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RESEARCH ARTICLE

Using Regionalized Air Quality Model Performance
and Bayesian Maximum Entropy data fusion to map
global surface ozone concentration

Jacob S. Becker1, Marissa N. DeLang1, Kai-Lan Chang2,3, Marc L. Serre1, Owen R. Cooper2,3,
Hantao Wang1, Martin G. Schultz4, Sabine Schröder4, Xiao Lu5, Lin Zhang6, Makoto Deushi7,
Beatrice Josse8, Christoph A. Keller9,10, Jean-François Lamarque11, Meiyun Lin12,13,
Junhua Liu9,10, Virginie Marécal8, Sarah A. Strode9,10, Kengo Sudo14,15,
Simone Tilmes11, Li Zhang12,13,16, Michael Brauer17,18, and J. Jason West1,*

Estimates of ground-level ozone concentrations have been improved through data fusion of observations and
atmospheric chemistry models. Our previous global ozone estimates for the Global Burden of Disease study
corrected for bias uniformly across continents and then corrected near monitoring stations using the Bayesian
Maximum Entropy (BME) framework for data fusion. Here, we use the Regionalized Air Quality Model
Performance (RAMP) framework to correct model bias over a much larger spatial range than BME can,
accounting for the spatial inhomogeneity of bias and nonlinearity as a function of modeled ozone. RAMP bias
correction is applied to a composite of 9 global chemistry-climate models, based on the nearest set of monitors.
These estimates are then fused with observations using BME, which matches observations at measurement
stations, with the influence of observations declining with distance in space and time. We create global ozone
maps for each year from 1990 to 2017 at fine spatial resolution. RAMP is shown to create unrealistic
discontinuities due to the spatial clustering of ozone monitors, which we overcome by applying a weighting
for RAMP based on the number of monitors nearby. Incorporating RAMP before BME has little effect on model
performance near stations, but strongly increases R2 by 0.15 at locations farther from stations, shown through
a checkerboard cross-validation. Corrections to estimates differ based on location in space and time,
confirming heterogeneity. We quantify the likelihood of exceeding selected ozone levels, finding that parts
of the Middle East, India, and China are most likely to exceed 55 parts per billion (ppb) in 2017. About 96% of
the global population was exposed to ozone levels above the World Health Organization guideline of 60 mg m�3

(30 ppb) in 2017. Our annual fine-resolution ozone estimates may be useful for several applications including
epidemiology and assessments of impacts on health, agriculture, and ecosystems.
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1. Introduction
Ground-level ozone is a pervasive air pollutant that detri-
mentally affects human health and vegetation. Ozone can
cause a wide range of health problems in humans and has
been associated with premature mortality from daily
exposures (Bell et al., 2004; Di et al., 2017; U.S. Environ-
mental Protection Agency [U.S. EPA], 2020) and from
long-term chronic exposure (Jerrett et al., 2009; Turner
et al., 2016; U.S. EPA, 2020). Ozone concentrations above
roughly 35 parts per billion (ppb) are associated with
higher respiratory and cardiovascular mortality, with every
10 ppb increase in ozone concentration increasing all-
cause mortality by 2% (Turner et al., 2016). Ambient
ozone is estimated to have caused about 365,000 deaths
globally in 2019 or 0.65% of all global deaths (GBD 2019
Risk Factors Collaborators, 2020). Recently, the World
Health Organization (WHO) established new guidelines
for ambient ozone of 100 mg m�3 (50 ppb) for 8-h average
ozone and of 60 mg m�3 (30 ppb) for the annual metric
used in this study (WHO, 2021). These guidelines suggest
that ozone affects health even at concentrations fre-
quently observed in relatively unpolluted regions. Unlike
other air pollutants, ozone is purely secondary, which is
created through photochemical reactions involving nitro-
gen oxides (NOx), volatile organic compounds (VOCs), car-
bon monoxide, and methane in the presence of sunlight.
Ozone concentrations are typically higher in the daytime
and during summer months.

Understanding of ozone impacts on human health and
plants has been limited in part by our understanding of
ground-level ozone distributions in space and time. Esti-
mates of surface ozone distributions rely on monitoring
station observations and chemical transport models, but
both have limitations. While the United States, Europe,
and Japan have dense monitoring networks that began
prior to 1990 and China recently created a large network,
station observations of ozone elsewhere are extremely
limited (Schultz et al., 2017; Fleming et al., 2018; Lu et
al., 2020). Models can help fill in these gaps in space and
time but have biases (Cooper et al., 2014; Young et al.,
2018; Archibald et al., 2020).

In our previous work, we conducted a data fusion of
ozone observations and multiple global atmospheric mod-
els, in 2 phases, to estimate global ground-level ozone
concentrations at fine spatial resolution (Chang et al.,
2019; DeLang et al., 2021). These ozone maps were used
to estimate global premature deaths from exposure to
ambient ozone in the Global Burden of Diseases, Injuries,
and Risk Factors (GBD) 2017 and 2019 Studies (GBD 2017
Risk Factors Collaborators, 2018; GBD 2019 Risk Factors
Collaborators, 2020). GBD conducts a comparative risk
assessment to estimate the global health burden caused
by various risk factors from 1990 to the present.

Prior to GBD 2017, ozone in previous GBD studies was
estimated solely by a single model with no observational
bias correction (Brauer et al., 2016). The first study to
combine ozone observations and output from global
atmospheric chemistry models applied the new M3Fusion
method to correct model bias, improving global ozone
estimates from purely observation- or model-based

approaches (Chang et al., 2019), in support of GBD
2017. M3Fusion bias corrects and combines multiple che-
mical transport models by finding an optimal linear com-
bination of models for each world region, using
weighting based on performance when compared to
available observations. This multimodel composite was
then corrected within 2� of a monitoring station using
a spatial interpolation of observations, creating fine res-
olution output.

To support GBD 2019, we then improved this method
using a novel combination of Bayesian Maximum Entropy
(BME) along with M3Fusion (DeLang et al., 2021). BME is
a framework for nonlinear geostatistics that performs the
fusion of data from multiple sources (Serre and Christakos,
1999; Christakos et al., 2001; Christakos et al., 2004). BME
used observations to correct the M3Fusion multimodel
composite smoothly in both space and time, so that
ozone estimates match the observations at station loca-
tions. The influence each station exerts diminishes over
time and space based on a calculated spatiotemporal
covariance function. BME had been used before on smal-
ler scales to fuse ozone observations and models (Chris-
takos et al., 2004; de Nazelle et al., 2010; Xu et al., 2016),
but DeLang et al. (2021) were the first to apply it glob-
ally. The ability of observations in BME to influence esti-
mates across time was also shown to be useful in
informing earlier years before new stations were added
(DeLang et al., 2021).

DeLang et al. (2021) showed that ozone estimates
improved markedly over purely model- or observation-
based estimates and produced a global fine resolution
(0.1�) dataset for each year from 1990 to 2017. However,
like Chang et al. (2019) and DeLang et al. (2021) used the
M3Fusion method, which uses linear model bias correc-
tions that are homogeneous across continents. BME then
corrected estimates based on nearby observations, allow-
ing for spatial nonhomogeneous bias corrections. The spa-
tial scale over which BME has an influence is not bounded,
but it is determined by the spatial covariance function
based on observations from which we find that BME
ozone bias corrections are small beyond about 0.5� from
a monitoring location (DeLang et al., 2021). Here, we
implement a second method that allows spatial nonho-
mogeneous and nonlinear bias corrections that have influ-
ence beyond 0.5� from a monitoring location.

Previous research has shown that air pollution model
performance and biases are nonhomogenous (vary by
location) and nonlinear (vary as a nonlinear function of
the model estimate) (Reyes et al., 2017). For example,
chemical transport models generally overpredict fine par-
ticulate matter (PM2.5) when predicting high (>25 mg m�3)
values and underpredict elsewhere (Reyes et al., 2017).
Model errors for ozone stem from uncertainties in inputs,
especially emissions of ozone precursors (NOx and VOCs)
from anthropogenic and natural sources, and in model
processes including chemistry, model resolution, trans-
port, and deposition (Young et al., 2018). Previous model
evaluations have found that models have errors that vary
by season and latitude (von Kuhlman et al., 2003), reflect-
ing uncertainties in emissions inputs and in physical and
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chemical processes within the models. These errors could
lead to overestimates in some locations and underesti-
mates in others, so that model performance is heteroge-
neous (Liang and Jacobson, 2003). For example, emission
estimates used in an atmospheric model may be too high
or too low for a nation, and if monitors are present, it
may be possible to identify and correct biases over that
nation. Ozone production is also known to change non-
linearly with emissions (Cohan et al., 2005). Conse-
quently, model-simulated ozone concentrations exhibit
a nonlinear bias with respect to observations. The Com-
munity Multiscale Air Quality model, for example, has
been shown to overestimate maximum 8-h average
ozone levels where observations are below 35 ppb and
underestimate where observations are above 85 ppb
(Appel et al., 2007).

The goal of this study is to improve the work of DeLang
et al. (2021) to map global surface ozone concentrations
each year from 1990 to 2017 at fine spatial resolution by
adding a nonlinear and heterogeneous bias correction
before BME data fusion and then evaluate the improve-
ment in performance. We use the Constant Air Quality
Model Performance (CAMP) method, which allows for
nonlinear bias correction as a function of the modeled
ozone concentration, and the Regionalized Air Quality
Model Performance (RAMP) method (Reyes et al., 2017),
which applies CAMP regionally at individual points based
on the nearest observations. CAMP and RAMP corrections
are applied to the M3Fusion multimodel composite prior
to BME data fusion. While BME is not restricted spatially,
ozone’s steep covariance curve means that observations
have little influence beyond about 0.5� from a monitoring
station (DeLang et al., 2021). In contrast, CAMP and RAMP
corrections can influence estimates over a larger spatial
range. Specifically, we aim to use regional differences in
model underestimation/overestimation to correct the
M3Fusion results regionally and increase the fidelity of
our estimation in areas with sparse or no ozone observa-
tion stations, and we apply CAMP and RAMP here to
improve estimates in particular beyond about 0.5� from
a monitor. These geostatistical methods differ from other
recent efforts to map ozone concentrations based on
machine learning (Seltzer et al., 2020; Kleinert et al.,
2021; Sun et al., 2021; Betancourt et al., 2022; Liu et al.,
2022), and so there is value in further developing geosta-
tistical methods for comparison with these recent
advancements.

Both CAMP and RAMP bias correct models by compar-
ing observed and modeled values at collocated points in
space and time. CAMP applies a nonlinear correction as
a function of the modeled ozone concentration, assuming
that nonlinear function is constant across the study
region. RAMP improves on this by giving each model grid
cell its own nonlinear bias correction based on nearby
observations; RAMP is both nonlinear and nonhomoge-
neous spatially. Here, the RAMP method (Reyes et al.,
2017) is applied globally for the first time, with each
model grid cell correction based on a unique area that
includes the nearest points in space/time. These areas are
much smaller than the continental regions used in

M3Fusion, allowing us to better correct biases in the
M3Fusion multimodel composite at points far from obser-
vations, while BME then applies corrections near observa-
tions. In applying RAMP at a global scale, we also make
a novel modification of the RAMP method because station
observations are sparse in some regions and clustered in
others. This modification prevents sharp spatial changes in
corrections when transitioning between 2 different
regions with dense observation networks. The CAMP- and
RAMP-corrected estimates are then each used as global
background ozone levels (the global offset) for BME data
fusion with observations, as was done by DeLang et al.
(2021) with the uncorrected M3Fusion multimodel
composite.

We aim for the improved global ozone database to be
useful for researchers in a variety of fields, including atmo-
spheric science, epidemiology and health impact assess-
ment, and ecosystem and crop impacts. As this is the first
global application of CAMP and RAMP, we document the
methods and results to inform future global data fusion
efforts for ozone and other air pollutants. Finally, by fur-
ther developing geostatistical methods for global ozone
estimates in this study, we also aim to provide ozone
estimates that can be compared with recent machine
learning applications in future studies.

2. Methods
2.1. Ozone observations and model estimates

We use the ozone season daily maximum 8-h mixing ratio
(OSDMA8) as the annual ozone metric, as it is used for
calculating health outcomes from ozone pollution by GBD
(GBD 2019 Risk Factors Collaborators, 2020) using con-
centration–mortality relationships from Turner et al.
(2016) and other studies. OSDMA8 is the maximum
6-month running mean of monthly averages of the daily
8-h maximum mixing ratios. Since ozone is usually high-
est in the summer, each defined year includes up to March
of the following year to capture the Southern Hemisphere
summer. All reported ozone values, including observa-
tions, modeled values, and estimates, are OSDMA8 values.

Ground-level ozone measurements are taken from
databases compiled by the Tropospheric Ozone Assess-
ment Report (TOAR) and the Chinese National Environ-
mental Monitoring Center (CNEMC) (Schultz et al., 2017;
Lu et al., 2020). The TOAR database is the largest collection
of global hourly surface ozone concentrations and spans
1970–2015. To support this project, some national datasets
were extended for 2015–2017 (DeLang et al., 2021). While
observations are dense in North America, Europe, Japan,
and South Korea, they are sparse to nonexistent elsewhere
(Figure S1). CNEMC provides surface ozone observations in
China beginning in 2013, and data through 2017 are used
in this study (Lu et al., 2020). Both datasets were quality
controlled with the same algorithm developed for the
TOAR database. The number of observation locations in the
combined dataset is least in 1990 (with 1,190) while 2015
has the most (4,999).

We used surface concentration output from 9 atmo-
spheric chemistry models to create our M3Fusion multi-
model composite (DeLang et al., 2021). Models include 4
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from the chemistry-climate model initiative (CCMI; Mor-
genstern et al., 2017) that simulate 1990–2010, 2 addi-
tional CCMI models that extend the simulation beyond
2010, 2 CMIP6 models that cover years after 2010 (Collins
et al., 2017), and MERRA2-GMI that covers 1990–2017
(Strode et al., 2019; Anderson et al., 2021). The compila-
tions of observations and models used here are the same
as used by DeLang et al. (2021).

2.2. Data fusion methods

M3Fusion was used to evaluate model performance and
create a bias-corrected multimodel composite for each
year 1990–2017 (Chang et al., 2019). This method finds
a linear combination of the 9 models in each year and
continental domain that minimizes the mean square error
(MSE) compared to interpolated observations, creating
a single bias-corrected global composite for each year. This
is the same composite used by DeLang et al. (2021), and it
reflects model expectations about variations in ozone due
to emissions, geography, meteorology, and chemistry.
However, M3Fusion does not capture the nonlinearity of
model performance with respect to model value, nor how
model performance varies within a continental domain
(heterogeneity), both of which we address using RAMP.

The CAMP method (de Nazelle et al., 2010) is a precur-
sor to RAMP that bias corrects for nonlinear model per-
formance but does not account for nonhomogeneity as
a single correction applies globally. It matches each obser-
vation point with the model estimate at that location.
These matched pairs are then binned by the model esti-
mate, and an average of model estimates and observations
is set for each bin. The M3Fusion composite is then cor-
rected by interpolating between these values. Since CAMP
is closely related to RAMP, we describe the method in
depth in the following paragraphs. While CAMP works
well for local applications in a single year, RAMP allows
us to account for the heterogeneity in model performance
at a global scale by performing the model correction based
on the nearest observations only.

RAMP is a method to visualize and evaluate model
performance that can be used to bias correct models
(Reyes, 2016; Reyes et al., 2017). The correction accounts
for nonlinear and nonhomogenous model performance
(de Nazelle et al., 2010), in which the RAMP correction
is not limited to a linear function with respect to model
value, and it may correct differently in different geo-
graphic regions. Here, we apply RAMP to the M3Fusion
composites so that we address residual nonlinear and
nonhomogeneous biases. While previous studies have
used RAMP to bias correct model estimates of air pollu-
tants (de Nazelle et al., 2010; Xu et al., 2016; Reyes et al.,
2017), none has done so at a global scale.

We describe RAMP by letting y̆ðpÞ be the M3Fusion
multimodel composite prediction of ozone at space/time
coordinate p ¼ ðs; tÞ; where s is the spatial location in
longitude/latitude degrees, and t is the time in years. Let
ŷi ¼ ŷðpiÞ be the ozone observation (TOAR or CNEMC) at
space/time monitoring points pi. M

3Fusion predictions
are available throughout our entire global study domain,
whereas observations are only available at certain

locations. We match each observation ŷi with the under-
lying model prediction y̆i ¼ y̆ðpiÞ, so that (̂yi; y̆i) are the
paired observation-model values. We let RðpÞ be the
space/time region around p containing the N ¼ 250 spa-
tially closest stations in years t, t� 1, and tþ 1 (1990 does
not use t � 1 and 2017 does not use t þ 1). After testing
other numbers of stations, we found that N ¼ 250 is ideal,
with enough stations to maintain consistent patterns and
prevent outliers from having significant effects, while giv-
ing a narrow enough spatial range to correlate with local
trends. As we use 3 years, RðpÞ contains up to 750 collo-
cated (̂yi; y̆i) pairs. We sort these pairs by increasing model
value and stratify them in 10 bins corresponding to
increasing model decile values y̆k; k ¼ 1; . . . 10. Then,
we calculate the average observed value λ1 for model
decile value y̆k in region RðpÞ as

λ1

�
y̆k;RðpÞ

�
¼ 1

n
�

y̆k;RðpÞ
� Xn

�
y̆k;RðpÞ

�

j¼1

ŷj;

where n
�

y̆k;RðpÞ
�
is the number of paired observed/mod-

eled values (̂yi; y̆i) for which y̆i is in the kth decile of mod-
eled values, and ŷj is the jth observation in these pairs.

The abovementioned steps follow those outlined by
Reyes et al. (2017); in this article, we further improve
RAMP by ensuring that the slope between λ1s does not
become negative, or in other words, that the λ1 RAMP
curve for anyRðpÞ is monotonically increasing. To do this,
we define the mean value of all observed values ŷi inRðpÞ
as λmean. We compare λmean with λ1

�
y̆5;RðpÞ

�
, the λ1 in

the fifth decile bin. If λmean < λ1

�
y̆5;RðpÞ

�
, we set

λ1

�
y̆5;RðpÞ

�
¼ λmean. We then compare the fifth and

fourth bin in the same way, and so on, ensuring that

λ1

�
y̆k;RðpÞ

�
� λ1

�
y̆k�1;RðpÞ

�
, by setting them as equal

when necessary. We do the same for bins k ¼ 6 through
10, first comparing bin 6 to λmean and setting the value of

λ1

�
y̆6;RðpÞ

�
equal to λmeanif λmean > λ1

�
y̆6;RðpÞ

�
. This is

a novel improvement to Reyes et al. (2017) as it maintains
the ordinality of estimates from the original model with
the same RðpÞ.

By plotting λ1

�
y̆k;RðpÞ

�
with respect to y̆k, we obtain

the RAMP curve at location p showing how the average
observation changes with respect to model values. Figure
1 visualizes the nonlinear performance of the M3Fusion
composite, and by changing location p, we can see how
that performance varies spatially and where it is nonlinear.
This visualization can, for example, be used to detect
regions where the M3Fusion composite overpredicts
high ozone values and underpredicts low ozone values.
These plots also allow us to correct the model value by

interpolating along λ1

�
y̆k;RðpÞ

�
and selecting new

model values based on the value of λ1 evaluated at the
original y̆k ¼ M3Fusion value. Therefore, the RAMP-

corrected model value is λ1

�
y̆ðpiÞ;RðpiÞ

�
.
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A novel challenge posed by the implementation of the
RAMP method at the global scale is that station locations
are clustered in some countries or continents (e.g., the
United States, China, Japan, and Europe) and are sparse
in large areas in between. Previous applications of RAMP
had more uniform distributions of observations over
a smaller scale (Reyes et al., 2017). As a result, globally
the region RðpÞ containing the N ¼ 250 stations closest
to p can change dramatically over a short distance, for
example, when shifting from a domain dominated by
European observations to one dominated by China. This
abrupt change in RðpÞ can result in a discontinuity in the
RAMP-corrected value λ1ðpÞ. To reduce this discontinuity,
we introduce the RAMP–M3Fusion weighted-average
λ�1ðpÞ calculated as

λ�1ðpÞ ¼ wðpÞ � λ1ðpÞ þ
�

1� wðpÞ
�
� y̆ðpÞ;

where λ1ðpÞ and y̆ðpÞ are the RAMP and M3Fusion values,
respectively, and wðpÞ is the weight for RAMP at location
p. We want a weight that is high when a large fraction of
the N stations used to construct the RAMP curve are close
to p and low when this fraction is low.We therefore set the
weight using the following equation:

wðpÞ ¼
NqðpÞ
NðpÞ ;

where NðpÞ is the number of stations used to calculate
the RAMP curve at location p (i.e., 250), NqðpÞ is the
number of these stations that are within a radius q of p,
and wðpÞ is the fraction of RAMP stations (between 0 and 1)

that are within q degrees of p (Figure 2).We chose a radius
q ¼ 25�, so that the RAMP weight wðpÞ allows RAMP to
exert influence beyond the range of BME without
extending into areas lacking representative observa-
tions. Areas that are more than 25� away from these
station clusters, like the area at the midpoint between
China and Europe, will have a RAMP weight close to
0 and λ�1ðpÞ � y̆ðpÞ, thereby mitigating any RAMP dis-
continuity. We call the global output of λ�1 values as
weighted RAMP (wRAMP).

BME data fusion is then applied after RAMP correction
to fuse model prediction and observations, using the
approach described by DeLang et al. (2021). Each BME
estimate uses a different background assumption for
global ozone levels at every grid cell, which we call the
global offset, based on either the M3Fusion composite,
CAMP-corrected M3Fusion, or wRAMP-corrected
M3Fusion. This global offset is corrected using BME so that
the final BME estimate matches observed values at each
station location. Observations are treated as “hard data,”
meaning they are perfectly accurate, neglecting measure-
ment uncertainty. Each station exerts an influence based
on the difference between the station estimate and the
global offset, which decreases as the space/time distance
from observations increases, eventually matching the off-
set prediction away from observations. The rate at which
this influence falls is based on a derived covariance func-
tion. BME has been used previously for the fusion of ozone
observations and models (Christakos, 2000; Christakos et
al., 2004; de Nazelle et al., 2010), though only once before
at the global scale (DeLang et al., 2021). While these
papers provide the details of BME, we give here the main
BME steps.

The fundamental step in BME data fusion is the defi-
nition of an offset function oðpÞ at all points p across the
study space/time domain. Here, we set oðpÞ equal to
either y̆ðpÞ (M3Fusion), λ1ðpÞ (RAMP), or λ�1ðpÞ (wRAMP).
We calculate the offset-removed observations x̂ i as

x̂ i ¼ ŷi � oðpiÞ; i ¼ 1; . . . ; n;

Figure 1. A visualization of the Regionalized Air
Quality Model Performance (RAMP) correction at
a single point in North America for 2015. Three
years of ozone season daily maximum 8-h mixing ratio
(OSDMA8) data (2014, 2015, and 2016) from the 250
nearest observation locations are used. Paired
M3Fusion/observation points are divided into deciles
by the model value, indicated by color, and the
M3Fusion estimate at this gridpoint (x-axis) is
corrected with RAMP to a new value (y-axis) using the
λ1 line.

Figure 2. An example of Regionalized Air Quality
Model Performance (RAMP) weight at a model
point. In this case, NqðpÞ ¼ 6, as 6 observations are
within radius q. The weighted RAMP (wRAMP)
estimate at this location would be 6/250 times the
RAMP-corrected composite value plus 244/250 times
the M3Fusion composite value without RAMP
correction.
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where ŷi ¼ ŷðpiÞ are the observations at point
pi; i ¼ 1; . . . ; n. We define XðpÞ as a homogeneous/sta-
tionary space/time random field (STRF) with realizations
x̂ i; i ¼ 1; . . . ; n. XðpÞ is a STRF representing the residual
uncertainty and variability that is left in the offset-
removed observations, and therefore its covariance func-
tion changes with the offset considered (either M3Fusion,
RAMP or wRAMP). Finally, we define the STRF Y ðpÞ repre-
senting the ozone concentration as the sum of the resid-
ual field and the offset, that is,

Y ðpÞ ¼ XðpÞ þ oðpÞ:

We implement BME on the residual STRF XðpÞ to
obtain the BME estimate and associated estimation error
variance of XðpkÞ at estimation points pk across a global
estimation grid. The general knowledge base characteriz-
ing XðpÞ consists of a mean assumed to equal 0 within the
estimation neighborhood, and a covariance function
obtained from a variogram analysis (see Supplementary
information for details on the covariance model and its
parameters). The site-specific knowledge consists of the
offset-removed observations treated as hard data (data
with no assumed uncertainty). We numerically imple-
ment BME using the BMElib library written in the
MATLAB programming language (Serre and Christakos,
1999; Christakos et al., 2001), and as shown by DeLang
et al. (2021), in this case, the BME posterior probability
density function of XðpkÞ is Gaussian with a mean ~xk and
associated error variance varð~xkÞ equal to that of simple
kriging. Finally, the BME estimate ~yk of Y ðpkÞ, represent-
ing ozone at the estimation point, and associated vari-
ance varð~xkÞ are obtained as

~yk ¼ ~xk þ oðpkÞ;

and varð~ykÞ ¼ varð~xkÞ, where oðpkÞ is the (M3Fusion, RAMP
or wRAMP) offset at the estimation point. Estimation
points are set on a 0.5� grid, giving a final BME estimation
at 0.5� resolution. All data fusion methods are the same
globally, as we do not attempt to alter the methods for
particular regions, although the effects of the methods
differ in space and time reflecting observations and model
output.

The variance estimated here is a statistical measure of
uncertainty in the BME framework, but the variance does
not quantify the uncertainty fully as it omits other sources
of uncertainty. In this study, measurements are assumed
to be accurate, ignoring measurement uncertainty, and
the lack of measurements over large world regions hinders
our understanding of ozone in those regions. Models
involve additional uncertainties in model physical and
chemical processes and in emission inventories and other
model inputs. Finally, there is uncertainty in the BME
framework as other data fusion methods may also be used.

2.3. Cross validation

Leave-one-out cross-validation (LOOCV) was done by
removing each observation one at a time and using vari-
ous estimation methods to evaluate our ability to predict
this observation based on the remaining data. LOOCV was
performed by predicting ozone at each 0.5� grid cell

containing an observation point and comparing it with
the observations

�
ŷðpiÞ

�
in the grid cell, following the

same protocols as DeLang et al. (2021). This was done for
M3Fusion, CAMP, and wRAMP both before and after data
fusion with BME. For LOOCV of BME, BME was used to
estimate each removed point in turn, and the aggregated
errors were used to calculate MSE and the Pearson corre-
lation coefficient squared (R2) that is bounded between
0 and 1. For LOOCV on the offsets, the difference between
the offset and observation point at each station location
was used.

Whereas LOOCV tests the ability to predict based on
nearby clustered observations, we use checkerboard cross-
validation (CBCV) to better test each estimation method,
especially farther from nearby observations. This method
derives from the radius-based validation methods of Xu et
al. (2016) and Cleland et al. (2020). In CBCV, we create
a “checkerboard” of boxes over the world with each box
having a side length s latitude and 2*s longitude. For each
box, we remove all observed values

�
ŷðpiÞ

�
within the box

and use BME to reestimate the ozone values at the loca-
tion y*(pi) of the removed observations within the box,
using only observations outside of it. The validation error
is defined as eh ¼ ŷðpiÞ þ y�ðpiÞ, which is then used to
calculate R2 values to quantify error for each observation
in every box. We test CBCV with s ranging from 0.5� to
50�. BME relies on observations to make corrections
within the covariance range (less than about 1� for ozone),
so as s increases, observed values will have a smaller influ-
ence on correction. CBCV simulates the effect of sparse
observations, while still having observations to validate
the estimate. As most of the world lacks dense observation
networks, the ability to correct away from observations is
valuable to global estimations of air pollution.

3. Results
The M3Fusion multimodel composite (Chang et al., 2019;
DeLang et al., 2021) (Figure S1) is used here as the basis
for CAMP and RAMP bias corrections based on the TOAR
and CNEMC observations (Figure 1). Using CAMP, we see
that M3Fusion performance is nonlinear, tending to over-
predict ozone where it estimates high values and slightly
underpredict low values (Figure S2). This has been dem-
onstrated for individual models in previous studies of sur-
face ozone (de Nazelle et al., 2010), but we are not aware
that it has been demonstrated previously at the global
scale. Using RAMP, we confirm that M3Fusion bias varies
at a finer scale than the continental regions used in
M3Fusion, supporting the value of RAMP’s localized (non-
homogenous) bias correction.

When applying RAMP bias correction to each model
grid point, corrections vary each year and at each location,
but the largest changes generally occur where the
M3Fusion estimate is above about 55 ppb or below 35 ppb.
While the M3Fusion composite generally overestimates
when it predicts high ozone and underestimates where
it predicts low, this is not true for all regions. Figure 3a
shows an area where the model consistently underpredicts
ozone, and the RAMP correction has a steeper slope at
high values. Figure 3b shows a nearby region in the same
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year where M3Fusion overpredicts ozone at all but the
lowest levels, and the ozone estimate at the specific point
is lowered by the RAMP correction. The locations of

Figure 3a and b are relatively close to one another, show-
ing that the M3Fusion bias varies at finer spatial scales
than continental. Figure 4 shows the heterogeneity in

Figure 3. Examples of Regionalized Air Quality Model Performance (RAMP) correction at 3 specific locations
and years. The RAMP curve shows paired M3Fusion composite ozone season daily maximum 8-h mixing ratio
(OSDMA8) values y̆ðpÞ and observations y̆i, and the locations of the nearest 250 observation locations are also
shown. The RAMP-corrected value λ1ðpÞ, the star, is estimated by replacing the M3Fusion prediction y̆ðpÞ with its
RAMP-corrected value, that is, λ1ðpÞ ¼ λ1

�
y̆ðpÞ ;RðpÞ

�
. Each colored circle is a paired model/observation value (̂y i),

with the colors denoting which bin each falls into. If λ1ðpÞ is below the 1:1 line, it indicates that M3Fusion
overpredicts ozone. (a) An increase in estimation due to RAMP. (b) A nonlinear correction. (c) A decrease in estimation.

Becker et al: Data fusion to map global surface ozone concentration and uncertainty Art. 11(1) page 7 of 18
D

ow
nloaded from

 http://online.ucpress.edu/elem
enta/article-pdf/11/1/00025/792439/elem

enta.2022.00025.pdf by guest on 20 O
ctober 2023



model performance and bias correction globally. While
some areas, like the Americas, primarily have a RAMP
correction in a single direction, others like northern
Africa and eastern Europe have regions which are cor-
rected upward and bordering regions corrected
downward.

Figure 3b also shows a region where model perfor-
mance is nonlinear with respect to estimations, overpre-
dicting high values and underpredicting low values. In
these areas, the M3Fusion bias does not vary linearly with
respect to the M3Fusion estimate, and therefore our cor-
rection is not a linear function. This shows the value of
RAMP over a linear bias correction, as a linear correction
could not replicate these nonlinear curves. Figure 3c
shows an example region where M3Fusion consistently
overestimates ozone. These RAMP curves show the trends
in model performance in the region, as a function of
modeled concentration, as well as correcting the individ-
ual points (the pink star) based on this evaluation.

At a global scale, RAMP creates “streaks” where the
observations used to correct the model change from
being dominated by one region (eastern Europe) to
another far away region (Japan and South Korea) over
a short spatial distance (Figure 5). This situation arises
because there are no/few local observations for the
RAMP correction in this area. To avoid these discontinu-
ities and to avoid RAMP bias corrections based only on
measurements far away, we weight RAMP (Figure 2) to
allow a smooth transition between regions, using
weights for RAMP and M3Fusion that vary spatially and
temporally (Figure 6). wRAMP heavily favors RAMP over
M3Fusion in areas with high density of observations, and
RAMP maintains some influence up to 25� from any
station. This distance is long enough to give RAMP an
influence in areas not reached by the BME correction,
but short enough that it creates smooth transitions
between regions and lessens the discontinuities seen in
pure RAMP.

Figure 4. Fraction of λ1 points above the one-to-one line in 2017. A higher number indicates a higher likelihood
that a model point in this location would be increased with a Regionalized Air Quality Model Performance (RAMP)
correction, while a number <0.5 indicates a greater chance that RAMP lowers the M3Fusion estimate. Results vary
geographically, showing that the performance of the M3Fusion composite is heterogeneous spatially, in some places
varying strongly over a short distance.
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Using wRAMP as our global offset and station observa-
tions as hard data for BME, we obtain yearly estimates of
global ozone and variance at 0.5� resolution (Figure 6).
The ozone estimates match observations at any space/
time location with an observation, as the observations are
assumed to be accurate. The influence of observations
decreases as a function of space/time distance as the esti-
mate moves further from an observation, based on the
derived covariance (see Supplementary Materials equa-
tions and Figure S3). The influence of an observation over
multiple years in BME is valuable when correcting areas
with inconsistent observations. DeLang et al. (2021)
explore the significance of the temporal factor in more
detail. Variance is strongly influenced by proximity to
observations, which are the only source of hard data in
the BME estimate. Variance drops to 0 at measurement
locations and quickly rises as distance from stations
increases, since measurements are assumed to be accu-
rate. Therefore, variance is low in Europe, North America,
Japan, South Korea, and in some years parts of China, and
high elsewhere. As variance approaches 60 ppb2, the BME
estimation approaches wRAMP.

While in our previous work, the BME data fusion of
DeLang et al. (2021) improved markedly over the
M3Fusion composite, Figure 7 shows the difference
between our BME estimate using the wRAMP-corrected
model as our global offset and the BME estimate of
DeLang et al. (2021) which uses the M3Fusion composite
as the global offset. The 2 methods differ most at distances
more than 0.5� from stations, because BME matches
observations exactly at measurement locations, with that
influence approaching 0 beyond 0.5�. But the influence of
wRAMP generally drops off with distance from stations
because of the weighting used, and wRAMP has no influ-
ence beyond 25� from a station. Thus, wRAMP often has
the greatest influence in regions between monitors, even
in regions that are densely monitored. Whether RAMP
increases or decreases estimates varies in time and space,
and even nearby areas can have different signs of the
correction. Changes in specific regions also vary year to
year. General trends include decreases in the Korean pen-
insula, large changes in China once local data become
available in 2014, overall increases in eastern China prior
to 2014, increases in the northeastern United States in

Figure 5. RegionalizedAirQualityModel Performance (RAMP)-corrected estimate of ozone seasondailymaximum
8-h mixing ratio (OSDMA8) ozone for 2005 with a streak in central Asia. Applying a RAMP correction to the
M3Fusion multimodel composite produces discontinuities that appear as streaks in central Asia (a). Examination of
which observations are used for RAMP correction (̂y i in RðpÞ) at 2 nearby model points (y̆ðpÞ) (b and c) shows a large
shift in points comprisingRðpÞ, which causes these large changes over short spatial ranges.Weighting RAMP prevents
this from occurring, as areas far from the stations used for RAMP corrections will default to the M3Fusion composite.
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most years, slight increases in southeastern Europe, and
overall better model performance in inland United States
and European Union (EU) than on the coasts indicated by

smaller corrections in those regions. In regions with few
observation stations, especially those further than 25�

from the nearest observation, changes caused by including

Figure 6.Weights applied in weighted RAMP (wRAMP) and final wRAMP estimates of ozone and variance. The
weights applied in wRAMP, wðpÞ, for 2000 (a) and 2017 (b) correspond to the percent of the estimate at that location
that is based on RAMP, with 1� wðpÞ being the weight applied to the M3Fusion composite. wRAMP ozone season
daily maximum 8-h mixing ratio (OSDMA8) estimates, for 2000 (c) and 2017 (d), are obtained using the multimodel
composite bias corrected with wRAMP as the global offset in Bayesian Maximum Entropy (BME) data fusion. Ozone
values match observations (Figure S1) at each station location, with an observational influence that decreases as
space/time distance from the observations increases. BME with wRAMP eliminates the streaks in Figure 5, as those
areas have little or no RAMP weight. The variance of BME estimates for 2000 (e) and 2017 (f) is obtained as a function
of spatial/temporal distance from observation locations. Variance is 0 at any observation location. Ozone estimates
and variance are shown for other years in Figures S1 and S4.
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wRAMP are often less than 0.2 ppb in individual grid
cells (Table S1). Larger changes are observed in regions
with more monitors. In Europe in 2000, for example, the
population-weighted average ozone concentration
decreases by 0.205 ppb (about 0.5% of the regional
population-weighted mean ozone) with some grid cells
changing by more than 3 ppb (Table S1; Figure 7). Since
there are compensating positive and negative changes,
we also report a population-weighted mean of the abso-
lute value of changes, which is 0.863 ppb (about 2% of
the mean). Similarly, in East Asia in 2017, the
population-weighted mean ozone increases by 0.217
ppb (about 0.4%), some grid cells change by more than
3 ppb, and the average absolute change is 0.897 ppb
(about 1.7%).

We evaluate our results relative to DeLang et al. (2021)
and other methods by using LOOCV and CBCV, for 7 cases:

� Simple Model Mean: An average of all models used
in M3Fusion where each is given equal weight.

� M3Fusion: Multimodel composite of 9 models using
the M3Fusion method.

� CAMP: CAMP-corrected M3Fusion composite.
� wRAMP: RAMP-corrected M3Fusion composite,

weighted based on proximity to observations.
� BME using M3Fusion as Offset: BME data fusion

using the M3Fusion multimodel composite as the
global offset, matching the results of DeLang et al.
(2021).

� BME using CAMP as Offset: BME data fusion using
CAMP as the global offset.

� BME using wRAMP as Offset: BME data fusion using
wRAMP as the global offset.

In LOOCV, M3Fusion, CAMP, and wRAMP all improve
performance over the simple model mean (Table S2), and
CAMP and wRAMP provide clear improvements with
reduced MSE and improved R2 over M3Fusion. Using BME,
LOOCV performance does not differ whether M3Fusion,
CAMP, and wRAMP are used as the global offset. This

Figure 7. Differences in final Bayesian Maximum Entropy (BME) estimates caused by applying weighted RAMP
(wRAMP). Results show the difference in ozone season daily maximum 8-h mixing ratio (OSDMA8) when using BME
with wRAMP as the global offset minus BME with the M3Fusion composite as the offset (the results of DeLang et al.,
2021), for 2000 (a) and 2017 (b). Also shown are differences zoomed in on regions of interest for 2000 (c) and 2017
(d). Red indicates that RAMP corrected the M3Fusion composite value up, while blue indicates that RAMP lowered the
M3Fusion value.
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result is expected because most observations are clus-
tered, and BME predicts accurately when observations are
close together, similar to kriging on the observations. In
an LOOCV, removing a single monitor in many cases
leaves a sufficient number of nearby stations to accurately
predict ozone.

Methods other than LOOCV are therefore important to
test the improvement in ozone estimates when wRAMP
bias correction is used before BME data fusion, and, for
this, we use CBCV. In particular, CBCV more meaningfully
tests each method’s ability to estimate ozone where there
is not a dense network of observations (Figure 8). At small
box sizes, CBCV approximates LOOCV and all BME meth-
ods have similar R2 (though a smaller R2 than in LOOCV
since CBCV removes observations in all years). As the box
size increases, R2 for wRAMP decreases less than the other
cases, maintaining a minimum of 0.45 at large box sizes. It
also does not experience the dramatic performance drop-
off that CAMP and M3Fusion have at about 4�. CAMP also
has consistently higher R2 than M3Fusion at box sizes
greater than 4�. BME with wRAMP shows great improve-
ment in estimating where observations have been
removed compared to the base M3Fusion BME estimates.
That is, even when all nearby measurements are removed
(at large box sizes) wRAMP is beneficial, by using

information from monitors farther away to inform the
bias correction.

Using BME estimates and variance, we evaluate the
likelihood that ozone values exceed specific thresholds.
Specifically, using our best estimates using BME with
wRAMP as the global offset, we analyze the likelihood that
a given location surpasses selected ozone levels (Figure 9),
where 30 ppb corresponds to the WHO guideline (WHO,
2021). Note that we do not estimate the likelihood of
exceeding daily 8 h standards, such as the U.S. National
Ambient Air Quality Standards for ozone, which cannot be
estimated directly from OSDMA8. Areas with ozone esti-
mates near the threshold and areas with high variance
(few observations) are most likely to fall in the uncertain
range. Certainty in exceeding or not exceeding a given
value comes from extreme estimates and/or dense obser-
vations. For example, very few parts of the world are defin-
itively below 45 ppb in 2017, but only areas with high
estimates (central Africa, India, the Middle East, and parts
of China) and areas with dense sensor networks (EU and
western United States) are clearly above it. Similarly, com-
paring the likelihood of exceedance with our ozone esti-
mates, we see some areas which have the same level of
estimated ozone but have different likelihood of exceed-
ing thresholds due to the difference in nearby observa-
tions (and therefore variance). For example, the hotspots
in southern Africa are estimated to be above 65 ppb, but
we are less than 90% certain that this area exceeds 55
ppb. Meanwhile the hotspot centered around Beijing,
which has nearby observations, is above 55 ppb with near
certainty, and even above 65 ppb with 90% certainty in
some areas.

We estimate that 96% of the world’s population was
exposed to ambient air that exceeds the new WHO guide-
line for ozone in 2017 (Figure 10), and that this percent-
age has increased from about 91% in 1990. Here, we use
2019 population data from GBD 2019 for all years, so all
changes are due purely to ozone changes not population
changes. Among individual world regions, North America,
Europe, Russia, and South Central Asia have very nearly
100% of their population exceeding the guideline.
Regions with relatively less ozone pollution, Oceania and
South America, have over 50% of the population exceed-
ing the guideline in 2017.

Finally, following DeLang et al. (2021), we use global
population data from GBD 2019 to analyze annual
population-weighted ozone in different regions (Figure
S6). Trends in regions and years with sparse observations
are less certain. Although there are small differences in
individual years and regions, trends overall follow the
same pattern as for DeLang et al. (2021). This reflects both
compensating positive and negative bias corrections
within regions by wRAMP (Figure 7; Table S1), and the
fact that the population-weighted averages plotted here
are weighted toward large urban areas, some of which
have dense monitoring networks in which BME estimates
ozone accurately whether or not wRAMP is used. Asia has
a large upward trend, which along with a large increase in
Africa drives an overall upward global trend in population
weighted ozone. North America and Europe trend

Figure 8. Checkerboard cross-validation (CBCV)
results. Correlation coefficient (R2) values are shown
for the CBCV, in which stations are removed from
individual boxes of size s in latitude on the x-axis and
2*s in longitude, while performing Bayesian Maximum
Entropy (BME). Results are shown for BME data fusion
using the M3Fusion composite, and that composite
corrected with Constant Air Quality Model
Performance (CAMP) and weighted Regionalized Air
Quality Model Performance (wRAMP) as the global
offsets, pooling results over all years. While the
differences between M3Fusion and wRAMP are small
at small box sizes (similar to Leave-one-out cross-
validation [LOOCV]), RAMP greatly outperforms
M3Fusion and CAMP at large box sizes, where BME
has less influence as there are fewer nearby
observations to aid estimation.
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Figure 9. Likelihood of exceedance of 5 ozone levels in 2017. Results are shown for Bayesian Maximum Entropy
(BME) with weighted RAMP (wRAMP) as the global offset, relative to 5 ozone season daily maximum 8-h mixing ratio
(OSDMA8) ozone levels: the World Health Organization (WHO) guideline of 30 ppb (a), 35 (b), 45 (c), 55 (d), and 65 (e).
Corresponding ozone estimates and uncertainty can be seen in Figure 6. Areas with low variance (near station
observations) have more certainty, as do areas where BME estimates are very high or low compared to the levels
selected. Likelihood of exceedance is shown for other years in Figure S5.

Figure 10. The percentage of population exposed to ozone greater than the World Health Organization
(WHO) guideline (30 ppb). Results are shown for ozone season daily maximum 8-h mixing ratio (OSDMA8)
estimated with Bayesian Maximum Entropy (BME) with weighted RAMP (wRAMP) as the global offset, for each
year 1990 to 2017, for the global population, and for 8 world regions defined by Chang et al. (2019).
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downward, though the European trend is much weaker.
Russia begins to trend down in 2010, while South America
and Oceania fluctuate but have no clear trend. TOAR
observational studies support the downward trend in
North America from 2000 to 2014 (Chang et al., 2017),
and a study of CNEMC observations supports the increase
in East Asia based on observational trends in China (Lu
et al., 2020).

4. Conclusions
Here, we improve upon the global ozone estimates of
Chang et al. (2019) and DeLang et al. (2021) by providing
an additional bias correction step to the M3Fusion model
composite before BME data fusion. This RAMP correction
provides a local, nonlinear, nonhomogenous model bias
correction, in which each point receives a different bias
correction based on the M3Fusion composite performance
at the nearest stations. Using this corrected model as the
basis for BME data fusion leads to improvements in ozone
estimates in regions beyond the distance over which
observations have a substantial influence in BME (about
0.5� from monitoring stations), but less than the 25� limit
in the weighting scheme used for RAMP. Including RAMP
therefore can help at intermediate distances to fill in
values between monitors that are not very closely spaced.
We found that performance of M3Fusion varies by space/
time location and is often nonlinear, making RAMP the
ideal tool to further improve this composite. This method
also takes full advantage of TOAR and CNEMC observa-
tions, as it allows them to both directly correct estimates
locally through time with BME data fusion and inform
model corrections at a larger regional scale through
M3Fusion and RAMP. Our final estimates provide yearly
fine resolution global ozone estimates for 1990–2017,
involving a data fusion of surface observations from global
monitoring stations and 9 chemistry-climate models. We
also provide estimates of variance generated by BME,
which may be useful for some further applications, but
we caution that the variance estimated here does not
represent the full uncertainty in ozone concentration.

The RAMP method demonstrates that model perfor-
mance and biases have local variations, even after a uni-
form continental bias correction is applied in the
M3Fusion multimodel composite. RAMP therefore
improves estimates over M3Fusion or the global CAMP
in accounting for heterogeneous model performance.
RAMP also shows that model performance is nonlinear
with respect to observations in many areas, which often
manifests as an overprediction at one extreme and an
underprediction at the other. Overall, the multimodel
composite is better at estimating ozone values near the
average (often 40–55 ppb) and poorer at the extremes.
RAMP’s ability to account for nonlinear model perfor-
mance allows greater corrections where M3Fusion predic-
tions are worse.

As this is the first application of RAMP at a global scale,
we find that RAMP alone creates “streaks” where the
observations being used to inform the correction change
over a short distance, showing the difficulty of using a sin-
gle method over areas both rich and sparse in data. RAMP

could potentially encounter this issue for any dataset
where there are 2 or more heavily clustered regions of
observations separated by areas with sparse observations.
Therefore, we choose to weight RAMP to create smooth
transitions between regions, giving a much greater weight
to the multimodel composite when corrections are far
from observations, while very close to observations correc-
tions are incorporated by BME data fusion. In areas with
a more uniform distribution of observations, such as those
from previous studies using RAMP (Xu et al., 2016; Reyes
et al., 2017), weighting RAMP would not be necessary.
Weighting RAMP by distance from observations avoids
such streaks, and limits RAMP’s influence in regions very
far from monitors. It also allows a smooth transition
between the regional bias corrections of RAMP, and
M3Fusion, which bias corrects within each continent. In
future work on different scales, different weighting
schemes for RAMP may be chosen, including no down-
weighting at all in regional applications where there are
many monitors.

Overall, RAMP is more accurate than CAMP and
M3Fusion at estimating global ozone. When used in con-
junction with BME, RAMP does not appreciably improve
estimates in LOOCV and within 1� of another station. BME
alone can correct the model within the range where obser-
vations co-vary with each other, especially if it can draw on
observations at the same location in other years. The
advantage of RAMP is seen in the CBCV, which is greatest
beyond about 0.5� from the nearest monitoring station
but less than 25�. The improvements of CAMP over
M3Fusion shows the value of a nonlinear model correction
alone, while RAMP’s improvements over CAMP show the
value of accounting for regional heterogeneity in model
performance. Changes in ozone estimates due to includ-
ing RAMP before BME data fusion are as large as 3 ppb in
individual grid cells and absolute values of changes are up
to 1 ppb when averaged over regions where ozone moni-
tors are dense. These changes are smaller (<0.2 ppb in
individual grid cells) in regions far from monitors, where
the weighting put on RAMP goes to near 0.

Because the BME method provides both ozone esti-
mates and the associated variance, we can evaluate the
confidence that ozone is above or below selected values.
We find that most of the world’s population lives in areas
very likely above 35 ppb in OSDMA8 and even above 45
ppb. Some regions estimated to have the highest ozone,
including much of India, are very likely above 55 ppb. In
the case of India, model estimates suggest high ozone that
may be above 65 ppb, but the lack of ground observations
decreases confidence in this region. Regions with high
modeled ozone but low confidence in results because of
the distance from observations can be among those pri-
oritized for increased monitoring. While RAMP improves
estimation far from monitors, additional monitoring
capacity in regions currently lacking monitors would be
valuable for improving ozone estimates. Currently much
of the world’s population lives in low- and middle-income
nations, which are located far from ozone monitors. In
these regions, large populations are likely exposed to high
and growing ozone levels. Based on our analysis,
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enhanced surface ozone monitoring in these regions
would have the greatest impact for improving our under-
standing of global scale exposure to ozone pollution.

Future work should aim to update these methods using
newer atmospheric models, including results from chemi-
cal reanalyses, and to the forthcoming TOAR-II measure-
ment database (https://toar-data.org/surface-data), which
will include new monitoring sites in populated regions
such as India. This analysis focuses on a single annual
metric relevant for health, but this analysis could be repro-
duced monthly and could be reproduced for other ozone
metrics such as those relevant for plants. These methods
are also applicable to other air pollutants. Finally, these
methods offer an interesting counterpoint to recent
machine learning estimates (Seltzer et al., 2020; Kleinert
et al., 2021; Sun et al., 2021; Betancourt et al., 2022; Liu et
al., 2022). Machine learning has advantages of incorporat-
ing a wide range of datasets as predictors of ozone and in
finding nonlinear relationships that can be difficult to
capture in the geostatistical methods used here. However,
machine learning has possibilities of spurious results—
especially where relationships found over densely moni-
tored regions are assumed to hold globally—and machine
learning results can be difficult to understand and inter-
pret. The geostatistical methods used here can be adapted
to incorporate a wider range of input datasets, including
machine learning estimates, and using machine learning
and geostatistical methods in combination may further
improve global ozone estimates.
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écal,V,Michou, M, Oman, LD, Pitari, G, Plummer,
DA, Revell, LE, Saint-Martin, D, Schofield, R,
Stenke, A, Stone, K, Sudo, K, Tanaka, TY, Tilmes,
S, Yamashita, Y, Yoshida, K, Zeng, G. 2017. Review
of the global models used within phase 1 of the
Chemistry–Climate Model Initiative (CCMI). Geos-
cientific Model Development 10: 639–671. DOI:
http://dx.doi.org/10.5194/gmd-10-639-2017.

Reyes, JM. 2016. Geostatistical data fusion estimation
methods of ambient PM2.5 and polycyclic aromatic
hydrocarbons [Dissertation]. Chapel Hill, NC: Univer-
sity of North Carolina at Chapel Hill.

Reyes, JM, Xu, Y, Vizuete, W, Serre, ML. 2017. Regional-
ized PM2.5 Community Multiscale Air Quality model
performance evaluation across a continuous spatio-
temporal domain. Atmospheric Environment 148:
258–265.
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