n identities are available in the system, we can leverage the fact that a process can read all 

the registers in Algorithm 3 before returning. If no previous value outside of the proposal of the process exists, it returns 
false. Every process writing to R will later detect a conflict.

We detail the variation for the case |Values| < ℵ0 in Algorithm 4. When c = n, the algorithm is similar. The correctness 
of this algorithm follows from a reasoning close to the one we conducted above for Algorithm 3. It is left to the reader.

5. The Janus2 Algorithm

The construction we previously presented can accommodate with any number of processes. On the other hand, its 
complexity depends on m. As we frequently encounter m � n in practice, an algorithm whose complexity depends on n
might be of more interest.

In this section, we present the Janus algorithm, a wait-free adopt-commit algorithm for anonymous shared-memory 
distributed systems. Janus executes O (n) operations in a solo run, including O (

√
n) writes. We shall see later that these 

two values are optimal.

5.1. Description of Janus

Algorithm 5 depicts the pseudo-code of Janus. This adopt-commit algorithm works with anonymous processes, and the 
knowledge of the input values is not required beforehand. In particular, this set may be unbounded (m = ℵ0). On the other 
hand, the total number of processes in the system (n), must be known in advance. Janus employs K ∈ N shared registers, 
denoted hereafter R[1], . . . , R[K]. The execution proceeds in K asynchronous rounds, and each register R[r] is used only in 
rounds r ≤ r′ ≤ K. A process p starts the algorithm when it invokes adoptCommit(u), with u ∈ Values. Process p stores the 
current round to which it participates in variable rnd. It also maintains the proposal it currently favors, or estimate, in the 
local variable est.

During round r, process p writes its estimate to register R[r], then it looks back to see if another estimate appears in 
some register R[r′ < r]. If this is the case, p raises flag C . Then, process p moves to a higher round. Once p has executed K
such rounds, it commits est if C equals false, and adopts it otherwise.

With more details, process p executes the following steps in Janus.

– (lines 8 to 13) Process p first checks if a value has been already written to R[rnd] (line 8). If this occurs, p immediately
enters round r ≥ rnd, where r is the greatest round for which a value has been written to the associated register R[r],
thus possibly skipping rounds rnd, . . . , r − 1 (line 9). In addition, p adopts the value currently stored in R[r] as its new
estimate. Otherwise, i.e., when R[rnd] = ⊥, p writes its estimate to that register (line 13).

– (lines 14 to 16) Writing to register R[rnd] is not sufficient to commit the value stored in est. Indeed, several other
processes might be performing concurrently operations to the registers. In particular, a process entering round rnd
might adopt est′ �= est and attempts to commit such a value at a later time.
Consequently, before moving to the next round, process p checks that no conflict is detected so far. This means that
registers R[1], . . . , R[rnd − 1] still store est (line 14). For large enough values of K, this condition prevents any other
value than est from being written to R[rnd]. We establish in Lemma 5 that for K ≥ 2 · �√n� + 1 such a property holds.
In case process p observes an estimate different than est, it raises the conflict flag C (line 15). Then, p can move to
round rnd + 1.

– (lines 17 to 19) When process p has executed K such rounds, it checks flag C . If no conflict occurred, that is C = false,
p returns (commit, est); otherwise p returns (adopt, est);

2 In Roman religion and mythology, Janus is the god of gates. Most often he is depicted as having two heads, facing opposite directions (Wikipedia). The
choice of the name is explained by the fact that each process in our algorithm has to look in two directions: forward, to check if a process has already
started a new round, and backward to see if some process entered a previous round.
9
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Algorithm 5 The Janus Algorithm – code at process p.
1: Shared Variables:
2: ∀r ∈ [1, K], R[r] = ⊥ // A set of MWMR linearizable registers.
3: C ∈ [true, false] // Initially, false.
4:
5: adoptCommit(u) :=
6: rnd ← 1
7: while rnd ≤ K do
8: if (R[rnd] �= ⊥) then // Existence of an estimate with higher priority.
9: r ← max({ j ≥ rnd : R[ j] �= ⊥})

10: est ← R[r]
11: rnd ← r
12: else
13: R[rnd] ← est

14: if rnd > 1 ∧ ∃r ∈ [1, rnd − 1] : R[r] �= est then // Look for conflicts.
15: C ← true
16: rnd ← rnd + 1 // Move to the next round.

17: if C then
18: return (adopt, est)

19: return (commit, est)

5.2. Correctness

Fix some execution λ of Janus. Recall that since we consider linearizable registers, λ is a sequence of read/write opera-
tions on the shared registers and the local variables. Accordingly, we shall say that an operation op in λ occurs at time τ if 
op is at position τ in the execution λ. In what follows, we shall note varp the local variable var of process p. The execution 
of the (asynchronous) round r by p consists of the sequence of steps taken by p during which rndp = r holds.

A process executing round r writes its estimate est to register R[r], provided it observes that no other value has been 
previously written to R[r] (line 8). The following Lemma implies that if p performs such a write, then est has been previ-
ously written to R[1], . . . , R[r − 1].

Lemma 1. Consider r > 1. Suppose that a write operation op with parameter v is performed on R[r]. Then, a write operation op′ with 
value v occurs on R[r − 1] before op.

Proof. Suppose that op is performed by some process p. Observe that when this occurs (line 13), rndp = r and estp = v , 
that is v is the estimate of p at the beginning of round r. Since r > 1, the previous value of rndp is r − 1 (line 16). We 
consider two cases according to the line at which p sets rndp to r − 1.

– Process p sets rndp to r − 1 at line 11. Thus, p executes line 10 and picks v ′ as its new estimate, where v ′ is the value
p read from R[r − 1]. As p does not modify again estp in round r − 1, v ′ is the value of estp when p enters round r.
Therefore, v ′ = v and thus v was written before to R[r − 1].

– Process p sets rndp to r − 1 at line 16. As p does not change the values of rndp at line 11, p reads ⊥ from R[r − 1] and
thus writes its current estimate v ′ in R[r − 1] (line 13). From the pseudo-code of Janus, v ′ is the estimate of p when p
enters round r. Therefore, v ′ = v and again, v was written to R[r − 1] before op. �

It follows from the previous result that Janus satisfies the validity requirement of adopt-commit (AC) objects. We prove
precisely this property in the lemma that follows.

Lemma 2 (Validity). Every adopted or committed value is a proposed value.

Proof. Consider that a process p adopts or commits some value estp = v in Janus (lines 18 to 19). Clearly, rndp = K+ 1 at 
that time. At the beginning of round K, p writes v to R[K] (line 13), or v is the value p read from R[K] (lines 10 and 11). 
Hence, in both cases, value v was written to R[K]. It follows from Lemma 1 that v was written in each register R[i], 
1 ≤ i ≤ K. In particular, v was written in R[1]. The validity clause of AC follows from the fact that the values written in 
R[1] are the processes’ proposals. �

The above lemma directly implies that Janus satisfies the convergence property of AC.

Lemma 3 (Convergence). If every process proposes the same value v, then (commit, v) is the only possible output.

Proof. If some value v is adopted or committed, then from Lemma 2, value v is proposed. Hence, a register R[r] may only 
contain either v or ⊥, its initial value. Now, let us observe that (i) from Lemma 1, if R[r > 1] = v holds then necessarily v
10



JID:TCS AID:13362 /FLA [m3G; v1.316] P.11 (1-17)

Z. Bouzid, P. Sutra and C. Travers Theoretical Computer Science ••• (••••) •••–•••
was written by some process in R[r − 1] previously, and (ii) if some process enters a round r > 1, necessarily R[r − 1] �= ⊥
(lines 10 to 13). This implies that line 14 never triggers, and that C always equals false. As a consequence, we may conclude 
that (commit, v) is the unique return value. �

From the pseudo-code of Janus every correct process eventually decides. Hence, the following lemma:

Lemma 4 (Wait-freedom). Janus is wait-free.

Proof of agreement. We now turn our attention to the agreement property To this end, we divide every execution λ in 
epochs as follows. Epoch ei≥1 is the interval that starts with the first write to register R[i] in λ, or if i = 1 the first operation 
in λ, and that ends immediately before the first write (if any) performed to register R[i + 1]. Given some operation op, we 
say that op occurs at epoch ei when op is in the interval ei . Obviously, there is a single epoch during which an operation 
takes place. Moreover, if a write to R[ j] occurs at ei , then j ≤ i.

The following lemma is central to the proof of the agreement property. Informally, this lemma states that if a process 
writes v in R[K], then no other value than v can be written to R[K].

Lemma 5. Let v be an adopted or committed value. It is true that (i) value v is written to R[K], and (ii) if value v is committed, for 
every value v ′ written to R[K], it holds that v ′ = v.

The agreement property follows immediately:

Lemma 6 (Agreement). If (commit, v) is returned, then every decision has the form (−, v);

Proof. Consider some committed value v , and a value v ′ such that some process returns (−, v ′). From (i) in Lemma 5, we 
know that both v and v ′ are written to register R[K ]. Then, item (ii) tells us that, since v is committed, v = v ′ holds. �

We devote the remaining of this section to the proof of Lemma 5. As we pointed out previously, if some process p
commits a value v necessarily estp = v when p returns (commit, v). Moreover, at the time p executes the last iteration of 
the while loop, we have rndp = K. Thus, the pseudo-code from lines 8 to 13 implies that R[K] = v at some point in time 
before process p returns. This shows that item (i) in Lemma 5 holds.

To prove that (ii) is true as well, we proceed by contradiction. Let us name H the negation of item (ii) in Lemma 5; 
namely:

Two distinct values u and v are written to R[K]. (H)

In the following, we show that to satisfy (H), the system must consist of at least n + 1 processes.
For i, j ∈ [1, K], let us note W i

j the set of processes that perform a write operation to register R[ j] during epoch ei . This 
means that a process p belongs to W i

j if and only if there exists a write operation to R[ j] by p that occurs at epoch ei . 
From the definition of an epoch, we know that if j > i, then W i

j = ∅.
We first state two technical lemmas.

Lemma 7. Suppose that p performs a write operation op on R[i]. The last operation preceding op performed by p is a read on R[i], 
and the value returned by that operation is ⊥.

Proof. Immediate from the code of Janus at lines 8 to 13. �
Lemma 8. Denote by op and op′ two write operations performed by the same process p. Suppose that: (1) op occurs at epoch ei , (2) 
op′ is a write to register R[ j] with j �= i, and (3) op precedes op′ . Then, j > i and op′ occurs at some epoch e j′>i .

Proof. By Lemma 7, p reads from R[ j] immediately before executing op′ , and this read operation returns ⊥. Let op′′ denote 
that operation. It follows from the third condition of the Lemma that op′′ occurs after op, which in turn occurs after some 
non-⊥ value has been written to R[i′] for each i′ ≤ i (from Lemma 1). Since the read operation op′′ performed on R[ j]
returns ⊥, we conclude that j > i. Hence, by definition of an epoch, op′ takes place in e j′≥ j . �

The lemmas below precise how the sizes of (W i
j)i, j and the round numbers are related. They are instrumental in showing 

that (H) does not hold.

Lemma 9. Under (H), it is true that: ∀i ∈ [1, K− 1] : |W i | ≥ 2.
i

11
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Proof. From (H), at least two values u and v are written to R[K]. Lemma 1 tells us that in such a case both u and v are 
written to R[i] for every i ∈ [1, K− 1]. For some R[i], we show that two such writes occurs precisely at epoch ei . Consider 
the first write of value v to R[i]. By definition, this operation occurs at epoch ei′ for some i′ ≥ i.

For the sake of contradiction, suppose that i′ > i. By applying inductively Lemma 1, when v is written to R[i] for the 
first time, register R[i + 1] does not contain ⊥. Let p be the process that performs the first write of v to R[i + 1] and note 
wi+1

p this operation.

According to the code of Janus we know that (1) Process p performs wi+1
p while executing round i + 1; (2) Operation 

wi+1
p is preceded by a read operation on R[i + 1] at line 8 by p that returns ⊥, an operation we denote ri+1

p ; and (3) During 
round i, there is a read operation from R[i] that returns value v , or a write of v by p to R[i]. This last operation is denoted 
opi

p .

Operations opi
p , ri+1

p and wi+1
p occur in that order. Since the first write of v to R[i] occurs at ei′ , opi

p occurs at some 
epoch ei′′ with i′′ ≥ i′ . Therefore, operation ri+1

p occurs after a write to R[i + 1], from which we conclude that ri+1
p returns 

a non-⊥ value. The pseudo-code at lines 8 to 11 tells us that in such a case p does not write to R[i + 1]; a contradiction.
We just show that a write of v to R[i] occurs at epoch ei . A symmetrical argument can be applied to value u. For some 

process p, rndp is strictly growing. Hence, for each i ∈ [1, K − 1], a process performs at most one write operation to R[i]. 
This shows that |W i

i | ≥ 2. �
Lemma 10. If (H) holds, then: ∀i, j ∈ [1, K− 1] × [1, i − 1] : |W i

j| ≥ 1.

Proof. Choose some i in [1, K − 1]. As a starter, we establish that two read operations that return respectively v and u
occur at epoch ei .

Since value v is written in R[K], v is also written to R[i + 1] (Lemma 1). Let p the process that performs the first write 
of v to R[i + 1]. From the code of Janus, p executes round i before performing that write operation, and v is the estimate 
of p at the end of that round. Hence, at the beginning of round i, p either reads v in R[i] or writes v in R[i]. Moreover, 
the read operation on R[i + 1] performed by p at the beginning of round i + 1 returns ⊥ (otherwise p does not perform a 
write to R[i + 1]). Therefore, every operation performed by p while executing round i occurs at epoch ei . In particular, for 
every j ∈ [1, i − 1], the read of R[ j] performed by p at line 14 occurs at ei . This read must return v . Otherwise, p raises 
flag C , and value v is not committed.

Similarly, by considering the process that performs the first write of u in R[i + 1], we obtain that a read operation on 
R[ j] returning u occurs at ei .

As two read operations on R[ j] return two different values occur in ei , there must exist a write operation on R[ j] that 
occurs at ei . We thus conclude that W i

j �= ∅. �
Lemma 11. Suppose that (H) holds. Choose i, j ∈ [1, K − 1] × [1, i − 1] and i′, j′ ∈ [1, K − 1] × [1, i′ − 1]. It is true that: (i ≤
i′ ∧W i

j ∩W i′
j′ �=∅) → (i = i′ ∧ j = j′) ∨ (i < j′)

Proof. Pick p ∈ W i
j ∩W i′

j′ . By definition, a write operation by p occurs at ei and ei′ . Assume first that i = i′ . Lemma 8 tells
us that two consecutive write operations by the same process should occur in distinct epoch. Hence, j = j′ holds. Otherwise, 
i < i′ and applying again Lemma 8, we obtain i < j′ . �

We are now ready to prove Lemma 5.

Proof of Lemma 5. Assume for the sake of contradiction that (H) is satisfied, and consider the following set:

S =
{
(i, j) :

⌈
K − 1

2

⌉
≤ i ≤ K − 1 ∧ 1 ≤ j ≤

⌈
K − 1

2

⌉}

In what follows, we count the distinct processes that appear in the union of the sets W i
j with (i, j) ∈ S . We show that 

there are at least n + 1, reaching a contradiction.
Let (i, j) �= (i′, j′) ∈ S such that i ≤ i′ . By definition of S , i ≥ j′ and thus it follows from Lemma 11 that W i

j ∩ W i′
j′ = ∅.

Hence,
∣∣∣∣ ⋃
(i, j)∈S

W i
j

∣∣∣∣ =
(i, j)∈S

|W i
j|

From Lemmas 9 and 10, we have |W i | ≥ 1 for each (i, j) ∈ S and |W i | ≥ 2 for each (i, i) ∈ S . Therefore,
j i

12
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∣∣∣∣
∣

⋃
(i, j)∈S

W i
j

∣∣∣∣
∣ ≥

⌈
K − 1

2

⌉
·

⌊
K − 1

2
+ 1

Finally, as K = 2 · �√n� + 1, we get∣∣∣∣ ⋃
(i, j)∈S

W i
j

∣∣∣∣ ≥ n + 1 �

From Lemma 5, we know that no two distinct value are written to R[K]. Consequently, the agreement property holds, 
closing the proof of the agreement property.

Theorem 6. Janus implements a wait-free adopt-commit object.

Proof. Follows from Lemmas 2, 3, 4 and 6. �
5.3. Time complexity

The theorem below proves that the solo step complexity of Janus is O (n); this is optimal [5]. It also establishes that the 
solo-write complexity of this algorithm is O (

√
n). As we shall see in Section 6, this last value is tight.

Theorem 7. TIME(Janus) ∈ O (n) and WTIME(Janus) ∈ O (
√

n).

Proof. Consider a solo execution of some process p. During this execution, p executes K = 2�√n� + 1 rounds, then decides. 
Name {1, . . . , K} the rounds executed by p, and consider some round i. According to the pseudo-code of Janus, during 
round i process p executes a single write (line 13), and reads i shared registers (lines 8 and 14). As a consequence, the step 
complexity of the algorithm is O (n) and its write complexity belongs to O (

√
n). �

6. When identities help

In this section, we combine Janus and Algorithm 3 to efficiently leverage the presence of identities. When c identities are
available, our solution has a solo-write complexity of �(

√
n − c + 1) operations. Before delving into its algorithmic details,

we first establish that this value is optimal when m is unknown and the memory footprint is bounded.

6.1. A lower bound result

For some process p, recall that a clone of p refers to a process homonymous to p that executes in lock-step with p. This 
process is indistinguishable from p to other processes. In particular, for any process p and any execution λ during which 
less than n processes take steps, we may always consider an execution λ′ indistinguishable from λ to all processes and that 
includes a clone of p.

Let A be some implementation of an adopt-commit object. For some input value v , we note Av the permutation over 
ws(v) following the order in which a process in σv first writes to a register in ws(v).

Proposition 4. (∃u, v ∈ Values : Au = Av) → WTIME(A) ∈ �(
√

n − c + 1)

Proof. Choose two values u and v that satisfy Au = Av . In what follows, we construct with the help of clones an execution 
λ that is indistinguishable from σu for process pu and from σv for process pv .

The construction. Let us define Au = Av = 〈R1, . . . , Rk〉. Given a register Ri ∈ Au , note wi,u the first write to Ri during 
σu . We define symmetrically operation wi,v . For each register Ri∈[1,k] , we schedule iteratively the operations in σu and 
σv in λ as follows: We schedule in λ the operation wi−1,u (if such an operation exists) in σu , then every operation that 
follows wi−1,u and precedes wi,u . By definition of Au , observe that none of these operations is a write to some register 
R j≥i . Similarly, we then schedule wi−1,v and all the operations in σv between wi−1,v and wi,v . The previous construction 
is iterated until we have scheduled all the operations of σu and σv . Then, we add clones of pu and pv as follows: For some 
register Ri , let wi,u, j be the last write to register R j<i by pu prior to wi,u . We add an operation wi,u, j by a clone of pu
right after wi,u . After this block write, the clone stops. Similarly for v , we add a write wi,v, j over R j<i right after wi,v by 
a clone of pv for every j < i.

Correctness. In order to prove that λ is an admissible run, we first consider some read of a register Ri by pu , and examine 
the following cases: (case Ri ∈ Au) Every read from Ri is either (i) before wi,u and thus it sees the initial state because no 
13
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operation of pu , nor of pv , has written Ri yet, or (ii) after some w j≥i,u and it sees the result either of (ii-a) the operation 
w j,u,i by a clone of pu , or (ii-b) the result of some write of pu after w j,u,i . Hence, in all the situations above, the read of 
pu in λ sees the same result as in σu . (Case Ri /∈ Au .) In such a case pv never writes Ri . As a consequence, all such reads by 
pu in σu are the same as in λ. It follows from the previous reasoning that λ pu

∼ σv . A symmetrical argument leads to λ pv
∼ σv . 

Hence, λ is an admissible run.
Execution λ makes use of 2 + 2 

∑k
i=1(i − 1) = k2 − k + 2 processes. In an homonymous system with c identities, we may 

split processors in a group of c − 1 processes having c − 1 identities, and a group of n − c + 1 processes with the same 
identity. Hence, λ is not constructible when k2 − k + 2 > n − c + 1. On the other hand, we have WTIME(A) ≥ k. This leads
to the fact WTIME(A) ∈ �(

√
n − c + 1). �

Proposition 4 implies the following result:

Theorem 8. WTIME(AC) ∈ �(min(
log(m)

log(log(m))
, 
√

n − c + 1)).

Proof. Consider an AC implementation A that uses a bounded amount of registers, say k. Without lack of generality, 
we assume that some solo execution σu of A writes to the k registers, that is WTIME(A) = k. There are 

∑k
i=0 Ck

i set 
of registers to write, and for each such set of size i, i! possible ways to write the registers first in some execution 
σu . This leads to 

∑k
i=0 Pk

i ≤ k! × e possible choices of writing first the (at most) k registers. As a consequence, the pi-
geon hole principle tells us that if m ≥ k! × e, for some pair u, v ∈ Values, the premises of Proposition 4 apply, i.e., 
Au = Av , leading to WTIME(A) ∈ �(

√
n − c + 1). On the other hand, if m < k! × e then WTIME(A) ∈ �(

log(m)
log(log(m))

). Hence,

WTIME(AC) ∈ �(min(
log(m)

log(log(m))
, 
√

n − c + 1)). �
In [5], Aspnes and Ellen present a wait-free implementation of an m-valued adopt-commit objects from multi-reader 

multi-writer registers that works in anonymous systems. This algorithm makes use of a bounded amount of registers and 
executes O (

logm
log logm ) write operations, reaching the left part of the above lower bound. The section that follows details an

implementation of adopt-commit that satisfies a solo-write complexity of O (
√

n − c + 1) operations.

6.2. An asymptotically optimal solution

To match the above lower bound, we proceed as follows: First, processes having the same identity agree on a common 
proposed value. To this end, we employ c instances of Janus, with K set to 2�√n − c + 1� + 1, one per identity. Then, pro-
cesses execute the constant write time algorithm presented in Section 4, agreeing on an identity (and thus some associated 
proposed value). This defines the fast path of our algorithm. However, it might happen that, despite proposing all the same 
value, processes do not reach agreement at the end of this path. To solve such an issue and attain convergence, a process 
which returns (adopt,−) in the fast path executes an instance of Janus with K set to 2�√n� + 1,

6.2.1. Algorithmic details
We depict our solution in Algorithm 6. This algorithm makes use of the following four variables: c instances of Janus

(variables I[1..c]), an array of c registers (variables D[1..c]), an instance of Algorithm 2 using Algorithm 3 (variable C ), and 
an additional instance of Janus (variable J ).

These variables are employed as follows. In a first step, processes having the same identity agree on a common value 
(line 8). To this end, a process p accesses instance I[p], proposing its input. Since c identities are available in the system, 
at most n − c + 1 processes may access some instance I[p]. Hence, for each instance I[p], we set K to 2�√n − c + 1� + 1. 
In a second step, processes compete to pick an identity and the proposed value that was chosen during the first step 
(lines 9 to 10). This tentative operation to commit a value employs variable C . If a process does not succeed in committing 
a value after the above two steps, it executes an additional instance of Janus accessible through variable J .

6.2.2. Correctness
Theorem 9 proves that Algorithm 6 is a correct implementation of AC in a distributed homonymous system where c

identities available.

Theorem 9. Algorithm 6 implements a wait-free adopt-commit object.

Proof. In what follows, we prove that Algorithm 6 precisely implements a wait-free adopt-commit object:

(Wait-freedom) Variables I[1..c], C and J are all wait-free AC implementations. As a consequence, at the light of the pseudo-
code of Algorithm 6, this algorithm is also wait-free.
14
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Algorithm 6 Adopt-Commit for Homonymous Systems – code at process p.
1: Shared Variables:
2: I[c] // An array of c instances of Janus with K = 2

⌈√
n − c + 1

⌉ + 1.
3: D[c] // An array of c registers; initially ∀i ∈ [1, c] : D[i] = ⊥.
4: C // Algorithm 2 using Algorithm 3 with m = c
5: J // Janus with K = 2. ⌈√

n
⌉ + 1.

6:
7: Procedure adoptCommit(u)

8: D[p] ← I[p].adoptCommit(u)

9: (g, q) ← C .adoptCommit(p)

10: ( f , est) ← D[q]
11: if f = adopt∨ g = adopt then
12: ( f , est) ← J .adoptCommit(est)

13: return ( f , est)

(Validity) Consider that a value u is adopted or committed at line 13. Value u is either retrieved from the array D at 
line 10, or it results from the call at line 12. In the former case, from the validity property of an adopt-commit object, 
we observe that value u is necessarily proposed at line 8 to some instance I[k], with k ∈ [1, c]. Hence, value u is 
the input value of some process. In the latter case, u is the output of instance J . From the validity property of an 
adopt-commit object, u is fetched from array D at line 10. Hence this case boils down to the previous one.

(Agreement) Let us consider that some process p commits a value u, while a process q adopts or commits some value v . 
As a starter, we observe that every value decided at line 13 in Algorithm 6 is necessarily retrieved either at line 10, 
or at line 12. Assume first that u is computed at line 10. We observe that both flags f and g equals commit when p
tests them at line 11. It follows that (i) p fetches (commit, u) from some register D[p̂] at line 10, for some p̂ ∈ [1, c], 
and (ii) C returns (commit, p̂) at line 9. Only processes having identity p̂ might write to D[p̂] at line 8, and precisely, 
they write down the result of the call to object I[p̂]. From item (i), solely a tuple of the form (−, u) can be written to 
D[p̂]. From item (ii), we deduce that q returns (−, p̂) at line 9. Hence, q reads from D[p̂] as well at line 10. It follows 
that q reads (−, u) from register D[p̂]. Thus, u is the sole value that can be proposed at line 12. From the convergence 
property of object J , u is committed by q. If v is computed at line 10, a similar argument holds. In the last case where 
both values u and v are retrieved at line 12, the agreement property of object J implies that u = v .

(Convergence) Consider that all the processes propose the same value, say u. Since the validity property holds, (−, u) is the 
sole decision a process may take. As detailed above, Algorithm 6 consists of two paths. The fast path spans lines 8 to 10. 
If a process p fails to commit a value in this path, i.e., in the advent where f or g equals adopt at line 11, p falls 
back to the slow path and executes line 12. Now, as u is the sole proposed value, process p necessarily retrieves u from 
variables D[1..c] at line 10. It follows that every process accessing variable J proposes value u. By the convergence 
property of object J , p commits value u at line 12. �

Below, we establish that Algorithm 6 reaches the optimal solo-write complexity.

Theorem 10. WTIME(Algorithm 6) ∈ O (
√

n − c + 1)

Proof. If some process p calls solo an adopt-commit object with value u, the convergence property implies that p commits 
u. As a consequence, a process that executes solo Algorithm 6 only takes the fast path, skipping line 12. This fast path
consists in a call to an instance of Janus, with K set to 2 

⌈√
n − c + 1 + 1

⌉
, then a call to an instance of Algorithm 3. From 

Theorems 5 and 7, we obtain that WTIME(Algorithm 6) belongs to O (
√

n − c + 1). �
7. Conclusion

This paper focuses on the minimal number of write operations a process should execute to reach an agreement with its 
peers in a distributed system. To that regard, we contribute several tight lower bound results on the solo-write complexity 
of adopt-commit objects, a pivotal abstraction at core of every consensus algorithm.

In detail, we first present an algorithm that executes three write operations, a value we show optimal in the general case. 
We show that this number reduces to 2 when m is bounded and known, or when n identities are available in the system. 
We also prove that a single write is necessary and sufficient in the corner case when (n = 2) ∧ ((c = 2) ∨ (m < ℵ0)). Further, 
we introduce Janus an efficient implementation for the anonymous case that executes O (n) shared memory operations, 
including O (

√
n) writes. The lower bound result of Aspnes and Ellen [5] implies that the time complexity of Janus is 

optimal.
Building upon Janus, we then address the question of leveraging the presence of c identities in the system. We design a 

solution that implements an adopt-commit object in solely O (
√

n − c + 1) write operations, and we prove that, when m is 
not known and the number of registers in use bounded, this value is optimal.
15
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