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Julyan Arbel(1), Stéphane Girard(1,⋆) & Hadrien Lorenzo(2)

(1) Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France.
(2) Aix Marseille Univ, CNRS, I2M, Marseille, France.

⋆ Corresponding author, stephane.girard@inria.fr

Abstract

This work focuses on dimension-reduction techniques for modelling conditional ex-

treme values. Specifically, we investigate the idea that extreme values of a response

variable can be explained by nonlinear functions derived from linear projections of an

input random vector. In this context, the estimation of projection directions is exam-

ined, as approached by the Extreme Partial Least Squares (EPLS) method–an adapta-

tion of the original Partial Least Squares (PLS) method tailored to the extreme-value

framework. Further, a novel interpretation of EPLS directions as maximum likelihood

estimators is introduced, utilizing the von Mises–Fisher distribution applied to hyper-

balls. The dimension reduction process is enhanced through the Bayesian paradigm,

enabling the incorporation of prior information into the projection direction estimation.

The maximum a posteriori estimator is derived in two specific cases, elucidating it as

a regularization or shrinkage of the EPLS estimator. We also establish its asymptotic

behavior as the sample size approaches infinity. A simulation data study is conducted in

order to assess the practical utility of our proposed method. This clearly demonstrates

its effectiveness even in moderate data problems within high-dimensional settings. Fur-

thermore, we provide an illustrative example of the method’s applicability using French

farm income data, highlighting its efficacy in real-world scenarios.

Keywords: Extreme-value analysis, Dimension reduction, Shrinkage, Non-linear inverse

regression, Partial Least Squares.
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1 Introduction

Partial Least Squares (PLS). In modern statistical regression situations, one has to

deal with problems where the dimension p of the covariates X is large, and where the size

n of the dataset is insufficient to provide reliable estimations. Using standard (parametric

or nonparametric) regression techniques in such situations may yield overfitting and

therefore unstable estimations. This curse of dimensionality (Geenens, 2011) may be

mitigated by identifying a low-dimensional subspace of the covariates X that maintains

a strong link between the projected covariates and the response variable Y . As an

example, Partial Least Squares (PLS) regression (Wold, 1975) aims at estimating linear

combinations of X coordinates having a high covariance with Y . Even though PLS has

been initially developed within the chemometrics field (Martens and Næs, 1992), it has

also received considerable attention in the statistical literature, see for instance Naik

and Tsai (2000). Sliced Inverse Regression (SIR, Li, 1991) is an alternative method to

estimate a so-called central dimension reduction subspace based on an inverse regression

model, i.e. when X is written as a function of Y . Several extensions have been developed

for PLS and SIR, see Cook et al. (2013), Li et al. (2007) and Chiancone et al. (2017),

Coudret et al. (2014), Portier (2016) among others or Girard et al. (2022) for a review.

While the above-mentioned methods adopt the frequentist point of view, there also exist

a number of works in the literature based on Bayesian approaches. In Reich et al. (2011),

the authors model the response variable Y in terms of the predictors X using a mixture

model whose parameters are estimated with a Markov chain Monte Carlo (MCMC)

procedure. The converse point of view is adopted in Mao et al. (2010): X is modelled

as a function of Y thanks to an inverse mixture model, the estimation also requiring an

MCMC method. A similar approach is proposed in Cai et al. (2021) using a Bayesian

inverse regression through Gaussian processes and MCMC procedures.

Extreme Partial Least Squares (EPLS). The curse of dimensionality is exacer-

bated when modelling conditional extremes since tail events are rare by nature. Non-

parametric estimators of extreme conditional features (Daouia et al., 2013, 2023, Girard

et al., 2021) are thus impacted both by the scarcity of extremes and the high dimensional

setting. Recently, some works have introduced dimension-reduction tools dedicated to

conditional extremes. One can mention Aghbalou et al. (2024), Gardes (2018) who

propose extreme analogues of the central dimension reduction subspace. In Xu et al.

(2022), a semi-parametric approach is introduced for the estimation of extreme condi-

tional quantiles based on a tail single-index model. The dimension reduction direction

is estimated by fitting a misspecified linear quantile regression model. Extreme Partial
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PLS β̂ maximizes covariance between ⟨β,X⟩ and Y

EPLS β̂ml(y) a PLS estimator for values of Y larger than y

SEPaLS
β̂c
map(y) an EPLS estimator with conjugate prior

β̂s
map(y) an EPLS estimator with sparse prior

Figure 1: Different Partial Least Squares approaches discussed here with their adapta-

tions to the extreme and shrinkage frameworks.

Least Squares (EPLS, Bousebata et al., 2023) is a dimension reduction method relying

on PLS principles for estimating the linear combinations of X that best explain the

extreme values of Y . See also Girard and Pakzad (2024) for an adaptation of EPLS to

functional covariates.

Shrinkage EPLS, contributions, and outline. In this work, we develop two shrink-

age versions of the EPLS method for high-dimensional settings under the common

acronym SEPaLS. The starting point consists of recognizing the EPLS estimator as

a maximum likelihood estimator associated with a von Mises–Fisher likelihood (Sec-

tion 2). The latter distribution, which naturally arises for modelling directional data

distributed on the unit sphere (Mardia and Jupp, 1999), is here adapted to hyperballs.

Two prior distributions are introduced on the dimension reduction direction in Section 3:

a conjugate one based on the von Mises–Fisher distribution and a second one using the

Laplace distribution (both defined on the unit sphere) to enforce sparsity. Proposition 4

and Proposition 6 show that the maximum a posteriori (MAP) estimator is available in

closed form. Its computation does not require MCMC methods and can be interpreted

as a shrinkage version of the initial EPLS estimator. See Figure 1 for a summary of the

different PLS adaptations. Convergence results are also established when the sample

size tends to infinity, in Proposition 2, Proposition 5, and Proposition 7. The behavior

of the two proposed estimators is illustrated on simulated data in Section 4, while an ap-

plication on French farm income data is described in Section 5 to assess the influence of

various parameters on field-grown carrot production. The functions to compute Shrink-

age Extreme Partial Least Squares estimators are available in the R package SEPaLS1

(Lorenzo et al., 2023), while the R code replicating the figures can be found online2. A

discussion is provided in Section 6 and proofs are postponed to Appendix A.

1https://github.com/hlorenzo/SEPaLS/
2https://github.com/hlorenzo/SEPaLS simus/
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2 Extreme Partial Least Squares without shrinkage

Throughout, ⟨·, ·⟩ is the Euclidean scalar product on Rp, ∥ · ∥2 is the corresponding

quadratic norm and Sp−1 = {x ∈ Rp, ∥x∥2 = 1} is the associated unit sphere. Moreover,

for any set {z1, . . . , zn}, z1:n denotes the vector (z⊤1 , . . . , z
⊤
n )

⊤. Plus, two sequences of

random variables (An) and (Bn) (where (Bn) is almost surely non-zero) are equivalent in

probability if An/Bn
P−→ 1 which is denoted by An

P∼ Bn. Also, we write An = oP(Bn)

if An/Bn
P−→ 0.

We first recall in Subsection 2.1 the derivation of the EPLS estimator from a statistical

regression model and, in Subsection 2.2, the extreme-value assumptions necessary to

establish its asymptotic properties. Subsection 2.3 is dedicated to the presentation of the

von Mises–Fisher distribution on the sphere and to its adaptation to hyperballs. Based

on these, we then reinterpret the EPLS direction as a maximum likelihood estimator and

derive its asymptotic properties in Subsection 2.4.

2.1 EPLS model

The following single-index inverse regression model is introduced in Bousebata et al.

(2023):

(A0) X = g(Y )β + ε, where β ∈ Sp−1 is the unknown direction which is the parameter

of interest, X and ε are p-dimensional random vectors, Y is a real random variable,

and g : R → R is an unknown link function.

Model (A0) is referred to as an inverse regression model since the covariatesX are written

as functions of the response variable Y , see Bernard-Michel et al. (2009), Cook (2007) for

similar inverse models in the SIR framework. Under model (A0), if the distribution tail of

ε is negligible compared to the one of g(Y ), thenX ≃ g(Y )β for large values of Y , leading

to the approximate single-index forward model Y ≃ g−1(⟨β,X⟩). Finally, let us stress

that no independence assumption is made on (X,Y, ε). Let {(X1, Y1), . . . , (Xn, Yn)} be

an n sample with same distribution as (X,Y ).

Definition 1 (EPLS estimator of the unit direction β, Bousebata et al., 2023). The

EPLS estimator β̂(yn) of the unit direction β is obtained by maximizing with respect to

β ∈ Sp−1 the empirical covariance between ⟨β,X⟩ and Y conditionally on values of Y

larger than yn:

β̂(yn) = argmax
∥β∥2=1

⟨β, v̂(yn)⟩ =
v̂(yn)

∥v̂(yn)∥2
, (1)
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where, for any threshold yn ∈ R, v̂(yn) is defined by

v̂(yn) =
n∑

i=1

XiΦi(yn, Y1:n), (2)

with, for all i ∈ {1, . . . , n},

Φi(yn, Y1:n) =
1

n

(
ˆ̄F (yn)Yi − m̂Y (yn)

)
1{Yi ≥ yn},

the following first-order empirical moment

m̂Y (yn) =
1

n

n∑
i=1

Yi1{Yi ≥ yn},

and ˆ̄F the empirical survival function of Y .

Note that the EPLS estimator focuses on large values of Y . It could be easily adapted

to the lower distribution tail by considering−Y and thus replacing the indicator functions

1{Yi ≥ yn} by 1{Yi ≤ −yn}. The asymptotic properties of the EPLS estimator can be

established under some assumptions on the upper distribution tails, described hereafter.

2.2 Extreme-value framework

Three assumptions on the link function g and the distribution tail of Y and ε are consid-

ered. They rely on the notion of regularly-varying functions. Recall that φ is regularly-

varying with index θ ∈ R if and only if φ is positive and

lim
y→∞

φ(ty)

φ(y)
= tθ,

for all t > 0. We refer to Bingham et al. (1987) for a detailed account of regular

variations.

(A1) The density function f of Y is regularly-varying of index −1/γY − 1, with 0 <

γY < 1.

(A2) The link function g is regularly-varying of index c > 0 and 2γY (c+ 1) < 1.

(A3) There exists q > 1/(cγY ) such that E(∥ε∥q2) < ∞.

Assumption (A1) implies that the survival function F̄ is regularly-varying with index

−1/γY , which in turn is equivalent to assuming that the distribution of Y is in the Fréchet

maximum domain of attraction with positive tail-index γY , see Bingham et al. (1987,

Theorem 1.5.8) and Haan and Ferreira (2007, Theorem 1.2.1). This domain of attraction
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consists of heavy-tailed distributions, such as Pareto, Burr and Student distributions,

see Beirlant et al. (2004) for further examples. The larger γY is, the heavier the tail.

The restriction to γY < 1 ensures that the first-order moment E(Y 1{Y ≥ y}) exists for
all y ≥ 0. Assumption (A2) ensures that the link function g ultimately behaves like a

power function. Combined with (A1), it implies that g(Y ) is heavy-tailed with tail-index

γg(Y ) := cγY . Finally, (A3) can be interpreted as an assumption on the tail of ∥ε∥2. It

is satisfied, for instance, by distributions with exponential-like tails such as Gaussian,

Gamma or Weibull distributions. More specifically, E(∥ε∥q) < ∞ implies that the tail-

index associated with ∥ε∥ is such that γ∥ε∥ < 1/q. Condition (A3) thus imposes that

γg(Y ) > γ∥ε∥, meaning that g(Y ) has an heavier right tail than ∥ε∥. Under model (A0),

the tail behaviors of |βtX| and ∥X∥ are thus driven by g(Y ), i.e., γ∥X∥ = γg(Y ), which

is the desired property. Finally, condition 2γY (c + 1) < 1 implies the existence of

var(XY 1{Y ≥ y}) for all y ≥ 0.

2.3 Two von Mises–Fisher distributions

The von Mises–Fisher distribution vMFS(µ, κ) on the unit sphere Sp−1, p ≥ 2, is defined

by its probability density function (Watson and Williams, 1956):

fvMFS
(x|µ, κ) = cp(κ) exp (κ⟨µ, x⟩)1{∥x∥2 = 1},

where µ ∈ Sp−1 is a location parameter and κ ≥ 0 is a concentration parameter. The

normalizing constant is given by:

cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
if κ > 0 and cp(0) =

Γ(p/2)

(2π)p/2
otherwise, (3)

where Iq(·) is the modified Bessel function of the first kind and order q ≥ 0 defined on

R+ by

κ 7→ Iq(κ) =
∞∑
ℓ=0

1

Γ(q + ℓ+ 1)ℓ!

(κ
2

)2ℓ+q
, (4)

see Abramowitz and Stegun (1965, Chapter 9), with Γ(·) the Gamma function. The

von Mises–Fisher distribution on the unit sphere is widely used in the analysis of direc-

tional data and can be considered as a spherical analogue of the multivariate Gaussian

distribution (Mardia, 1975). Let us also recall that, for all µ ∈ Sp−1, vMFS(µ, 0) is the

uniform distribution on the unit sphere (and thus, cp(0) coincides with the inverse of the

sphere surface) and that µ is the mode of the vMFS(µ, κ) distribution for all κ > 0. We

propose the following adaptation of this distribution on balls:
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Definition 2 (von Mises–Fisher distribution on the ball). The von Mises–Fisher distri-

bution vMFB(µ, r, κ) on the p-dimensional ball, p ≥ 2, of radius r > 0 is defined by its

probability density function:

fvMFB
(x|µ, r, κ) = 2πcp+2(κ)

rp
exp

(
κ⟨µ, x⟩

r

)
1{∥x∥2 ≤ r},

where µ ∈ Sp−1 is a location parameter and κ ≥ 0 is a concentration parameter.

We refer to Lemma 1 in Appendix A for a proof that fvMFB
(·|µ, r, κ) integrates to

one. The next paragraph shows that the vMFB distribution plays a central role in the

interpretation of the EPLS estimator as a maximum likelihood estimator.

2.4 Maximum likelihood estimation

We first prove that the EPLS estimator, initially introduced by maximizing some em-

pirical covariance, can also be interpreted as a maximum likelihood estimator. It is thus

denoted by β̂ml(yn) in the sequel.

Proposition 1 (EPLS estimator as a maximum likelihood estimator). The EPLS esti-

mator of Definition 1 is the maximum likelihood estimator of β, denoted by β̂ml(yn), in

the following model:

(i) X1, . . . , Xn are independent and, for all i ∈ {1, . . . , n}, Xi given (Y1:n, εi) is

vMFB(β, ri, κi) distributed, with location parameter β, radius ri = |g(Yi)| + ∥εi∥2
and concentration parameter κi = θnriΦi(yn, Y1:n), where θn > 0 is an arbitrary

parameter.

(ii) (Y1:n, ε1:n) is distributed according to some arbitrary density p(·, ·) on Rn × Rpn

that does not depend on β.

The next proposition provides a consistency result on the EPLS maximum likelihood

estimator (Definition 1 and Proposition 1).

Proposition 2 (EPLS consistency). Assume (A0), (A1), (A2) and (A3) hold. Let

yn → ∞ such that nF̄ (yn) → ∞ and nF̄ (yn)
1−2/q/g2(yn) → 0 as n → ∞. Then,√

nF̄ (yn)
(
β̂ml(yn)− β

)
P−→ 0.

We refer to Bousebata et al. (2023) for a discussion of the assumptions on the (yn)

sequence. Let us simply note that the associated rate of convergence is faster than√
nF̄ (yn). Even though the exact rate is not available there, this result will reveal suffi-

cient for deriving the exact rates of convergence associated with the shrunk estimators,

see Proposition 5 and Proposition 7 hereafter.

7



3 Shrinkage for Extreme Partial Least Squares

The result of item (i) in Proposition 1 opens the door to the construction of shrinkage

estimators for β based on the Bayesian paradigm, referred to as Shrinkage for Extreme

Partial Least Squares (SEPaLS) estimators. A prior distribution π(·) is introduced on

the direction parameter β and the shrinkage effect of the maximum a posteriori (MAP)

estimator is investigated. The posterior distribution is established in Subsection 3.1 and

MAP estimators are derived for two particular cases of priors, a conjugate one based

on the von Mises–Fisher distribution on the sphere in Subsection 3.2, and a sparse one

based on the Laplace distribution in Subsection 3.3. In both cases, the implementation

of the method requires selecting both the shrinkage parameter associated with the prior

as well as the threshold yn. A data-driven method is described in Section 5 on the real

data application.

3.1 Posterior distribution

Combining Bayes’ rule with Proposition 1 makes it possible to derive the posterior dis-

tribution of β. See Appendix A for a detailed proof.

Proposition 3 (SEPaLS posterior distribution). Let θn > 0 and π(·) a prior distribution

on the direction parameter β ∈ Sp−1. Then, under the model (i), (ii) of Proposition 1,

the posterior distribution of β is given by

p(β|X1:n, Y1:n, ε1:n) ∝ π(β) exp
(
Kn⟨β, β̂ml(yn)⟩

)
,

where we set Kn := θn∥v̂(yn)∥2.

The mode of the above posterior distribution is referred to as the SEPaLS estimator in the

sequel. Its existence is ensured as soon as π(·) is continuous on Sp−1, since a continuous

function on a compact domain attains its maximum value within that domain. We focus

on the computation of the SEPaLS estimator for two particular choices of π(·) described
in the next two subsections.

3.2 Conjugate vMFS prior

We first assume a vMFS prior distribution for the direction β ∈ Sp−1, with location

parameter µ0 ∈ Sp−1 and concentration parameter κ0 ≥ 0. The unit vector µ0 can be

interpreted as a prior on β while κ0 is the confidence level on this prior. A graphical

representation in dimension p = 3 of the density isocontours associated with this distri-

bution is provided on the top of Figure 2a for µ0 = (1, 0, 0)⊤ and κ0 ∈ {0, 1, 10}. On the
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leftmost panel, the density is uniform on the unit sphere, and it becomes more peaked

around (1, 0, 0)⊤ as κ0 increases. Proposition 3 entails that the posterior distribution is

written for any β ∈ Sp−1 as:

p(β|X1:n, Y1:n, ε1:n) ∝ exp
(
⟨β,Knβ̂ml(yn) + κ0µ0⟩

)
,

which is still a vMFS distribution. As expected, since the von Mises–Fisher distribution

belongs to the exponential family, considering the associated conjugate prior for β yields

a posterior distribution of the same type (Nunez-Antonio and Gutiérrez-Pena, 2005,

Taghia et al., 2014). The following proposition is easily derived.

Proposition 4 (MAP with conjugate prior). Let θn > 0, Kn := θn∥v̂(yn)∥2 and set

π := vMFS(µ0, κ0), with µ0 ∈ Sp−1 and κ0 ≥ 0, as prior distribution on β. Then, under

the model (i), (ii) of Proposition 1, the posterior distribution of β is given by

β|X1:n, Y1:n, ε1:n ∼ vMFS(µn, κn),

with location parameter µn equal to the MAP estimator,

µn = β̂c
map(yn) =

Knβ̂ml(yn) + κ0µ0

∥Knβ̂ml(yn) + κ0µ0∥2
,

and concentration parameter κn = ∥Knβ̂ml(yn) + κ0µ0∥2.

In this conjugate framework, the computation of the MAP estimator is straightforward

since the mode of the vMFS distribution coincides with the location parameter: β̂c
map(yn)

is a linear combination of the prior direction µ0 with the EPLS estimator β̂ml(yn). Letting

κ0 → ∞ yields β̂c
map(yn) → µ0, the EPLS estimator is shrunk towards the prior direction.

In contrast, setting κ0 = 0 amounts to assuming a uniform prior distribution for the

direction β and we thus recover the EPLS framework. This behavior is illustrated on

the bottom panel of Figure 2a with β̂ml ∝ (3/2,−1, 1/2)⊤ and Kn = 1.

We show in the next proposition that a similar situation arises whenKn
P∼ c
√
nF̄ (yn) →

∞ (where c > 0) and the rate of convergence of β̂c
map(yn) to β is provided.

Proposition 5 (MAP consistency under conjugate prior). Under the assumptions of

Proposition 2, let c > 0 and

θn
P∼ c
√
nF̄ (yn)/∥v̂(yn)∥2,

as n → ∞, then, √
nF̄ (yn)

(
β̂c
map(yn)− β

)
P−→ (κ0/c)P

⊥
β (µ0),

where P⊥
β (µ0) := µ0−⟨µ0, β⟩β denotes the projection of µ0 on the hyperplane orthogonal

to β.

9



κ0 ≈ 0 κ0 = 1 κ0 = 10

(a) Conjugate vMFS(µ0, κ0) prior.

λ ≈ 0 λ = 0.3 λ = 0.6

(b) Sparse Laplace(λ) prior.

Figure 2: Isocontour plots of (a) the von Mises–Fisher vMFS(µ0, κ0) and (b) the

Laplace(λ) prior densities (top) and of the resulting posterior density (bottom) in di-

mension p = 3. The estimators β̂ml and β̂map are depicted by blue and red points

respectively.

It appears that β̂c
map(yn) converges to β at the

√
nF̄ (yn) rate which is the classical

convergence rate of most of extreme-value estimators since nF̄ (yn) is the effective number

of tail observations involved in the estimator. The MAP estimator can however reach

a faster convergence rate when P⊥
β (µ0) = 0 i.e. when µ0 = β, meaning that the prior

distribution is centred on the true (unknown) direction.

3.3 Sparse Laplace prior

The EPLS method can be adapted to take into account the information that only a few

covariates in X are useful to explain the extreme values of the response variable Y . To

this end, consider a Laplace(λ) distribution on the unit sphere:

π(β|λ) = 1

bp(λ)
exp(−λ∥β∥1)1{∥β∥2 = 1}, with bp(λ) =

∫
∥x∥2=1

exp(−λ∥x∥1)dx (5)

as a prior for β ∈ Sp−1, where λ ≥ 0 is a concentration parameter. We refer to Tibshirani

(1996) for the introduction of the Laplace prior in the regression context and to Chun

and Keleş (2010), Vidaurre et al. (2013) for sparse versions of PLS in a non-extreme

context. A graphical representation of the density isocontours of the Laplace distribution

in dimension p = 3 is provided on the top of Figure 2b for λ ∈ {0, 0.3, 0.6}. On the

leftmost panel, the density is nearly uniform on the unit sphere, and it becomes more

peaked around the three vertices (1, 0, 0)⊤, (0, 1, 0)⊤ and (0, 0, 1)⊤ as λ increases.
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As a consequence of Proposition 3, the posterior distribution can be written as

p(β|X1:n, Y1:n, ε1:n) ∝ exp
(
Kn⟨β, β̂ml(yn)⟩ − λ∥β∥1

)
, (6)

for any β ∈ Sp−1. Although this posterior distribution does not correspond to a classical

distribution on the unit sphere, the MAP can be computed in closed form:

Proposition 6 (MAP with sparse prior). Let θn > 0, Kn := θn∥v̂(yn)∥2 and set π(·|λ) as
the Laplace prior distribution (5) on β. Then, under the model (i), (ii) of Proposition 1,

the MAP estimator of β is:

β̂s
map(yn) = β̃(yn)/∥β̃(yn)∥2, with β̃j(yn) = Sλ(Knβ̂ml,j(yn)), j ∈ {1, . . . , p},

and where Sλ(·) is the shrinkage operator defined as Sλ(x) = sign(x) (|x| − λ)1{|x| > λ},
x ∈ R.

The MAP is obtained by shrinking the coordinates of β̂ml(yn) associated with the EPLS

estimator towards zero. See Theorem 3 of Chun and Keleş (2010) for a similar result in

a non-extreme framework. The zero coordinates in β̂s
map(yn) correspond to covariates in

X that have no impact on the extreme values of Y . Note that when the concentration

parameter is set to λ = 0, we recover the EPLS method. The behavior of the β̂s
map

estimator is illustrated on the bottom panel of Figure 2b with β̂ml ∝ (3/2,−1, 1/2)⊤

and Kn = 1. When λ is small, both estimates β̂ml and β̂s
map are superimposed. When λ

increases, β̂s
map gets closer and closer to the vertex (1, 0, 0)⊤.

Similarly to the conjugate case, when Kn
P∼ c
√

nF̄ (yn) → ∞ (where c > 0), the rate

of convergence of β̂s
map(yn) to β can be established.

Proposition 7 (MAP consistency under sparse prior). Under the assumptions of Propo-

sition 2, let c > 0 and

θn
P∼ c
√
nF̄ (yn)/∥v̂(yn)∥2,

as n → ∞, then, for all j ∈ {1, . . . , p} such that βj ̸= 0,√
nF̄ (yn)

(
β̂s
map,j(yn)− βj

)
P−→ (λ/c) (∥β∥1βj − sign(βj)) .

Otherwise, if βj = 0, then β̂s
map,j(yn) = 0 with probability tending to 1.

It appears that the null coordinates of β are recovered with large probability thanks to

the Laplace prior. Similarly to the conjugate case, the MAP estimator converges to β at

the usual
√
nF̄ (yn) rate. The convergence rate is higher when the non-zero coordinates

of β all coincide: βj = sign(βj)/∥β∥1 for all j ∈ {1, . . . , p} such that βj ̸= 0.
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4 Illustration on simulated data

4.1 Experimental design

The behavior of the SEPaLS estimators β̂c
map and β̂s

map is illustrated on the regression

model (A0) with power link function: t > 0 7→ g(t) = tc, c ∈ {1, 1/2, 1/4}. The

output variable Y is distributed from a Pareto distribution with survival function F̄ (y) =

(y/2)−1/γY , y ≥ 2 and with tail-index γY = 1/5. Each margin ε(j), j ∈ {1, . . . , p} of the

error ε is simulated as the absolute value of a N (0, σ2) random variable and depending

on Y using the Clayton copula, an Archimedean copula (Nelsen, 2007, Section 4), defined

for all (u, v) ∈ [0, 1]2 by

Cθ(u, v) =
(
u−θ + v−θ − 1

)−1/θ
,

where θ ≥ 0 is a parameter tuning the dependence between the margins. Equivalently,

the joint cumulative distribution function of ε is given for all x ∈ Rp
+ by the one-factor

model (Krupskii and Joe, 2013):

Fε(x) =

∫ 1

0

p∏
j=1

∂Cθ

∂v
(2Ψ(xj/σ)− 1, v)dv,

where Ψ denotes the cumulative distribution function of the standard Gaussian distri-

bution. Note that C0(u, v) = uv represents the independence copula while, as θ → ∞,

Cθ(u, v) → min(u, v) which represents the co-monotonicity copula. The dependence

between the margins is assessed using Kendall’s tau τ(θ) = θ/(θ + 2) ∈ [0, 1) and is

thus limited to positive values. We shall also consider the associated rotated copula

defined by C̃θ(u, v) = v − Cθ(1 − u, v) whose Kendall’s tau is negative and given by

τ̃(θ) = −τ(θ) ∈ (−1, 0], for all θ ≥ 0. Here, θ ∈ {1/2, 8} leads to four possible values of

the Kendall’s tau: {−0.8,−0.2, 0.2, 0.8}.
The standard deviation σ is selected such that the signal-to-noise ratio, defined as

g(F̄−1(1/n))/σ, is equal to 10. Note that g(F̄−1(1/n)) represents the approximate max-

imum value of g on a n-sample from the distribution with associated survival function F̄ .

The sample size is fixed to n = 500 and two dimensions are considered: p ∈ {30, 300}.
The true direction is β = (1, 1, 0, . . . , 0)⊤/

√
2 for both dimensions.

The location parameter µ0 of the prior vMFS distribution (conjugate case) is set

either to β, which corresponds to a perfect prior, or to β̃ := (1, . . . , 1, 0, . . . , 0)⊤/
√

p/2,

which is far from the true one, see Subsection 3.2. Four values of the concentration

parameter are investigated: κ0 ∈ {0, 10−4, 3.10−3, 10−2}. In the case of the Laplace

prior (sparse case), we let λ ∈ {0, 10−4, 5.10−4, 10−3}. In both situations, we set θn := 1

since this parameter is irrelevant to the inference.

12



4.2 Performance assessment

Let us define a similarity measure R between the theoretical vector β and its MAP

estimator computed on N = 1000 replications as follows:

R(y) =
1

N

N∑
r=1

〈
β̂(r)
map(y), β

〉2
, (7)

where β̂
(r)
map denotes the MAP estimate on the rth replication under either the conjugate

or the sparse prior. Clearly R ∈ [0, 1] and the closer R is to 1, the larger the proximity

is. In practice, R(Yn−k+1,n) is computed as a function of the number of exceedances

k ∈ {1, . . . , 100}, where Yn−k+1,n denotes the (n− k + 1)th largest observation from the

sample {Y1, . . . , Yn}.

4.3 Results

Conjugate prior. The similarity measure R(Yn−k+1,n) between β̂c
map and β is repre-

sented as a function of k ∈ {1, . . . , 100} on Figure 3 for the choice of parameter c = 1.

See Figure 6 and Figure 7 in Appendix B for the cases c ∈ {1/2, 1/4}. Each of these

figures considers 32 configurations in dimension p = 30: κ0 ∈ {0, 10−4, 3.10−3, 10−2},
τ ∈ {−0.8,−0.2, 0.2, 0.8}, and µ0 ∈ {β, β̃}, see Subsection 4.1 for details. Unsurpris-

ingly, when µ0 = β i.e. when the prior direction points towards the true one, the

shrinkage improves the results of the original EPLS estimator (obtained when κ0 = 0).

Moreover, it reduces the sensitivity with respect to the number of exceedances k, the

dependence degree τ , and the exponent c of the link function. In all situations, one

can obtain R ≃ 1 with κ0 = 10−2. In contrast, when µ0 = β̃, the prior direction is

ill-adapted since ⟨β̃, β⟩2 = 4/p ≃ 0.13 and too large values of κ0 deteriorate the EPLS

estimator. As expected, the choice of µ0 is of primary importance in the conjugate prior.

Sparse prior. Similarly, the similarity measure R(Yn−k+1,n) between β̂s
map and β

is represented as a function of k ∈ {1, . . . , 100} on Figures 8–10 in Appendix B for

the cases c ∈ {1, 1/2, 1/4}. Each of these figures considers 32 configurations: λ ∈
{0, 10−4, 5.10−4, 10−3}, τ ∈ {−0.8,−0.2, 0.2, 0.8}, c ∈ {1, 1/2, 1/4} and p ∈ {30, 300}.
Here, the shrinkage always improves the results of the original EPLS estimator (ob-

tained when λ = 0) since the true direction β is rather sparse, it only has two non-zero

coordinates. Enforcing sparsity allows to obtain R ≃ 0.8 (resp. R ≃ 0.6) in dimension

p = 30 (resp. p = 300) with exponents c ≥ 1/2. The case of small exponents (c = 1/4)

appears to be more complicated, the maximum value of R depending on the dimension

p and on the dependence degree τ .
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5 Application to real data

The SEPaLS method is illustrated on data extracted from the Farm Accountancy Data

Network (FADN)3. This dataset targets French farms described by numerous qualitative

and quantitative variables over the period 2000–2015. Here, we focus on the n = 598

farms producing field-grown carrots. The response variable Y is the production of carrots

(in quintals) and the covariate X is made of p = 259 continuous variables including

meteorological and economic measurements. Our goal is to investigate, among the 259

collected factors, which ones may influence the upper tail of Y , i.e. are linked to large

productions of carrots. A similar study could be achieved on the small productions of

carrots by focusing on the upper tail of 1/Y .

Three visual checks are first carried out in Figure 4 to verify whether the heavy-tail

hypothesis on Y is realistic. The histogram of the {Y1, . . . , Yn} on the top left panel is

skewed to the right and has a heavy right tail. Besides, the Hill estimator (Hill, 1975)

γ̂Y (k) =
1

k

k∑
i=1

log(Yn−i+1,n/Yn−k,n)

of the tail-index γY is drawn on the top right panel as a function of k ∈ {1, . . . , 500}.
The resulting graph is stable on the range k ∈ {160, . . . , 280} and points towards γY ≃
0.72. Finally, selecting k = 199 (this choice is discussed below), the associated quantile-

quantile plot of the log-excesses log(Yn−i+1,n/Yn−k,n) against the quantiles log(k/i) of

the unit exponential distribution, i ∈ {1, . . . , k}, exhibits a linear trend (bottom panel)

which is further empirical evidence that the heavy-tail assumption is appropriate, see

Beirlant et al. (2004, pp.109–110).

In the following, we focus on the sparse estimator β̂s
map since the use of β̂c

map would

require an initial guess for β0 which is not obvious in this application context. The next

two conditional tail correlation measures are introduced to interpret the results obtained

with β̂s
map:

ρ(⟨X, β̂s
map(y)⟩, Y |Y ≥ y) =

cov(⟨X, β̂s
map(y)⟩, Y |Y ≥ y)

σ(⟨X, β̂s
map(y)⟩|Y ≥ y)σ(Y |Y ≥ y)

, (see Figure 5a),

(8)

ρ(⟨X, β̂s
map(y)⟩, X(j)|Y ≥ y) =

cov(⟨X, β̂s
map(y)⟩, X(j)|Y ≥ y)

σ(⟨X, β̂s
map(y)⟩|Y ≥ y)σ(X(j)|Y ≥ y)

, (see Figure 5b),

(9)

3Available in French at:

https://agreste.agriculture.gouv.fr/agreste-web/servicon/I.2/listeTypeServicon/.
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with j ∈ {1, . . . , p}. The role of the tail correlation measure (8) is to assess the corre-

lation in the tail between the response variable Y and the summary ⟨X, β̂s
map(y)⟩ of the

predictors built by the SEPaLS method. It is computed at the threshold y = Yn−k+1,n

and plotted on Figure 5a as a function of the number of exceedances k for several levels

of shrinkage λ. Note that, when k is small, the correlation vanishes for a wide range of

λ values since, in this case, the prior weight is too large compared to the likelihood one.

The global maximum is located at k = 199 which corresponds to a stable region of the

Hill estimator according to Figure 4. The maximum correlation (ρ ≃ 0.79) is reached at

λ = 353.

The role of the tail correlation measure (9) is to assess the correlation in the tail

between the summary ⟨X, β̂s
map(y)⟩ of the predictors built by the SEPaLS method and

the initial ones X(j), j ∈ {1, . . . , p}. It is computed at the threshold y = Yn−k+1,n

and plotted on Figure 5b as a function of the number of exceedances k for λ = 353. All

correlation curves feature nice stability with respect to k, especially in the neighbourhood

of k = 199.

In the sequel, we thus select k = 199 and λ = 353. With these choices, only 5 coordi-

nates of β̂s
map out of 259 are estimated to non-zero values, see Figure 5c for an illustration

and Table 1 for a description of the selected variables. Meteorological variables are dis-

carded since large productions of carrots do not seem to depend on weather conditions.

Remarking on Figure 4 that the summary variable ⟨X, β̂s
map(y)⟩ is positively correlated

with the high values of Y , one can conclude that, unsurprisingly, large productions are

associated with large cultivated areas (SUD4CARO), large amounts of work both in terms

of time (UTASA, UTATO) and remuneration charges (FPERS), and large investments in

supplies (CHRFO).

6 Discussion

We proposed a Bayesian interpretation of the EPLS model to introduce prior information

on the direction of dimension reduction for extreme values. Two examples of shrinkage

priors are provided: a conjugate von Mises–Fisher prior allowing to consider an initial

guess on the direction, and a Laplace prior enforcing sparsity on the estimated direction.

Finite sample experiments demonstrate that the proposed method is effective in high

dimension (p = 300 on simulated data and p ≃ 260 on real data) with moderate sample

sizes (n = 500 on simulated data and n ≃ 600 on real data). In this study, we limited

ourselves to the estimation of a single direction. However, the SEPaLS method could

be adapted to estimate multiple directions using the iterative procedure described in

Bousebata et al. (2023, Section 4). We also focused on prior distributions that yield
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Selected variables Description Units β̂s
map,j

SUD4CARO Area cultivated with field-grown carrots hectares 0.978

UTASA Salaried work UTA(⋆) 0.158

UTATO Salaried and not salaried work UTA(⋆) 0.124

CHRFO Actual cost of stored supplies euros 0.038

FPERS Remuneration charges euros 0.026

Table 1: Real data example. Description of the 5 selected variables (out of 259) associated

with 598 farms producing field-grown carrots in France from 2000 to 2015. The last

column displays the corresponding non-zero coordinates of β̂s
map.

(⋆) UTA: amount of work associated with one full-time working person during one year.

closed-form shrinkage estimators. It would be of interest to investigate the use of other

priors, such as uninformative priors like Jeffreys’ prior (Harold, 1946) or other shrinkage

priors (van Erp et al., 2019). In such cases, the estimators would not be in closed

form, and their computation would rely on MCMC procedures. This would make the

process more computationally intensive than the estimation procedure considered here,

especially because one must constrain the MCMC algorithm to sample on the sphere in

dimension p.
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Conjugate vMFS prior and link function g(t) = tc with c = 1.
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Figure 3: Finite sample behavior of the SEPaLS estimator computed with the conjugate

prior on simulated data in dimension p = 30 from a Pareto distribution (γY = 1/5, a = 2)

and a (rotated) Clayton copula with Kendall’s tau τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top

to bottom). The power of the link function g(t) = tc is fixed to c = 1. Vertically:

R(Yn−k+1,n) between β̂c
map and β for a prior direction µ0 = β (left) or µ0 = β̃ (right) as a

function of the number k ∈ {1, . . . , 100} of exceedances (horizontally). The concentration
parameter is κ0 ∈ {0, 10−4, 3.10−3, 10−2}, respectively in violet, blue, green and yellow.

Coloured areas correspond to 90% confidence intervals.
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Figure 4: Real data example. Top left: Histogram of {Y1, . . . , Yn}. Top right: Hill plot

k ∈ {1, . . . , 500} 7→ γ̂Y (k) and associated confidence intervals (dotted lines). Bottom

left: Quantile-quantile plot (horizontally: log(k/i), vertically: log(Yn−i+1,n/Yn−k,n), for

i ∈ {1, . . . , k}) drawn with k = 199, the regression line is superimposed in red. Bottom

right: Scatter-plot (⟨Xi, β̂
s
map(Yn−k+1,n)⟩, Yi), i ∈ {1, . . . , n} with k = 199 depicted in

green. Points below the threshold (Yi ≤ Yn−k+1,n) are depicted in gray.
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Figure 5: Real data example. (a) Correlation ρ(⟨X, β̂s
map(y)⟩, Y |Y ≥ y) defined in Equa-

tion (8) computed at y = Yn−k+1,n as a function of k ∈ {20, . . . , 400} for 200 evenly

distributed values of λ in {1, . . . , 2000}. The selected pair (k, λ) = (199, 353) is depicted

in red. (b) Correlation ρ(⟨X, β̂s
map(y)⟩, X(j)|Y ≥ y) defined in Equation (9) computed

at y = Yn−k+1,n as a function of k ∈ {175, . . . , 400} for λ = 353 and j ∈ {1, . . . , 259}.
(c) Non-zero coordinates of β̂s

map(Yn−k+1,n) for the selected pair (k, λ) = (199, 353). The

colour code is the same for both left and right panels.
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A Appendix: Proofs

This first lemma establishes that fvMFB
(·|µ, r, κ) is a proper density function integrating

to one.

Lemma 1. Let p ≥ 2. For all µ ∈ Sp−1, r > 0 and κ ≥ 0,∫
∥x∥2≤r

1

rp
exp

(
κ⟨µ, x⟩

r

)
dx =

1

2πcp+2(κ)
,

where cp+2(κ) is defined in (3).

Proof of Lemma 1. The change of variable x 7→ y = x/r leads to∫
∥x∥2≤r

1

rp
exp

(
κ⟨µ, x⟩

r

)
dx =

∫
∥y∥2≤1

exp(κ⟨µ, y⟩)dy,

and switching to polar coordinates yields∫
∥y∥2≤1

exp(κ⟨µ, y⟩)dy =

∫ 1

0
ρp−1

∫
Sp−1

exp(ρκ⟨µ, u⟩)dudρ,

=

∫ 1

0

ρp−1

cp(ρκ)
dρ

=
(2π)p/2

κp/2−1

∫ 1

0
ρp/2Ip/2−1(ρκ)dρ

=
(2π)p/2

κp

∫ κ

0
tp/2Ip/2−1(t)dt.

From the definition of the modified Bessel function (4) as a power series with infinite

radius of convergence, one has:∫ κ

0
tp/2Ip/2−1(t)dt =

∞∑
ℓ=0

(
1

22ℓ+p/2−1Γ(p/2 + ℓ)ℓ!

∫ κ

0
t2ℓ+p−1dt

)

=

∞∑
l=0

κ2ℓ+p

22ℓ+p/2−1Γ(p/2 + ℓ)ℓ! (2ℓ+ p)
.

Taking account of (p/2 + ℓ)Γ(p/2 + ℓ) = Γ(p/2 + ℓ+ 1), it follows∫ κ

0
tp/2Ip/2−1(t)dt = κp/2

∞∑
ℓ=0

1

Γ(p/2 + ℓ+ 1)ℓ!

(κ
2

)2ℓ+p/2
= κp/2Ip/2(κ),

leading to ∫
∥x∥2≤r

1

rp
exp

(
κ⟨µ, x⟩

r

)
dx =

(2π)p/2

κp/2
Ip/2(κ) =

1

2πcp+2(κ)
,

which concludes the proof.
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Proof of Proposition 1. For any θn > 0, in view of (2), the optimization problem (1) can

be rewritten as:

β̂(yn) = argmax
∥β∥2=1

exp (θn⟨β, v̂(yn)⟩) = argmax
∥β∥2=1

n∏
i=1

exp (θn⟨β,Xi⟩Φi(yn, Y1:n)) . (10)

Under model (A0), the triangle inequality yields ∥Xi∥2 ≤ |g(Yi)| + ∥εi∥2, and thus,

conditionally on (Yi, εi), Xi belongs to the ball centred at 0 with radius ri := |g(Yi)| +
∥εi∥2. The optimization problem (10) can be rewritten in terms of densities associated

with the vMFB distribution as

β̂(yn) = argmax
∥β∥2=1

n∏
i=1

fvMFB
(Xi|β, ri = |g(Yi)|+ ∥εi∥2, κi = θnriΦi(yn, Y1:n)) .

It appears that β̂ can be interpreted as the estimator maximizing the likelihood condi-

tionally on (Y1:n, ε1:n). Since the density p(·, ·) of (Y1:n, ε1:n) does not depend on β, one

also has

β̂(yn) = argmax
∥β∥2=1

(
n∏

i=1

fvMFB
(Xi|β, ri = |g(Yi)|+ ∥εi∥2, κi = θnriΦi(yn, Y1:n))

)
p(Y1:n, ε1:n),

and thus β̂(yn) can also be viewed as the unconditional maximum likelihood estimator

of β.

The next lemma will reveal useful in the proof of Proposition 2 below.

Lemma 2. Let (σn) and (cn) be positive real sequences with σn → 0 as n → ∞. Let

A be a random vector in Rp, b ∈ Sp−1 a non-random vector, and (Bn) a sequence of

random vectors in Rp such that

σ−1
n

(
Bn

cn
− b

)
d−→ A.

Then,

σ−1
n

(
Bn

∥Bn∥2
− b

)
P−→ P⊥

b (A),

where P⊥
b (A) := A− ⟨b, A⟩b denotes the projection of A on the hyperplane orthogonal to

b.

Proof of Lemma 2. Let ϵn := σ−1
n

(
Bn
cn

− b
)
− A. From the assumption of convergence

in distribution, we have that ϵn converges in distribution to a Dirac mass at 0. Clearly,

∥Bn∥22 = c2n∥b+ σn(A+ ϵn)∥22 = c2n
(
1 + 2σn⟨b, A+ ϵn⟩+OP(σ

2
n)
)
,
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and inverting the latter equality yields

cn = ∥Bn∥2
(
1− σn⟨b, A+ ϵn⟩+OP(σ

2
n)
)
.

Replacing in the expression of Bn = cn(b+ σn(A+ ϵn)), we obtain

Bn = ∥Bn∥2
(
1− σn⟨b, A+ ϵn⟩+OP(σ

2
n))(b+ σn(A+ ϵn)

)
= ∥Bn∥2

(
b+ σn(A+ ϵn − b⟨b, A+ ϵn⟩) +OP(σ

2
n)
)
,

and therefore

σ−1
n

(
Bn

∥Bn∥2
− b

)
= A+ ϵn − b⟨b, A+ ϵn⟩+OP(σ

2
n)

P−→ A− b⟨b, A⟩ = P⊥
b (A),

which is the desired result.

Proof of Proposition 2. From Bousebata et al. (2023, Theorem 1), one has√
nF̄ (yn)

(
v̂(yn)

∥v(yn)∥2
− β

)
d−→ ξβ,

with ξ a centered Gaussian random variable and where

v(yn) := F̄ (yn)E(XY 1{Y≥yn})− E(X1{Y≥yn})E(Y 1{Y≥yn}).

The result follows from Lemma 2 applied with σn = 1/
√
nF̄ (yn), Bn = v̂(yn), cn =

∥v(yn)∥2, b = β, A = ξβ and therefore P⊥
b (A) = 0.

Proof of Proposition 3. In view of Bayes’ rule, the posterior distribution of β is given by

p(β|X1:n, Y1:n, ε1:n) ∝ π(β)p(Y1:n, ε1:n)
n∏

i=1

fvMFB
(Xi|β, ri = |g(Yi)|+ ∥εi∥2, κi = θnriΦi(yn, Y1:n)) .

Since p(Y1:n, ε1:n) does not depend on β, the posterior distribution can be simplified as

p(β|X1:n, Y1:n, ε1:n) ∝ π(β)
n∏

i=1

fvMFB
(Xi|β, ri = |g(Yi)|+ ∥εi∥2, κi = θnriΦi(yn, Y1:n))

∝ π(β)
n∏

i=1

exp (θn⟨β,Xi⟩Φi(yn, Y1:n))

= π(β) exp
(
θn∥v̂(yn)∥2⟨β, β̂ml(yn)⟩

)
,

and the result is proved.
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Proof of Proposition 5. Let σn = 1/
√

nF̄ (yn). Combining Proposition 4 and Proposi-

tion 2, it follows

β̂c
map(yn) =

β + σnεn + (κ0/Kn)µ0

∥β + σnεn + (κ0/Kn)µ0∥2
,

where εn := σ−1
n (β̂ml(yn) − β)

P−→ 0. Taking account of σn → 0 and 1/Kn
P∼ σn/c → 0

as n → ∞, a first order Taylor expansion yields:

∥β + σnεn + (κ0/Kn)µ0∥22 = 1 + 2(κ0/Kn)⟨µ0, β⟩+ oP(σn) + oP(1/Kn),

since ∥β∥2 = 1, and therefore

1/∥β + σnεn + (κ0/Kn)µ0∥2 = 1− (κ0/Kn)⟨µ0, β⟩+ oP(σn) + oP(1/Kn).

Replacing, we get

β̂c
map(yn) = β + (κ0/Kn)(µ0 − ⟨µ0, β⟩β) + oP(σn) + oP(1/Kn),

or equivalently,

σ−1
n (β̂c

map(yn)− β) = κ0/(σnKn)(µ0 − ⟨µ0, β⟩β) + oP(1) + oP(1/(σnKn)),

and the result is proved under the assumption that σnKn
P−→ c > 0 as n → ∞.

Proof of Proposition 6. In view of (6), the MAP estimator is given by:

β̂s
map(yn) = argmin

∥β∥22=1

λ∥β∥1 −Kn⟨β, β̂ml(yn)⟩

= argmin
∥β∥22=1

p∑
j=1

(
λ|βj | −Knβj β̂ml,j(yn)

)
= argmin

∥β∥22=1

p∑
j=1

|βj |
(
λ−Kn sign(βj)β̂ml,j(yn)

)
.

Introducing bj = |βj | and sj = sign(βj) so that βj = sjbj , the above optimization

problem can be rewritten as

β̂s
map(yn) = argmin

b,s

p∑
j=1

bj(λ−Knsj β̂ml,j(yn)) s.t. ∥b∥22 = 1, bj ≥ 0, |sj | = 1, j ∈ {1, . . . , p}.

Clearly, the solution w.r.t. s is given by sj = sign(β̂ml,j(yn)) for all j ∈ {1, . . . , p} and

therefore

β̂s
map(y) = argmin

b∈Rp
C(b), s.t. ∥b∥22 = 1, bj ≥ 0, j ∈ {1, . . . , p}
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where

C(b) =

p∑
j=1

bj(λ−Kn|β̂ml,j(yn)|).

Let us introduce the two sets of indices

J+ =
{
j ∈ {1, . . . , p} ; λ−Kn|β̂ml,j(y)| ≥ 0

}
and J− =

{
j ∈ {1, . . . , p} ; λ−Kn|β̂ml,j(y)| < 0

}
,

such that C(b) = C+(b)− C−(b) where

C+(b) =
∑
j∈J+

bj
(
λ−Kn|β̂ml,j(y)|

)
and C−(b) =

∑
j∈J−

bj
∣∣λ−Kn|β̂ml,j(y)|

∣∣.
The minimum of the non-negative term C+(b) is reached for bj = 0, ∀j ∈ J+. The

negative term C−(b) corresponding to negative values of λ − Kn|β̂ml,j(y)| remains and

the problem can be rewritten as

β̂s
map(y) = argmin

b∈Rp

∑
j∈J−

bj

(
λ−Kn|β̂ml,j(y)|

)
s.t. ∥b∥22 = 1 and

{
bj ≥ 0, j ∈ {1, . . . , p},
bj = 0, j ∈ J+.

One can recognise a problem of minimization of projection on the vector of negative

terms
(
λ−Kn|β̂ml,j(y)|

)
j∈J− which is solved for positive terms (bj)j∈J− defined by

∀j ∈ J−, bj =
(
Kn|β̂ml,j(y)| − λ

)
/
√
δ where δ =

∑
j∈J−

(
Kn|β̂ml,j(y)| − λ

)2
.

One can notice that δ = ∥Sλ(Kn|β̂ml(y)|)∥22, and therefore

β̂s
map(y) = Sλ(Kn|β̂ml(y)|)/∥Sλ(Kn|β̂ml(y)|)∥2.

The result is thus proved.

Proof of Proposition 7. Let us recall the notation introduced in the proof of Proposi-

tion 5: σn = 1/
√

nF̄ (yn). Combining Proposition 6 and Proposition 2, it follows that

β̂s
map(yn) = β̃(yn)/∥β̃(yn)∥2 with, for all j ∈ {1, . . . , p}:

β̃j(yn) = Sλ (Kn(βj + σnεj,n)) ,

where εn
P−→ 0. Two cases arise:

• If βj = 0 then, clearly, β̃j(yn) = 0 with probability tending to one, sinceKnσn
P−→ c

and εn
P−→ 0 as n → ∞.
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• If βj ̸= 0, then Kn
P−→ ∞ and Knσn

P−→ c entail |Kn(βj + σnεj,n)|
P−→ ∞ as

n → ∞ and, therefore, with probability tending to one,

β̃j(yn) = sign(βj) (Kn(|βj | ± σnεj,n)− λ) = βjKn

(
1− λ

|βj |Kn
(1 + oP(1))

)
.

(11)

As a consequence, one has, with probability tending to one,

∥β̃(yn)∥22 = K2
n

∑
βj ̸=0

β2
j

(
1− λ

|βj |Kn
(1 + oP(1))

)2

= K2
n

1 +
∑
βj ̸=0

β2
j

(
λ2

β2
jK

2
n

(1 + oP(1))−
2λ

|βj |Kn
(1 + oP(1))

) ,

since ∥β∥2 = 1. It follows that

∥β̃(yn)∥22 = K2
n

(
1− 2λ∥β∥1

Kn
(1 + oP(1))

)
,

with probability tending to one, leading to

1

∥β̃(yn)∥2
=

1

Kn

(
1 +

λ∥β∥1
Kn

(1 + oP(1))

)
.

Combining with (11), one has, for all j ∈ {1, . . . , p} such that βj ̸= 0,

β̃j(yn)

∥β̃(yn)∥2
= βj

(
1 +

λ

Kn

(
∥β∥1 −

1

|βj |

)
(1 + oP(1))

)
,

or equivalently,

σ−1
n

(
β̃j(yn)

∥β̃(yn)∥2
− βj

)
=

λ

Knσn

(
∥β∥1 −

1

|βj |

)
βj (1 + oP(1)),

and Knσn
P−→ c proves the result.

B Appendix: Additional figures

We provide below additional figures corresponding to the illustration on simulated data

presented in Section 4. They correspond to the use of the conjugate prior with parameter

c ∈ {1/2, 1/4} (while the case c = 1 can be found in the main text), and the sparse prior

with parameter c ∈ {1, 1/2, 1/4}.
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Conjugate vMFS prior and link function g(t) = tc with c = 1/2.
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Figure 6: Finite sample behavior of the SEPaLS estimator computed with the conjugate

prior on simulated data in dimension p = 30 from a Pareto distribution (γY = 1/5, a = 2)

and a (rotated) Clayton copula with Kendall’s tau τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top

to bottom). The power of the link function g(t) = tc is fixed to c = 1/2. Vertically:

R(Yn−k+1,n) between β̂c
map and β for a prior direction µ0 = β (left) or µ0 = β̃ (right) as a

function of the number k ∈ {1, . . . , 100} of exceedances (horizontally). The concentration
parameter is κ0 ∈ {0, 10−4, 3.10−3, 10−2}, respectively in violet, blue, green and yellow.

Coloured areas correspond to 90% confidence intervals.
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Conjugate vMFS prior and link function g(t) = tc with c = 1/4.

µ0 = β µ0 = β̃
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Figure 7: Finite sample behavior of the SEPaLS estimator computed with the conjugate

prior on simulated data in dimension p = 30 from a Pareto distribution (γY = 1/5, a = 2)

and a (rotated) Clayton copula with Kendall’s tau τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top

to bottom). The power of the link function g(t) = tc is fixed to c = 1/4. Vertically:

R(Yn−k+1,n) between β̂c
map and β for a prior direction µ0 = β (left) or µ0 = β̃ (right) as a

function of the number k ∈ {1, . . . , 100} of exceedances (horizontally). The concentration
parameter is κ0 ∈ {0, 10−4, 3.10−3, 10−2}, respectively in violet, blue, green and yellow.

Coloured areas correspond to 90% confidence intervals.
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Sparse Laplace prior and link function g(t) = tc with c = 1.

p = 30 p = 300
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Figure 8: Finite sample behavior of the SEPaLS estimator computed with the sparse

prior on simulated data in dimension p = 30 (left) and p = 300 (right) from a Pareto

distribution (γY = 1/5, a = 2) and a (rotated) Clayton copula with Kendall’s tau

τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top to bottom). The power of the link function g(t) = tc

is fixed to c = 1. Vertically: R(Yn−k+1,n) between β̂s
map and β for as a function of the

number k ∈ {1, . . . , 100} of exceedances (horizontally). The concentration parameter is

λ ∈ {0, 10−4, 5.10−4, 10−3}, respectively in violet, blue, green and yellow. Coloured areas

correspond to 90% confidence intervals.
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Sparse Laplace prior and link function g(t) = tc with c = 1/2.

p = 30 p = 300
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Figure 9: Finite sample behavior of the SEPaLS estimator computed with the sparse

prior on simulated data in dimension p = 30 (left) and p = 300 (right) from a Pareto

distribution (γY = 1/5, a = 2) and a (rotated) Clayton copula with Kendall’s tau

τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top to bottom). The power of the link function g(t) = tc

is fixed to c = 1/2. Vertically: R(Yn−k+1,n) between β̂s
map and β for as a function of the

number k ∈ {1, . . . , 100} of exceedances (horizontally). The concentration parameter is

λ ∈ {0, 10−4, 5.10−4, 10−3}, respectively in violet, blue, green and yellow. Coloured areas

correspond to 90% confidence intervals.
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Sparse Laplace prior and link function g(t) = tc with c = 1/4.

p = 30 p = 300
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Figure 10: Finite sample behavior of the SEPaLS estimator computed with the sparse

prior on simulated data in dimension p = 30 (left) and p = 300 (right) from a Pareto

distribution (γY = 1/5, a = 2) and a (rotated) Clayton copula with Kendall’s tau

τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top to bottom). The power of the link function g(t) = tc

is fixed to c = 1/4. Vertically: R(Yn−k+1,n) between β̂s
map and β for as a function of the

number k ∈ {1, . . . , 100} of exceedances (horizontally). The concentration parameter is

λ ∈ {0, 10−4, 5.10−4, 10−3}, respectively in violet, blue, green and yellow. Coloured areas

correspond to 90% confidence intervals.
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