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INTRODUCTION 

 

Drug discovery is nowadays one of the most prevalent fields in scientific research. Hence, the 

number of drugs proposed to the Food and Drug Administration (FDA) was 51 in 2021, with 

a 5-year average of 51, whereas it was almost twice less (24) ten years ago[1]. It may be 

emphasized that the role of the computational approaches is directly linked to the great 

improvement of the research and the environment around drug discovery during this last 

decade. Indeed, this period has also been marked by one of the most important technical 

revolutions in theoretical calculations and numerical simulations, triggered by the arrival of 

Graphical Process Unit (GPU) hardware for scientific calculations[2,3]. Previously, GPU 

were notably known to support intense calculation for 3D modelling or visualization. 

By consequence, computer-aided drug design (CADD) has known a true expansion during the 

2010’s. Amongst 70 commercialized drugs using at least one computational approach, half of 

them has been made during this decade[4]. Indeed, computer techniques allow the proposal a 

large panel of possible models, from the molecular to the analytic level. Molecular modeling, 

using techniques such as homology modeling, molecular docking, pharmacophore mapping or 

molecular dynamics simulations, is used to investigate biological mechanisms associated to 

the drug, including binding mode, association/dissociation processes, conformational changes, 

stability of associations, etc[5–7]. In addition, other techniques, such as Machine Learning 

methods, are used for the prediction of specific properties such as activities, kinetics or 

ADME-Tox aspects, building models called Quantitative Structure Activities/Properties 

Relationship, (QSAR/QSPR) models[8,9]. Furthermore, since a decade, we assist to the 

emergence of Deep Learning approaches, powered by the increase of computational power 

and by the amount of available data[10]. 



 

Amongst those different methodologies, Virtual Screening (VS) is one of the most used in 

CADD to explore molecular databases and find interesting compounds for a considered target. 

It is the computational version of the experimental screening, which is by essence very 

expensive and time-consuming, but remains the experimental method of choice for hit 

identification and optimization. Virtual screening may be divided in two main approaches: the 

structure-based and ligand-based approaches. This last, requiring only the knowledge of 

molecules that bind the biological target of interest, was often used for molecular similarity, 

pharmacophore query or QSAR/QSPR modeling. But the most widespread method employed 

in the drug discovery field is a structure-based technique named molecular docking[4,11]. 

Molecular docking could be of two main natures: small molecule (ligand) to macromolecule 

or macromolecule to macromolecule, majority represented by ligand-protein and protein-

protein docking. Even sharing the main theoretical principles, both are distinct methodologies 

because of the nature of the entities involved and of the complex interface[12,13]. In this 

article, we will only focus on the ligand-receptor paradigm of molecular docking. 

 

As depicted earlier, the importance of molecular docking is considerable in drug discovery 

and has not more to be proved. By consequence, it is necessary to generate suitable docking 

data in order to have relevant results. However, a crucial question is often forgotten: their free 

availability to the scientific community. This question is not new and concerns every aspect of 

the Science and every scientist worldwide. It has been put forward in the article of Wilkinson 

et al. in 2016[14], by the publication of the FAIR (Findable, Accessible, Interoperable, 

Reusable) principles. This study is the cornerstone for a new way of thinking in Science, 

leading to the philosophy of sharing as soon as possible data of studies, with sufficient 

indications, precisions and clarity for a possible reuse. But in such context, the data to share 

are not limited to the result of docking campaigns nor to the docking parameters employed. 

To ensure a proper reuse as the reproducibility of these results, it is also necessary to provide 

the structural data used to establish the model of docking, before and after preparation, as well 

as the detailed protocols employed to prepare the structures or to rank and analyze the docked 

compounds. 

 

The present article will summarize the current state of docking data, starting from the good 

practices for generating relevant docking results, and then depict the current state of the 

sharing of those data and what could be the possible improvements and prospects. 



 

I) Generation of docking data: basis and reflexes 

 

Generating docking results is not as simple as it seems. Firstly, the choice of a correct protein 

structure and a set of ligands is not trivial. Moreover, those elements need to be carefully and 

meticulously prepared. 

 

a) Preparation of the protein for docking 

 

Protein structures can be solved by experimental methods or predicted by means of 

computational approaches. The Protein Data Bank (PDB) is an on-line database ( 

www.pdb.org) composed by almost two hundred thousand of protein structures, solved by 

experimental means such as X-Ray crystallography, NMR or cryo-EM techniques. Therefore, 

mining this database is the first thing to do when one is searching for a structure for docking 

experiment. But those structure needs to be prepared before the docking. First, structures can 

sometimes have some defects, especially the non-resolution of some protein portions. 

Generally, those parts are the most mobile p arts in the structure, which are often coupled to 

non-truly important and functional regions, and are not always needed for the docking 

calculation. However, the completion of the protein is often mandatory to reach results with 

real meaning. It can be do with comparative modeling (for example, Modeller[15]), or Deep-

Learning approaches which are very numerous now: AlphaFold[16], ColabFold[17], 

RoseTTAfold[18]… Depending of the missing part (meaning its location, its size or its 

importance), precaution must be taken when completing the protein structure. 

 

Second, assigning the protonation state of residues is one of the most important things to 

realize before performing the docking calculation, based on the pH decided by the user. 

Indeed, charges must be put on every atom of the protein for a good conduction of the 

docking process. In this matter, some tools are very useful such as the H++[19] or 

ProPKA[20,21] servers or standalone programs like MCCE. Especially, the buried residues 

must be treated with care, because the local pH can dramatically vary from the physiological 

ones, induced by the fact that water molecules cannot reach those chemical functions, hidden 

by the protein fold. Consequently, the pKa of those amino acids will vary and with sometimes 

important consequences. 

 

http://www.pdb.org/


Finally, the structure of the protein deposited in the PDB database is only one rigid 

conformation, while proteins are dynamic macromolecules. Alternate stable conformations 

may exist for a binding site and an even limited change of the conformation of the binding 

cavity can lead to the recognition of new interacting molecules. Thus, considering several 

conformations of the protein, depending of course of the nature and the flexibility of the site, 

must be necessary in order to have the more rigorous results with docking methodologies. 

When other structures are not available, several methodologies such as molecular dynamics 

(MD) simulations[3] or normal mode analysis could be employed[22]. 

 

b) Selection and preparation of the ligand dataset 

 

The second point to consider before the docking calculation itself is the selection and the 

preparation of the ligand dataset. The number of chemical databases, meaning a library which 

repertory several compounds, is nowadays quite enormous. Since 2016, a list of 117 databases 

has been set in the article of Sabe et al.[4], which have been consistently used during this 6-

year period. We retrieved amongst them the most known ones, such as ZINC[23], 

ChEMBL[24], DrugBank[25], PubChem[27] or ChemDiv. Those databases could be 

commercial or public and list lots of information in addition to the name and structure of the 

molecule of interest. We may add to this list all the private chemical libraries that may be 

used for a particular project. 

 

Generally, those databases are provided at 2D SDF format (Structural Data File), SMILES 

format (Simplified Molecular Input Line Entry Specification, in 1D) or as CVS file. However, 

some discrepancies could exist in those databases, despite the care of their curator to update 

and maintain their viability. Those mistakes can be originated from errors during the 

recording of the compounds, or more complex cases difficult to understand. In addition, 

sometimes the entry encompasses also other impurities, which couldn’t have been separated 

from the molecule of interest. 

 

Hence, some steps of preparation must be realized before the docking. The first step aims to 

filter the entries to remove the erroneous compounds and duplicates, and keep only one 

molecule by entry. Second, a conversion from 1D or 2D format to 3D coordinates must be 

carried on in order to generate compounds that can be used for docking calculations. The 

generation of 3D coordinates is done using 4 different steps: tautomer elucidation, hydrogen 



atoms addition (in regard to the pH of the environment of the protein target), and definition of 

the several stereoisomers and the generation of stables conformers, with a particular attention 

to ring conformations. One must also notice that some steps could be avoided if the initial file 

possesses those information (especially the tautomer and the asymmetry of carbon atoms). . 

Several dedicated programs have been proposed in the literature for this purpose as VSprep or 

GypsumDL. 

 

c) Docking process 

 

Once protein target and chemical libraries prepared, they may be submitted to the docking 

process. Numerous software could be used for the docking, such as Autodock Vina[28], 

Glide[29], Gold[30], DOCK[31], rDock[32], PLANTS[33], etc. Numerous papers and 

reviews have already precisely described and efficiently compared the several docking 

software available and the power of the different algorithm used[11]. The last step consists in 

verification and selection of the most interesting ligands for the target. Lots of methods could 

be applied in order to sort the best molecules: ranking with scoring functions, RMSD 

comparison with already known ligands, ROC curve in order to see the efficiency of the 

calculation to separate active form inactive compounds, etc. Bender and collaborators provide 

a general and practical guide for the treatment of large-scale docking[34]. We have to notice 

that some software suites as MOE or the one proposed by Schrödinger (Maëstro and the 

associated stand-alone tools) offer the possibility to prepare target protein and chemical 

libraries, then performing docking calculation and analyze the results, in the same 

environment. 

 

II) Statement of docking data sharing 

a) Current Statement 

 

Sharing data is nowadays a great stake to consider in modern science. Numerous concerns 

have been raised for researches that were nor reproductible, nor replicable. Konrad Hinsen in 

several papers has state that in this last decade. There is confusion between the model, the 

generated data and the software used to generate them, reinforcing the “push to results” way 

of thinking. In this paradigm, some researchers do not understand anymore how those 

software works and how the algorithms are implemented in it[35,36]. As a statement, it seems 

that the computational techniques tend to become a simple routine tool and not a research area 



of development nor progress. One of the solutions proposed by Konrad Hinsen is to further 

develop the sharing of data of every kind, starting from input files and all the parameters from 

the software used to the raw results data. That is a statement shared by others group 

worldwide, that lead to the establishment of the FAIR principles in 2016 to guide the sharing 

of data in Science[14]. It consists in fact of several good practices for data sharing, from the 

format, the trackability, the reproducibility and the understandability of generated 

computational data. Destroying the barrier between the results described in a paper and the 

raw data, and provides access to the input files could pave the way to a better comprehension 

by every kind of user to those computational methodologies. 

 

From those principles, many studies and many debates have raised on this subject, the 

majority focusing for the moment on the treatment of MD data. Thus, workshops[37], online 

servers for making simulation online[38,39] and also storage and listing service of MD 

trajectories[40,41] have been proposed in the last 5 years. The most known one is 

GPCRmd[42], an online database concerning the MD trajectories of all class of GPCR. For 

each PDB structure associated to a GPCR, this website contains molecular dynamics 

simulations starting from those structures. All the files associated to the creation of the 

simulations are available on a special page of the trajectory, in addition to a visual point of 

view of the trajectory itself, and a list of simple analysis that can be done on the data. Of 

course, the several data file (input, output, topology, trajectory) are also available for 

download. 

One of the most important tools proposed nowadays is the publication of Simulation Foundry 

in 2020 by Gudrun Gygli and Juergen Pleiss[43]. This automated workflow on MD trajectory 

is the first that highlights the implementation of the FAIR principles within the treatment of 

the data. It allows the generation of the entire set of parameters for the calculation and making 

the calculation locally. In addition, the workflow comprises analyses of the trajectory 

generated and also a report in PDF format of the entire protocol and results. 

 

Regarding docking data, unfortunately, few progresses have been made about their sharing to 

the scientific community. To our knowledge, no solutions, such as the ones already existing 

for MD data, have been currently proposed for the sharing of docking ones with the 

community. However, it exists some resources online to help docking users in their processes 

to generate results. We can for example cite the PDBind database[44], which list several 

protein-ligand structures with known experimental affinities, but also LIT-PCBA, a curated 



dataset for virtual screening and machine learning (ref Rognan) and the DUD-E, a dataset 

comprising active compounds by targets and associated decoys(ref). With this dataset, one 

could test his own protocol in order to estimate his robustness. Furthermore, a new 

breakthrough on the sharing of data is the proposal of entire datasets in ready-to-dock format, 

following the most classical parameters of physiological environment. This is made for 

example by ZINC database. Obviously, initial dataset could be download by the users that 

need to prepare their dataset in another way. Following this lead, other datasets, comprising 

even billions of molecules are now emerging. The most notable one is VirtualFlow[45] which 

encompass a workflow for ligand preparation and a ligand dataset comprising 1.4 billion 

commercially available compounds in ready-to-dock format. The workflow is compatible 

with lots of docking software and scoring functions, and respects all along the process the 

FAIR principles. Both ligand dataset for docking calculations by the user, and entire 

workflow of the VirtualFlow program, are available freely. In addition, through an open-

access GNU GPL license, everyone can contribute to improve this workflow. The workflow is 

available on GitHub (http://www.github.com), a platform of program collaborative 

development and sharing, with a versioning process very powerful, that can allow following 

every modification bring on the program. Since the last decade, GitHub has become the 

standard platform to propose and share online all kind of program, scripts, with an idea of 

sharing and improvements for and by the concerned community. 

 

b) Discussion and prospects for a better sharing of docking data 

 

What can be done about the sharing of docking data? Of course, normalized protocols, such as 

the one proposed by VirtualFlow or the one described in the paper of Bender et al.[34], could 

be proposed any further, for example specialized on some target families of importance 

(GPCR, kinases protein, etc.), as what was already made for MD data. In addition, the results 

of large-scale docking campaigns are for now cruelly missing for sharing and availability. 

One could imagine a specialized repository containing the results of large-scale docking, such 

as ZINC database or others, against one or several members of protein family. Indeed, we can 

assume that numerous docking processes against popular targets, with therapeutic potential, 

are made by researcher around the world, without knowing that others have already realized 

their virtual screening before. Such sharing using a dedicated infrastructure to list and register 

the several docking campaign could be of great interest for the entire community of drug 

http://www.github.com/


design researchers. The results could be download by the user, and ranked using several 

criteria, such as different scoring functions, or experimental data if they exist. 

 

However, the principal problems of this kind of architecture that can be easily predict is the 

issue of the storage and the size of data. Obviously, dataset of millions, even billions of 

compounds take large space for the storage. Indeed, infrastructure keeping results of docking 

campaign must take into account several different docking poses for each ligand 

conformations in a receptor, making the data significantly heavier when the dataset comprises 

million or billions of compounds. This problematic has been relevantly discussed in the paper 

of Hospital et al.[46] This interesting review was focused on the MD data, which are 

obviously more affected by the size issue due to the inherent nature of the data. They 

highlight two important things for the storage of data: the need of standard format for the files 

and also compression processes of the files in order to gain space. They also underlined the 

need to a long-term sustainability plan in order to storage with safety on specific repositories 

the data of MD data. 

 

Obviously, even if the scale is very different compared to the case of MD calculations, those 

issues about the size of data and their long-term sustainability remain relevant for docking 

data and must be considered in order to improve the clarity and the application of FAIR 

principles on those kinds of data. 

It is interesting even to see that Data in Brief shares some papers on MD results and fewer on 

drug design researches, and most of these last come from experiments (70 in 2021 and 2022), 

and not from in silico studies (0)[47,48]. 

 

III) Concluding remarks 

 

CADD is now an important field in life science research, thanks to the technological progress 

made during this last decade. In particular, virtual screening using docking protocols remains 

the main methodology for drug discovery processes. Our goal here was double: i) to 

sensibilize users of docking methodologies to the main points in order to create relevant 

docking data, from preparation of inputs to verification of the results and ii) what is done now 

to the sharing of data regarding docking calculations and what can be done in the future. 

 



As we have described, there is actually a lot of online resources for assistance and help to the 

users, starting from the large number of chemiotheques, to the several software and workflow 

that can be used for making docking campaign, even some respecting the principles of FAIR 

data for the sharing and a good understanding. However, there are only scarce elements about 

the sharing itself of docking results. We believe that, even with the issues that can from this 

sharing and storage, the entire CADD scientific community could benefit from the creation of 

such online storage of docking campaign results and freely shared to everyone. However, 

questions of data size and sustainability in long-term are two major bottlenecks to creation of 

such infrastructure. 

Here are some good practices guidelines to follow for the sharing of such data: 

(i) precise and clear description of the structure used (with or without optimization, but clearly 

noted), with date and place. For example, structure of the PDB supplemented by Modeller 

version 10.1 by taking another local support, with optimization of the loops (and therefore the 

Python code used). 

(ii) If a molecular dynamics approach or other method are used to have conformers, the set of 

parameters used for the simulation and also for the structure clustering. It is advisable to have 

at least the different configurations and if possible the trajectories (with the parameter files). 

(iii) a precise description of the origin of the libraries, the protocol and the software used with 

their versions for the 3D conversion, the refinements used to generate the entire dataset. 

(iv) The same for docking with the different scoring approaches used. 

The difficulty here is identical to that of MD simulations results, the place that raw data can 

take. 

Nevertheless, efforts must be done on the application of FAIR principals for docking data, in 

order to favorize a better connection between the molecular model of protein-ligand 

interactions and biological activities and by extension, the experimental methodologies. The 

availability of such data freely could also be used for the development of deep learning 

approaches applied to docking and analysis of protein-ligand interactions, such as recent 

papers just begin to realize[49]. 
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