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Abstract

This research focuses on dimension-reduction techniques for modeling conditional extreme val-
ues. Specifically, we investigate the idea that extreme values of a response variable can be explained
by nonlinear functions derived from linear projections of an input random vector. In this context, the
estimation of projection directions is examined, as approached by the Extreme Partial Least Squares
(EPLS) method–an adaptation of the original Partial Least Squares (PLS) method tailored to the
extreme-value framework. Further, a novel interpretation of EPLS directions as maximum likelihood
estimators is introduced, utilizing the von Mises-Fisher distribution applied to hyperballs. The di-
mension reduction process is enhanced through the Bayesian paradigm, enabling the incorporation
of prior information into the projection direction estimation. The maximum a posteriori estimator
is derived in two specific cases, elucidating it as a regularization or shrinkage of the EPLS estima-
tor. We also establish its asymptotic behavior as the sample size approaches infinity. A simulation
data study is conducted in order to assess the practical utility of our proposed method. This clearly
demonstrates its effectiveness even in moderate data problems within high-dimensional settings. Fur-
thermore, we provide an illustrative example of the method’s applicability using French farm income
data, highlighting its efficacy in real-world scenarios.

Keywords: Extreme-value analysis, Dimension reduction, Shrinkage, Non-linear inverse regression,
Partial Least Squares.
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1 Introduction

In modern statistical regression situations, one has to deal with problems where the dimension p of the
covariates X is large, and where the size n of the dataset is insufficient to provide reliable estimations.
Using standard (parametric or nonparametric) regression techniques in such situations may yield overfit-
ting and therefore unstable estimations. This curse of dimensionality [Gee11] may be mitigated by iden-
tifying a low-dimensional subspace of the covariates X that maintains a strong link between the projected
covariates and the response variable Y . As an example, Partial Least Squares (PLS) regression [Wol75]
aims at estimating linear combinations of X coordinates having a high covariance with Y . Even though
PLS has been initially developed within the chemometrics field [MN92], it has also received considerable
attention in the statistical literature, see for instance [NT00]. Sliced Inverse Regression (SIR) [Li91] is
an alternative method to estimate a so-called central dimension reduction subspace based on an inverse
regression model, i.e. when X is written as a function of Y . Several extensions have been developed
for PLS and SIR, see [CHS13, LCT07] and [CFG17, CGS14, Por16] among others or [GLS22] for a re-
view. While the above-mentioned methods adopt the frequentist point of view, there also exist a number
of works in the literature based on Bayesian approaches. In [RBL11], the authors model the response
variable Y in terms of the predictors X using a mixture model whose parameters are estimated with a
Markov chain Monte Carlo (MCMC) procedure. The converse point of view is adopted in [MLM10]:
X is modeled as a function of Y thanks to an inverse mixture model, the estimation also requiring an
MCMC method. A similar approach is proposed in [CLL21] using a Bayesian inverse regression through
Gaussian processes and MCMC procedures.

The curse of dimensionality is exacerbated when modeling conditional extremes since tail events are
rare by nature. Nonparametric estimators of extreme conditional features [DGG13, DSUC23, GSUC21]
are thus impacted both by the scarcity of extremes and the high dimensional setting. Recently, some
works have introduced dimension-reduction tools dedicated to conditional extremes. One can men-
tion [APSZ21, Gar18] who propose extreme analogs of the central dimension reduction subspace. In [WLX22],
a semi-parametric approach is introduced for the estimation of extreme conditional quantiles based on a
tail single-index model. The dimension reduction direction is estimated by fitting a misspecified linear
quantile regression model. Extreme-PLS (EPLS) [BEG23] is a dimension reduction method relying on
PLS principles for estimating the linear combinations of X that best explain the extreme values of Y .

In this work, we develop shrinkage versions of the EPLS method for high-dimensional settings.
More specifically, the EPLS estimator is interpreted as a maximum likelihood estimator associated with
a von Mises-Fisher likelihood (Section 2). The latter distribution, which naturally arises for modeling
directional data distributed on the unit sphere [MJ09], is here adapted to hyperballs. Two prior distri-
butions are introduced on the dimension reduction direction in Section 3: A conjugate one based on the
von Mises-Fisher distribution and a second one using the Laplace distribution (both defined on the unit
sphere) to enforce sparsity. It is shown that the maximum a posteriori (MAP) estimator is available in

2



closed form, its computation does not require MCMC methods and can be interpreted as a shrinkage
version of the initial EPLS estimator. Convergence results are also established when the sample size
tends to infinity. The behavior of the two proposed estimators is illustrated on simulated data in Sec-
tion 4, while an application on French farm income data is described in Section 5 to assess the influence
of various parameters on field-grown carrot production. The functions to compute Shrinkage Extreme
Partial Least-Squares (SEPaLS) estimators are available in the R package SEPaLS1 [LGA23], while the
R code replicating the figures can be found online2. A discussion is provided in Section 6 and proofs are
postponed to the Appendix.

2 Extreme Partial Least Squares without shrinkage

Throughout, ⟨·, ·⟩ is the Euclidean scalar product on Rp, ∥ · ∥2 is the corresponding quadratic norm and
Sp−1 = {x ∈ Rp, ∥x∥2 = 1} is the associated unit sphere. Moreover, for any set {z1, . . . , zn}, z1:n
denotes the vector (z⊤1 , . . . , z

⊤
n )

⊤. Plus, two sequences of random variables (An) and (Bn) (where (Bn)

is almost surely non-zero) are equivalent in probability if An/Bn
P−→ 1 which is denoted by An

P∼ Bn.
Also, we write An = oP(Bn) if An/Bn

P−→ 0.
We first recall in Subsection 2.1 the derivation of the EPLS estimator from a statistical regression

model and, in Subsection 2.2, the extreme-value assumptions necessary to establish its asymptotic prop-
erties. Subsection 2.3 is dedicated to the presentation of the von Mises-Fisher distribution on the sphere
and to its adaptation to hyperballs. Based on these, we then reinterpret the EPLS direction as a maximum
likelihood estimator and derive its asymptotic properties in Subsection 2.4.

2.1 EPLS model

The following single-index inverse regression model is introduced in [BEG23]:

(A0) X = g(Y )β + ε, where X and ε are p-dimensional random vectors, Y is a real random variable,
g : R → R is an unknown link function, β ∈ Sp−1 is the unknown direction of interest.

Model (A0) is referred to as an inverse regression model since the covariates X are written as functions
of the response variable Y . Let {(X1, Y1), . . . , (Xn, Yn)} be an n sample with same distribution as
(X,Y ). The EPLS estimator of the unit direction β is obtained by maximizing with respect to u ∈ Sp−1

the empirical covariance between ⟨u,X⟩ and Y conditionally on large values of Y . More specifically,
the conditional covariance maximization problem is equivalent to

β̂(yn) = argmax
∥u∥2=1

⟨u, v̂(yn)⟩ =
v̂(yn)

∥v̂(yn)∥2
, (1)

1https://github.com/hlorenzo/SEPaLS/
2https://github.com/hlorenzo/SEPaLS simus/
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where, for any threshold yn ∈ R, v̂(yn) is defined by

v̂(yn) =
n∑

i=1

XiΦi(yn, Y1:n), (2)

with, for all i ∈ {1, . . . , n},

Φi(yn, Y1:n) =
1

n

(
ˆ̄F (yn)Yi − m̂Y (yn)

)
1{Yi ≥ yn},

the following first-order empirical moment

m̂Y (yn) =
1

n

n∑
i=1

Yi1{Yi ≥ yn},

and ˆ̄F the empirical survival function of Y . See [BEG23] for details. The asymptotic properties of the
EPLS estimator can be established under some assumptions on the distribution tails, described hereafter.

2.2 Extreme-value framework

Three assumptions on the link function g and the distribution tail of Y and ε are considered. They rely
on the notion of regularly-varying (RV) functions. Recall that φ ∈ RVθ (θ ∈ R) if and only if φ is
positive and

lim
y→∞

φ(ty)

φ(y)
= tθ,

for all t > 0. We refer to [BGT89] for a detailed account of regular variations.

(A1) The density function f of Y belongs to RV−1/γ−1, with 0 < γ < 1;

(A2) g ∈ RVc with c > 0 and 2γ(c+ 1) < 1;

(A3) There exists q > 1/(γc) such that E(∥ε∥q2) < ∞.

Assumption (A1) implies that F̄ ∈ RV−1/γ which in turn is equivalent to assuming that the distribution
of Y is in the Fréchet maximum domain of attraction with positive tail-index γ, see [BGT89, Theo-
rem 1.5.8] and [dHF07, Theorem 1.2.1]. This domain of attraction consists of heavy-tailed distributions,
such as Pareto, Burr and Student distributions, see [BGST04] for further examples. The larger γ is, the
heavier the tail. The restriction to γ < 1 ensures that the first-order moment E(|Y |1{Y ≥ y}) exists for
all y ∈ R. Assumption (A2) ensures that the link function g ultimately behaves like a power function.
Finally, (A3) can be interpreted as an assumption on the tail of ∥ε∥2. It is satisfied, for instance, by
distributions with exponential-like tails such as Gaussian, Gamma or Weibull distributions.
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2.3 Two von Mises-Fisher distributions

The von Mises-Fisher distribution vMF/S(µ, κ) on the unit sphere Sp−1, p ≥ 2, is defined by its proba-
bility density function [WW56]:

fvMF/S(x|µ, κ) = cp(κ) exp (κ⟨µ, x⟩)1{∥x∥2 = 1},

where µ ∈ Sp−1 is a location parameter and κ ≥ 0 is a concentration parameter. The normalizing
constant is given by:

cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
if κ > 0 and cp(0) =

Γ(p/2)

(2π)p/2
otherwise, (3)

where Iq(·) is the modified Bessel function of the first kind and order q ≥ 0 defined on R+ by

κ 7→ Iq(κ) =

∞∑
ℓ=0

1

Γ(q + ℓ+ 1)ℓ!

(κ
2

)2ℓ+q
, (4)

see [AS72, Chapter 9], with Γ(·) the Gamma function. The von Mises-Fisher distribution on the unit
sphere is widely used in the analysis of directional data and can be considered as a spherical analog of
the multivariate Gaussian distribution [Mar75]. Let us also recall that, for all µ ∈ Sp−1, vMF/S(µ, 0)
is the uniform distribution on the unit sphere (and thus, cp(0) coincides with the inverse of the sphere
surface) and that µ is the mode of the vMF/S(µ, κ) distribution for all κ > 0. We propose the following
adaptation of this distribution on balls:

Definition 1. The von Mises-Fisher distribution vMF/B(µ, r, κ) on the p-dimensional ball, p ≥ 2, of
radius r > 0 is defined by its probability density function:

fvMF/B(x|µ, r, κ) =
2πcp+2(κ)

rp
exp

(
κ⟨µ, x⟩

r

)
1{∥x∥2 ≤ r},

where µ ∈ Sp−1 is a location parameter and κ ≥ 0 is a concentration parameter.

We refer to Lemma 1 in the Appendix for a proof that fvMF/B(·|µ, r, κ) integrates to one. The next para-
graph shows that the vMF/B distribution plays a central role in the interpretation of the EPLS estimator
as a maximum likelihood estimator.

2.4 Maximum likelihood estimation

We first prove that the EPLS estimator, initially introduced by maximizing some empirical covariance,
can also be interpreted as a maximum likelihood (ML) estimator. It is thus denoted by β̂ml(yn) in the
sequel.
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Proposition 1. The EPLS estimator (1) is the ML estimator of β in the following model:

(i) X1, . . . , Xn are independent and, for all i ∈ {1, . . . , n}, Xi given (Y1:n, εi) is vMF/B(β, ri, κi)
distributed, with location parameter β, radius ri = |g(Yi)| + ∥εi∥2 and concentration parameter
κi = θnriΦi(yn, Y1:n), where θn > 0 is an arbitrary parameter.

(ii) (Y1:n, ε1:n) is distributed according to some arbitrary density p(·, ·) on Rn × Rpn that does not
depend on β.

This formalism opens the door to the construction of shrinkage estimators for β based on the Bayesian
paradigm in Section 3. Before that, the next Proposition provides a consistency result on the ML estima-
tor (1).

Proposition 2. Assume (A0), (A1), (A2) and (A3) hold. Let yn → ∞ such that nF̄ (yn) → ∞ and
nF̄ (yn)

1−2/q/g2(yn) → 0 as n → ∞. Then,√
nF̄ (yn)

(
β̂ml(yn)− β

)
P−→ 0.

We refer to [BEG23] for a discussion of the assumptions on the (yn) sequence. Let us simply recall that
nF̄ (yn) represents the effective number of observations used in the ML estimator. It is thus natural that
the associated rate of convergence is of order

√
nF̄ (yn).

3 Shrinkage for Extreme Partial Least Squares

A prior distribution π(·) is introduced on β and the shrinkage effect on the maximum a posteriori (MAP)
estimator is investigated. The posterior distribution is established in Subsection 3.1 and MAPs are de-
rived for two particular cases of priors in Subsection 3.2 and Subsection 3.3.

3.1 Posterior distribution

Combining Bayes’ rule with Proposition 1 makes it possible to derive the posterior distribution of β. See
Appendix for a detailed proof.

Proposition 3. Let θn > 0 and π(·) a prior distribution on β ∈ Sp−1. Then, under the model (i), (ii) of
Proposition 1, the posterior distribution of β is given by

p(β|X1:n, Y1:n, ε1:n) ∝ π(β) exp
(
Kn⟨β, β̂ml(yn)⟩

)
,

where we set Kn := θn∥v̂(yn)∥2.

The mode of the above posterior distribution is referred to as the SEPaLS estimator in the sequel. Its
existence is ensured as soon as π(·) is continuous on Sp−1, since a continuous function on a compact
domain attains its maximum value within that domain. We focus on the computation of the SEPaLS
estimator for two particular choices of π(·) described in the next two subsections.
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3.2 Conjugate prior

We first assume a vMF/S prior distribution for the direction β ∈ Sp−1, with location parameter µ0 ∈
Sp−1 and concentration parameter κ0 ≥ 0. The unit vector µ0 can be interpreted as a prior on β while
κ0 is the confidence level on this prior. A graphical representation in dimension p = 3 of the density
isocontours associated with this distribution is provided on the top of Figure 1 for µ0 = (1, 0, 0)⊤ and
κ0 ∈ {0, 1, 10, 100}. On the leftmost panel, the density is uniform on the unit sphere, and it becomes
more peaked around (1, 0, 0)⊤ as κ0 increases. Proposition 3 entails that the posterior distribution is
written for any β ∈ Sp−1 as:

p(β|X1:n, Y1:n, ε1:n) ∝ exp
(
⟨β,Knβ̂ml(yn) + κ0µ0⟩

)
,

which is still a vMF/S distribution. As expected, since the von Mises-Fisher distribution belongs to the
exponential family, considering the associated conjugate prior for β yields a posterior distribution of the
same type [NAGP05, TML14]. The following Corollary is easily derived.

Corollary 1. Let θn > 0, Kn := θn∥v̂(yn)∥2 and set π := vMF/S(µ0, κ0), with µ0 ∈ Sp−1 and κ0 ≥ 0,
as prior distribution on β. Then, under the model (i), (ii) of Proposition 1, the posterior distribution of
β is given by

β|X1:n, Y1:n, ε1:n ∼ vMF/S(µn, κn),

with location parameter µn equal to the MAP estimator,

µn = β̂c
map(yn) =

Knβ̂ml(yn) + κ0µ0

∥Knβ̂ml(yn) + κ0µ0∥2
,

and concentration parameter κn = ∥Knβ̂ml(yn) + κ0µ0∥2.

In this conjugate framework, the computation of the MAP estimator is straightforward since the mode
of the vMF/S distribution coincides with the location parameter: β̂c

map(yn) is a linear combination of
the prior direction µ0 with the EPLS estimator β̂ml(yn). Letting κ0 → ∞ yields β̂c

map(yn) → µ0, the
EPLS estimator is shrunk towards the prior direction. In contrast, setting κ0 = 0 amounts to assuming a
uniform prior distribution for the direction β and we thus recover the EPLS framework. This behavior is
illustrated on the bottom panel of Figure 1 with β̂ml ∝ (3/2,−1, 1/2)⊤ and Kn = 1.

We show in the next Proposition that a similar situation arises when Kn
P∼ c
√
nF̄ (yn) → ∞ (where

c > 0) and the rate of convergence of β̂c
map(yn) to β is provided.

Proposition 4. Under the assumptions of Proposition 2, let c > 0 and

θn
P∼ c
√
nF̄ (yn)/∥v̂(yn)∥2,

as n → ∞, then, √
nF̄ (yn)

(
β̂c
map(yn)− β

)
P−→ (κ0/c)P

⊥
β (µ0),

where P⊥
β (µ0) denotes the projection of µ0 on the hyperplane orthogonal to β.
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Comparing Proposition 2 and Proposition 4, it appears that the MAP estimator converges to β at a slightly
slower rate than the MLE. The two convergence rates however coincide when P⊥

β (µ0) = 0 i.e. when
µ0 = β, meaning that the prior distribution is centered on the true (unknown) direction.

3.3 Sparse prior

The EPLS method can be adapted to take into account the information that only a few covariates in X

are useful to explain the extreme values of the response variable Y . To this end, consider a Laplace(λ)
distribution on the unit sphere:

π(β|λ) = 1

bp(λ)
exp(−λ∥β∥1)1{∥β∥2 = 1}, with bp(λ) =

∫
∥x∥2=1

exp(−λ∥x∥1)dx (5)

as a prior for β ∈ Sp−1, where λ ≥ 0 is a concentration parameter. We refer to [Tib96] for the introduc-
tion of the Laplace prior in the regression context and to [CK10, VvGBL13] for sparse versions of PLS in
a non-extreme context. A graphical representation of the density isocontours of the Laplace distribution
in dimension p = 3 is provided on the top of Figure 2 for λ ∈ {0, 0.2, 0.4, 0.6}. On the leftmost panel,
the density is nearly uniform on the unit sphere, and it becomes more peaked around the three vertices
(1, 0, 0)⊤, (0, 1, 0)⊤ and (0, 0, 1)⊤ as λ increases.

As a consequence of Proposition 3, the posterior distribution can be written as

p(β|X1:n, Y1:n, ε1:n) ∝ exp
(
Kn⟨β, β̂ml(yn)⟩ − λ∥β∥1

)
, (6)

for any β ∈ Sp−1. Although this is not a classical distribution on the unit sphere, the MAP can be
computed in closed form:

Corollary 2. Let θn > 0, Kn := θn∥v̂(yn)∥2 and set π(·|λ) as the Laplace prior distribution (5) on β.
Then, under the model (i), (ii) of Proposition 1, the MAP estimator of β is:

β̂s
map(yn) = β̃(yn)/∥β̃(yn)∥2, with β̃j(yn) = Sλ(Knβ̂ml,j(yn)), j ∈ {1, . . . , p},

and where Sλ(·) is the shrinkage operator defined as Sλ(x) = sign(x) (|x| − λ)1{|x| > λ}, x ∈ R.

The MAP is obtained by shrinking the coordinates of β̂ml(yn) associated with the EPLS estimator to-
wards zero. See Figure 3 for an illustration of the shrinkage operator and [CK10, Theorem 3] for a
similar result in a non-extreme framework. Note that, when the concentration parameter is set to λ = 0,
we recover the EPLS method. The behavior of the β̂s

map estimator is illustrated on the bottom panel of
Figure 2 with β̂ml ∝ (3/2,−1, 1/2)⊤ and Kn = 1. When λ is small, both estimates β̂ml and β̂s

map are
superimposed. When λ increases, β̂s

map gets closer and closer to the vertex (1, 0, 0)⊤.

Similarly to the conjugate case, when Kn
P∼ c
√
nF̄ (yn) → ∞ (where c > 0), the rate of conver-

gence of β̂s
map(yn) to β can be established.
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λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

Figure 1: Isocontour plots of the vMF/S(µ0, κ0) prior density in dimension p = 3 (top) and of the
resulting posterior density (bottom) for κ0 ∈ {0, 1, 10, 100} (from left to right). The prior direction is
set to µ0 = (1, 0, 0)⊤. The estimators β̂ml and β̂c

map are depicted by blue and red points respectively.

λ = 0 λ = 0.2 λ = 0.4 λ = 0.6

Figure 2: Isocontour plots of the Laplace(λ) prior density in dimension p = 3 (top) and of the resulting
posterior density (bottom) for λ ∈ {0, 0.2, 0.4, 0.6} (from left to right). The estimators β̂ml and β̂s

map are
depicted by blue and red points respectively.
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Proposition 5. Under the assumptions of Proposition 2, let c > 0 and

θn
P∼ c
√
nF̄ (yn)/∥v̂(yn)∥2,

as n → ∞, then, for all j ∈ {1, . . . , p} such that βj ̸= 0,√
nF̄ (yn)

(
β̂s
map,j(yn)− βj

)
P−→ (λ/c) (∥β∥1βj − sign(βj)) .

Otherwise, if βj = 0, then β̂s
map,j(yn) = 0 with probability tending to 1.

It appears that the null coordinates of β are recovered with large probability thanks to the Laplace prior.
Similarly to the conjugate case, the MAP estimator usually converges to β at a slower rate than the
MLE. Both convergence rates are the same when the non-zero coordinates of β all coincide: βj =

sign(βj)/∥β∥1 for all j ∈ {1, . . . , p} such that βj ̸= 0.

Figure 3: Plot of the shrinkage operator Sλ(·) for any λ > 0.

4 Illustration on simulated data

4.1 Experimental design

The behavior of the SEPaLS estimators β̂c
map and β̂s

map is illustrated on the regression model (A0) with
power link function: t > 0 7→ g(t) = tc, c ∈ {1/4, 1/2, 1}. The output variable Y is distributed from
a Pareto distribution with survival function F̄ (y) = (y/2)−1/γ , y ≥ 2 and with tail-index γ = 1/5.
Each margin ε(j), j ∈ {1, . . . , p} of the error ε is simulated as the absolute value of a N (0, σ2) random
variable and depending on Y using the Clayton copula, an Archimedean copula [Nel07, Section 4],
defined for all (u, v) ∈ [0, 1]2 by

Cθ(u, v) =
(
u−θ + v−θ − 1

)−1/θ
,
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where θ ≥ 0 is a parameter tuning the dependence between the margins. Equivalently, the joint cumula-
tive distribution function of ε is given for all x ∈ Rp

+ by the one-factor model [KJ13]:

Fε(x) =

∫ 1

0

p∏
j=1

∂Cθ

∂v
(2Ψ(xj/σ)− 1, v)dv,

where Ψ denotes the cumulative distribution function of the standard Gaussian distribution. Note that
C0(u, v) = uv represents the independence copula while, as θ → ∞, Cθ(u, v) → min(u, v) which
represents the co-monotonicity copula. The dependence between the margins is assessed using Kendall’s
tau τ(θ) = θ/(θ+2) ∈ [0, 1) and is thus limited to positive values. We shall also consider the associated
rotated copula defined by C̃θ(u, v) = v − Cθ(1 − u, v) whose Kendall’s tau is negative and given by
τ̃(θ) = −τ(θ) ∈ (−1, 0], for all θ ≥ 0. Here, θ ∈ {1/2, 8} leads to four possible values of the Kendall’s
tau: {−0.8,−0.2, 0.2, 0.8}.

The standard deviation σ is selected such that the Signal to Noise Ratio (SNR), defined as SNR:=
g(F̄−1(1/n))/σ, is equal to 10. Note that g(F̄−1(1/n)) represents the approximate maximum value of
g on a n-sample from the distribution with associated survival function F̄ .

The sample size is fixed to n = 500 and two dimensions are considered: p ∈ {30, 300}. The true
direction is β = (1, 1, 0, . . . , 0)⊤/

√
2 for both dimensions.

The location parameter µ0 of the prior vMF/S distribution (conjugate case) is set either to β, which
corresponds to a perfect prior, or to β̃ := (1, . . . , 1, 0, . . . , 0)⊤/

√
p/2, which is far from the true

one, see Subsection 3.2 for details. Four values of the concentration parameter are investigated: κ0 ∈
{0, 10−4, 3.10−3, 10−2}. In the case of the Laplace prior (sparse case), we let λ ∈ {0, 10−4, 5.10−4, 10−3}.
In both situations, we set θn := 1 since this parameter does not play any role in practice.

4.2 Performance assessment

Let us define a “Proximity Criterion”, PC in the following, between the theoretical vector β and its MAP
estimator computed on N = 1000 replications, as follows:

PC(y) =
1

N

N∑
r=1

〈
β̂(r)
map(y), β

〉2
, (7)

where β̂
(r)
map denotes the MAP estimate on the rth replication under either the conjugate or the sparse

prior. Clearly PC∈ [0, 1] and the closer PC is to 1, the larger the proximity is. In practice, PC(Yn−k+1,n)

is computed as a function of the number of exceedances k ∈ {1, . . . , 100}, where Yn−k+1,n denotes the
(n− k + 1)th largest observation from the sample {Y1, . . . , Yn}.
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4.3 Results

Conjugate prior. The proximity criterion PC(Yn−k+1,n) between β̂c
map and β is drawn as a function

of k ∈ {1, . . . , 100} on Figures 4–6 considering 96 configurations in dimension d = 30: κ0 ∈
{0, 10−4, 3.10−3, 10−2}, τ ∈ {−0.8,−0.2, 0.2, 0.8}, c ∈ {1, 1/2, 1/4} and µ0 ∈ {β, β̃}, see Sub-
section 4.1 for details. Unsurprisingly, when µ0 = β i.e. when the prior direction points towards the
true one, the regularization improves the results of the original EPLS estimator (obtained when κ0 = 0).
Moreover, it reduces the sensitivity with respect to the number of exceedances k, the dependence degree
τ , and the exponent c of the link function. In all situations, one can obtain PC≃ 1 with κ0 = 10−2.
In contrast, when µ0 = β̃, the prior direction is ill-adapted since ⟨β̃, β⟩2 = 4/p ≃ 0.13 and too large
values of κ0 deteriorate the EPLS estimator. As expected, the choice of µ0 is of primary importance in
the conjugate prior.

Sparse prior. Similarly, the proximity criterion PC(Yn−k+1,n) between β̂s
map and β is drawn as

a function of k ∈ {1, . . . , 100} on Figures 7–9 in 96 configurations: λ ∈ {0, 10−4, 5.10−4, 10−3},
τ ∈ {−0.8,−0.2, 0.2, 0.8}, c ∈ {1, 1/2, 1/4} and d ∈ {30, 300}. Here, the regularization always
improves the results of the original EPLS estimator (obtained when λ = 0) since the true direction β is
rather sparse, it only has two non-zero coordinates. Enforcing sparsity allows to obtain PC≃ 0.8 (resp.
PC≃ 0.6) in dimension p = 30 (resp. d = 300) with exponents c ≥ 1/2. The case of small exponents
(c = 1/4) appears to be more complicated, the maximum value of PC depending on the dimension p and
on the dependence degree τ .

5 Application to real data

The SEPaLS method is illustrated on data extracted from the Farm Accountancy Data Network (FADN)3.
This dataset targets French farms described by numerous qualitative and quantitative variables over the
period 2000–2015. Here, we focus on the n = 598 farms producing field-grown carrots. The response
variable Y is the production of carrots (in quintals) and the covariate X is made of p = 259 continuous
variables including meteorological and economic measurements. Our goal is to investigate, among the
259 collected factors, which ones may influence the upper tail of Y , i.e. are linked to large productions
of carrots.

Three visual checks are first carried out in Figure 10 to verify whether the heavy-tail hypothesis on
Y is realistic. The histogram of the {Y1, . . . , Yn} on the top left panel is skewed to the right and has a
heavy right tail. Besides, the Hill estimator [Hil75]

γ̂(k) =
1

k

k∑
i=1

log(Yn−i+1,n/Yn−k,n)

3Available at: https://agreste.agriculture.gouv.fr/agreste-web/servicon/I.2/listeTypeServicon/
(in French).
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of the tail-index γ is drawn on the top right panel as a function of k ∈ {1, . . . , 500}. The result-
ing graph is stable on the range k ∈ {160, . . . , 280} and points towards γ ≃ 0.72. Finally, select-
ing k = 199 (this choice is discussed below), the associated quantile-quantile plot of the log-excesses
log(Yn−i+1,n/Yn−k,n) against the quantiles log(k/i) of the unit exponential distribution, i ∈ {1, . . . , k}
exhibits a linear trend (bottom panel) which is further empirical evidence that the heavy-tail assumption
is appropriate, see [BGST04, pp.109–110].

In the following, we focus on the sparse estimator β̂s
map since the use of β̂c

map would require an initial
guess for β0 which is not obvious in this application context. The next two conditional tail correlation
measures are introduced to interpret the results obtained with β̂s

map:

ρ(⟨X, β̂s
map(y)⟩, Y |Y ≥ y) =

cov(⟨X, β̂s
map(y)⟩, Y |Y ≥ y)

σ(⟨X, β̂s
map(y)⟩|Y ≥ y)σ(Y |Y ≥ y)

, (Figure 11, top panel),

(8)

ρ(⟨X, β̂s
map(y)⟩, X(j)|Y ≥ y) =

cov(⟨X, β̂s
map(y)⟩, X(j)|Y ≥ y)

σ(⟨X, β̂s
map(y)⟩|Y ≥ y)σ(X(j)|Y ≥ y)

, (Figure 11, bottom panel),

(9)

with j ∈ {1, . . . , p}. The role of the tail correlation measure (8) is to assess the correlation in the tail
between the response variable Y and the summary ⟨X, β̂s

map(y)⟩ of the predictors built by the SEPaLS
method. It is computed at the threshold y = Yn−k+1,n and plotted on Figure 11 as a function of the
number of exceedances k for several levels of shrinkage λ. Note that, when k is small, the correlation
vanishes for a wide range of λ values since, in this case, the prior weight is too large compared to the
likelihood one. The global maximum is located at k = 199 which corresponds to a stable region of the
Hill estimator according to Figure 10. The maximum correlation (ρ ≃ 0.79) is reached at λ = 353.

The role of the tail correlation measure (9) is to assess the correlation in the tail between the summary
⟨X, β̂s

map(y)⟩ of the predictors built by the SEPaLS method and the initial ones X(j), j ∈ {1, . . . , p}.
It is computed at the threshold y = Yn−k+1,n and plotted on the bottom left panel of Figure 11 as a
function of the number of exceedances k for λ = 353. All correlation curves feature a nice stability with
respect to k, especially in the neighborhood of k = 199.

In the sequel, we thus select k = 199 and λ = 353. With these choices, only 5 coordinates of β̂s
map

out of 259 are estimated to non-zero values, see the bottom right panel of Figure 11 for an illustration
and Table 1 for a description of the selected variables. Meteorological variables are discarded since large
productions of carrots do not seem to depend on weather conditions. Remarking on Figure 10 that the
summary variable ⟨X, β̂s

map(y)⟩ is positively correlated with the high values of Y , one can conclude
that, unsurprisingly, large productions are associated with large cultivated areas (SUD4CARO), large
amounts of work both in terms of time (UTASA, UTATO) and remuneration charges (FPERS), and large
investments in supplies (CHRFO).
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Table 1: Real data example. Description of the 5 selected variables (out of 259) associated with 598 farms
producing field-grown carrots in France from 2000 to 2015. The last column displays the corresponding
non-zero coordinates of β̂s

map. (⋆) UTA: amount of work associated with one full-time working person
during one year.

Selected variables Description Units β̂s
map,j

SUD4CARO Area cultivated with field-grown carrots hectares 0.978
UTASA Salaried work UTA(⋆) 0.158
UTATO Salaried and not salaried work UTA(⋆) 0.124
CHRFO Actual cost of stored supplies euros 0.038
FPERS Remuneration charges euros 0.026

6 Discussion

We proposed a Bayesian interpretation of the EPLS model to introduce prior information on the direction
of dimension reduction for extreme values. Two examples of shrinkage priors are provided: a conjugate
von Mises-Fisher prior allowing to consider an initial guess on the direction, and a Laplace prior enforc-
ing sparsity on the estimated direction. Finite sample experiments demonstrate that the proposed method
is effective in high dimension (d = 300 on simulated data and d ≃ 260 on real data) with moderate
sample sizes (n = 500 on simulated data and n ≃ 600 on real data).

Here, we limited ourselves to the estimation of one single direction, but the SEPaLS method can eas-
ily be adapted to the estimation of multiple directions using the iterative procedure described in [BEG23,
Section 4]. We also focused on prior distributions yielding explicit shrinkage estimators. It would be of
interest to investigate the use of other priors: either uninformative priors such as Jeffreys’ one [Jef46] or
other shrinkage priors [VEOM19] can be considered. The computation of the posterior mode estimate
would rely on an MCMC procedure.
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Link function g(t) = tc with c = 1

µ0 = β µ0 = β̃
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Figure 4: Finite sample behavior of the SEPaLS estimator computed with the conjugate prior on simu-
lated data in dimension d = 30 from a Pareto distribution (γ = 1/5, a = 2) and a (rotated) Clayton
copula with Kendall’s tau τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top to bottom). The power of the link func-
tion g(t) = tc is fixed to c = 1. Vertically: PC(Yn−k+1,n) between β̂c

map and β for a prior direction
µ0 = β (left) or µ0 = β̃ (right) as a function of the number k ∈ {1, . . . , 100} of exceedances (horizon-
tally). The concentration parameter is κ0 ∈ {0, 10−4, 3.10−3, 10−2}, respectively in violet, blue, green
and yellow. Colored areas correspond to 90% confidence intervals, lines to medians.
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Link function g(t) = tc with c = 1/2

µ0 = β µ0 = β̃
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Figure 5: Finite sample behavior of the SEPaLS estimator computed with the conjugate prior on simu-
lated data in dimension d = 30 from a Pareto distribution (γ = 1/5, a = 2) and a (rotated) Clayton
copula with Kendall’s tau τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top to bottom). The power of the link func-
tion g(t) = tc is fixed to c = 1/2. Vertically: PC(Yn−k+1,n) between β̂c

map and β for a prior direction
µ0 = β (left) or µ0 = β̃ (right) as a function of the number k ∈ {1, . . . , 100} of exceedances (horizon-
tally). The concentration parameter is κ0 ∈ {0, 10−4, 3.10−3, 10−2}, respectively in violet, blue, green
and yellow. Colored areas correspond to 90% confidence intervals, lines to medians.
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Link function g(t) = tc with c = 1/4
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Figure 6: Finite sample behavior of the SEPaLS estimator computed with the conjugate prior on simu-
lated data in dimension d = 30 from a Pareto distribution (γ = 1/5, a = 2) and a (rotated) Clayton
copula with Kendall’s tau τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top to bottom). The power of the link func-
tion g(t) = tc is fixed to c = 1/4. Vertically: PC(Yn−k+1,n) between β̂c

map and β for a prior direction
µ0 = β (left) or µ0 = β̃ (right) as a function of the number k ∈ {1, . . . , 100} of exceedances (horizon-
tally). The concentration parameter is κ0 ∈ {0, 10−4, 3.10−3, 10−2}, respectively in violet, blue, green
and yellow. Colored areas correspond to 90% confidence intervals, lines to medians.
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Link function g(t) = tc with c = 1

d = 30 d = 300
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Figure 7: Finite sample behavior of the SEPaLS estimator computed with the sparse prior on simulated
data in dimension from a Pareto distribution (γ = 1/5, a = 2) and a (rotated) Clayton copula with
Kendall’s tau τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top to bottom). The power of the link function g(t) = tc

is fixed to c = 1. Vertically: PC(Yn−k+1,n) between β̂s
map and β for d = 30 (left) and d = 300 (right) as

a function of the number k ∈ {1, . . . , 100} of exceedances (horizontally). The concentration parameter
is λ ∈ {0, 10−4, 5.10−4, 10−3}, respectively in violet, blue, green and yellow. Colored areas correspond
to 90% confidence intervals, lines to medians.
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Link function g(t) = tc with c = 1/2
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Figure 8: Finite sample behavior of the SEPaLS estimator computed with the sparse prior on simulated
data in dimension from a Pareto distribution (γ = 1/5, a = 2) and a (rotated) Clayton copula with
Kendall’s tau τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top to bottom). The power of the link function g(t) = tc

is fixed to c = 1/2. Vertically: PC(Yn−k+1,n) between β̂s
map and β for d = 30 (left) and d = 300

(right) as a function of the number k ∈ {1, . . . , 100} of exceedances (horizontally). The concentration
parameter is λ ∈ {0, 10−4, 5.10−4, 10−3}, respectively in violet, blue, green and yellow. Colored areas
correspond to 90% confidence intervals, lines to medians.
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Link function g(t) = tc with c = 1/4
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Figure 9: Finite sample behavior of the SEPaLS estimator computed with the sparse prior on simulated
data in dimension from a Pareto distribution (γ = 1/5, a = 2) and a (rotated) Clayton copula with
Kendall’s tau τ ∈ {−0.8,−0.2, 0.2, 0.8} (from top to bottom). The power of the link function g(t) = tc

is fixed to c = 1/4. Vertically: PC(Yn−k+1,n) between β̂s
map and β for d = 30 (left) and d = 300

(right) as a function of the number k ∈ {1, . . . , 100} of exceedances (horizontally). The concentration
parameter is λ ∈ {0, 10−4, 5.10−4, 10−3}, respectively in violet, blue, green and yellow. Colored areas
correspond to 90% confidence intervals, lines to medians.

20



Fr
eq

ue
nc

y

0 5000 10000 15000 20000

0
20

40
60

80

γ̂
(k
)

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

lo
g
(Y

n
−
i+

1
,n
/
Y
n
−
1
9
9
,n
)

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

log(199 i)i=1 ... k=199

lo
g(

Y
n−

i+
1

Y
n−

19
9) i

=1
 ..

. k
=1

99

Y

0 2 4 6 8

0
50

00
10

00
0

15
00

0
20

00
0

Xt β̂MAP

s
 (k = 199)

Y

log(199/i) ⟨Xi, β̂
s
map(Yn−199+1,n)⟩

Figure 10: Real data example. Top left: Histogram of {Y1, . . . , Yn}. Top right: Hill plot k ∈
{1, . . . , 500} 7→ γ̂(k) and associated confidence intervals (dotted lines). Bottom left: Quantile-quantile
plot (horizontally: log(k/i), vertically: log(Yn−i+1,n/Yn−k,n), for i ∈ {1, . . . , k}) drawn with k = 199,
the regression line is superimposed in red. Bottom right: Scatter-plot (⟨Xi, β̂

s
map(Yn−k+1,n)⟩, Yi),

i ∈ {1, . . . , n} with k = 199. Points below the threshold (Yi ≤ Yn−k+1,n) are depicted in gray.

21



ρ
(⟨
X
,β̂

s m
a
p
(y
)⟩
,Y

|Y
≥

y
)

100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

k
2000

1

353

ρ
(⟨
X
,β̂

s m
a
p
(y
)⟩
,X

(j
) |Y

≥
y
)

200 250 300 350 400

−1
.0

−0
.5

0.
0

0.
5

1.
0

k

SUD4CARO

UTASA

UTATO

CHRFO

FPERS

−1
.0

−0
.5 0.
0

0.
5

1.
0
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7 Appendix: Proofs

This first Lemma establishes that fvMF/B(·|µ, r, κ) is a proper density function integrating to one.

Lemma 1. Let p ≥ 2. For all µ ∈ Sp−1, r > 0 and κ ≥ 0,∫
∥x∥2≤r

1

rp
exp

(
κ⟨µ, x⟩

r

)
dx =

1

2πcp+2(κ)
,

where cp+2(κ) is defined in (3).

Proof (of Lemma 1). The change of variable x 7→ y = x/r leads to∫
∥x∥2≤r

1

rp
exp

(
κ⟨µ, x⟩

r

)
dx =

∫
∥y∥2≤1

exp(κ⟨µ, y⟩)dy,

and switching to polar coordinates yields∫
∥y∥2≤1

exp(κ⟨µ, y⟩)dy =

∫ 1

0
ρp−1

∫
Sp−1

exp(ρκ⟨µ, u⟩)dudρ,

=

∫ 1

0

ρp−1

cp(ρκ)
dρ

=
(2π)p/2

κp/2−1

∫ 1

0
ρp/2Ip/2−1(ρκ)dρ

=
(2π)p/2

κp

∫ κ

0
tp/2Ip/2−1(t)dt.

From the definition of the modified Bessel function (4) as a power series with infinite radius of conver-
gence, one has: ∫ κ

0
tp/2Ip/2−1(t)dt =

∞∑
ℓ=0

(
1

22ℓ+p/2−1Γ(p/2 + ℓ)ℓ!

∫ κ

0
t2ℓ+p−1dt

)

=

∞∑
l=0

κ2ℓ+p

22ℓ+p/2−1Γ(p/2 + ℓ)ℓ! (2ℓ+ p)
.

Taking account of (p/2 + ℓ)Γ(p/2 + ℓ) = Γ(p/2 + ℓ+ 1), it follows∫ κ

0
tp/2Ip/2−1(t)dt = κp/2

∞∑
ℓ=0

1

Γ(p/2 + ℓ+ 1)ℓ!

(κ
2

)2ℓ+p/2
= κp/2Ip/2(κ),

leading to ∫
∥x∥2≤r

1

rp
exp

(
κ⟨µ, x⟩

r

)
dx =

(2π)p/2

κp/2
Ip/2(κ) =

1

2πcp+2(κ)
,

which concludes the proof.
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Proof (of Proposition 1). For any θn > 0, in view of (2), the optimization problem (1) can be rewritten
as:

β̂(yn) = argmax
∥β∥2=1

exp (θn⟨β, v̂(yn)⟩) = argmax
∥β∥2=1

n∏
i=1

exp (θn⟨β,Xi⟩Φi(yn, Y1:n)) . (10)

Under model (A0), the triangle inequality yields ∥Xi∥2 ≤ |g(Yi)| + ∥εi∥2, and thus, conditionally
on (Yi, εi), Xi belongs to the ball centered at 0 with radius ri := |g(Yi)| + ∥εi∥2. The optimization
problem (10) can be rewritten in terms of densities associated with the vMF/B distribution as

β̂(yn) = argmax
∥β∥2=1

n∏
i=1

fvMF/B (Xi|β, ri = |g(Yi)|+ ∥εi∥2, κi = θnriΦi(yn, Y1:n)) .

It appears that β̂ can be interpreted as the estimator maximizing the likelihood conditionally on (Y1:n, ε1:n).
Since the density p(·, ·) of (Y1:n, ε1:n) does not depend on β, one also has

β̂(yn) = argmax
∥β∥2=1

(
n∏

i=1

fvMF/B (Xi|β, ri = |g(Yi)|+ ∥εi∥2, κi = θnriΦi(yn, Y1:n))

)
p(Y1:n, ε1:n),

and thus β̂(yn) can also be viewed as the unconditional maximum likelihood estimator of β.

The next Lemma will reveal useful in the proof of Proposition 2 below.

Lemma 2. Let (σn) and (cn) be positive real sequences with σn → 0 as n → ∞. Let A be a random
vector in Rp, b ∈ Sp−1 a non-random vector, and (Bn) a sequence of random vectors in Rp such that

σ−1
n

(
Bn

cn
− b

)
d−→ A.

Then,

σ−1
n

(
Bn

∥Bn∥2
− b

)
P−→ P⊥

b (A),

where P⊥
b (A) := A− ⟨b, A⟩b denotes the projection of A on the hyperplane orthogonal to b.

Proof (of Lemma 2). Let ϵn := σ−1
n

(
Bn
cn

− b
)
−A. From the assumption of convergence in distribution,

we have that ϵn converges in distribution to a Dirac mass at 0. Clearly,

∥Bn∥22 = c2n∥b+ σn(A+ ϵn)∥22 = c2n
(
1 + 2σn⟨b, A+ ϵn⟩+OP(σ

2
n)
)
,

and inverting the latter equality yields

cn = ∥Bn∥2
(
1− σn⟨b, A+ ϵn⟩+OP(σ

2
n)
)
.

Replacing in the expression of Bn = cn(b+ σn(A+ ϵn)), we obtain

Bn = ∥Bn∥2
(
1− σn⟨b, A+ ϵn⟩+OP(σ

2
n))(b+ σn(A+ ϵn)

)
= ∥Bn∥2

(
b+ σn(A+ ϵn − b⟨b, A+ ϵn⟩) +OP(σ

2
n)
)
,
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and therefore

σ−1
n

(
Bn

∥Bn∥2
− b

)
= A+ ϵn − b⟨b, A+ ϵn⟩+OP(σ

2
n)

P−→ A− b⟨b, A⟩ = P⊥
b (A),

which is the desired result.

Proof (of Proposition 2). From [BEG23, Theorem 1], one has√
nF̄ (yn)

(
v̂(yn)

∥v(yn)∥2
− β

)
d−→ ξβ,

with ξ a centered Gaussian random variable and where

v(yn) := F̄ (yn)E(XY 1{Y≥yn})− E(X1{Y≥yn})E(Y 1{Y≥yn}).

The result follows from Lemma 2 applied with σn = 1/
√
nF̄ (yn), Bn = v̂(yn), cn = ∥v(yn)∥2, b = β,

A = ξβ and therefore P⊥
b (A) = 0.

Proof (of Proposition 3). In view of Bayes’ rule, the posterior distribution of β is given by

p(β|X1:n, Y1:n, ε1:n) ∝ π(β)p(Y1:n, ε1:n)
n∏

i=1

fvMF/B (Xi|β, ri = |g(Yi)|+ ∥εi∥2, κi = θnriΦi(yn, Y1:n)) .

Since p(Y1:n, ε1:n) does not depend on β, the posterior distribution can be simplified as

p(β|X1:n, Y1:n, ε1:n) ∝ π(β)

n∏
i=1

fvMF/B (Xi|β, ri = |g(Yi)|+ ∥εi∥2, κi = θnriΦi(yn, Y1:n))

∝ π(β)

n∏
i=1

exp (θn⟨β,Xi⟩Φi(yn, Y1:n))

= π(β) exp
(
θn∥v̂(yn)∥2⟨β, β̂ml(yn)⟩

)
,

and the result is proved.

Proof (of Proposition 4). Let σn = 1/
√
nF̄ (yn). Combining Corollary 1 and Proposition 2, it follows

β̂c
map(yn) =

β + σnεn + (κ0/Kn)µ0

∥β + σnεn + (κ0/Kn)µ0∥2
,

where εn := σ−1
n (β̂ml(yn)− β)

P−→ 0. Taking account of σn → 0 and 1/Kn
P∼ σn/c → 0 as n → ∞,

a first order Taylor expansion yields:

∥β + σnεn + (κ0/Kn)µ0∥22 = 1 + 2(κ0/Kn)⟨µ0, β⟩+ oP(σn) + oP(1/Kn),

and therefore

1/∥β + σnεn + (κ0/Kn)µ0∥2 = 1− (κ0/Kn)⟨µ0, β⟩+ oP(σn) + oP(1/Kn).
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Replacing, we get

β̂c
map(yn) = β + (κ0/Kn)(µ0 − ⟨µ0, β⟩β) + oP(σn) + oP(1/Kn),

or equivalently,

σ−1
n (β̂c

map(yn)− β) = κ0/(σnKn)(µ0 − ⟨µ0, β⟩β) + oP(1) + oP(1/(σnKn)),

and the result is proved under the assumption that σnKn
P−→ c > 0 as n → ∞.

Proof (of Corollary 2). In view of (6), the MAP estimator is given by:

β̂s
map(yn) = argmin

∥β∥22=1

λ∥β∥1 −Kn⟨β, β̂ml(yn)⟩

= argmin
∥β∥22=1

p∑
j=1

(
λ|βj | −Knβj β̂ml,j(yn)

)
= argmin

∥β∥22=1

p∑
j=1

|βj |
(
λ−Kn sign(βj)β̂ml,j(yn)

)
.

Introducing bj = |βj | and sj = sign(βj) so that βj = sjbj , the above optimization problem can be
rewritten as

β̂s
map(yn) = argmin

b,s

p∑
j=1

bj(λ−Knsj β̂ml,j(yn)) s.t. ∥b∥22 = 1, bj ≥ 0, |sj | = 1, j ∈ {1, . . . , p}.

Clearly, the solution w.r.t. s is given by sj = sign(β̂ml,j(yn)) for all j ∈ {1, . . . , p} and therefore

β̂s
map(y) = argmin

b∈Rp
C(b), s.t. ∥b∥22 = 1, bj ≥ 0, j ∈ {1, . . . , p}

where

C(b) =

p∑
j=1

bj(λ−Kn|β̂ml,j(yn)|).

Let us introduce the two sets of indices

J+ =
{
j ∈ {1, . . . , p} ; λ−Kn|β̂ml,j(y)| ≥ 0

}
and J− =

{
j ∈ {1, . . . , p} ; λ−Kn|β̂ml,j(y)| < 0

}
,

such that C(b) = C+(b)− C−(b) where

C+(b) =
∑
j∈J+

bj
(
λ−Kn|β̂ml,j(y)|

)
and C−(b) =

∑
j∈J−

bj
∣∣λ−Kn|β̂ml,j(y)|

∣∣.
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The minimum of the non-negative term C+(b) is reached for bj = 0, ∀j ∈ J+. The negative term C−(b)

corresponding to negative values of λ−Kn|β̂ml,j(y)| remains and the problem can be rewriten as

β̂s
map(y) = argmin

b∈Rp

∑
j∈J−

bj

(
λ−Kn|β̂ml,j(y)|

)
s.t. ∥b∥22 = 1 and

{
bj ≥ 0, j ∈ {1, . . . , p},
bj = 0, j ∈ J+.

One can recognize a problem of minimization of projection on the vector of negative terms
(
λ −

Kn|β̂ml,j(y)|
)
j∈J− which is well-known to be solved for positive terms (bj)j∈J− defined by

∀j ∈ J−, bj =
(
Kn|β̂ml,j(y)| − λ

)
/
√
γ where γ =

∑
j∈J−

(
Kn|β̂ml,j(y)| − λ

)2
.

One can notice that γ = ∥Sλ(Kn|β̂ml(y)|)∥22, and therefore

β̂s
map(y) = Sλ(Kn|β̂ml(y)|)/∥Sλ(Kn|β̂ml(y)|)∥2.

The result is thus proved.

Proof (of Proposition 5). Let us recall the notation introduced in the proof of Proposition 4: σn =

1/
√
nF̄ (yn). Combining Corollary 2 and Proposition 2, it follows that β̂s

map(yn) = β̃(yn)/∥β̃(yn)∥2
with, for all j ∈ {1, . . . , p}:

β̃j(yn) = Sλ (Kn(βj + σnεj,n)) ,

where εn
P−→ 0. Two cases arise:

• If βj = 0 then, clearly, β̃j(yn) = 0 with probability tending to one, since Knσn
P−→ c and

εn
P−→ 0 as n → ∞.

• If βj ̸= 0, then Kn
P−→ ∞ and Knσn

P−→ c entail |Kn(βj + σnεj,n)|
P−→ ∞ as n → ∞ and,

therefore, with probability tending to one,

β̃j(yn) = sign(βj) (Kn(|βj | ± σnεj,n)− λ) = βjKn

(
1− λ

|βj |Kn
(1 + oP(1))

)
. (11)

As a consequence, one has, with probability tending to one,

∥β̃(yn)∥22 = K2
n

∑
βj ̸=0

β2
j

(
1− λ

|βj |Kn
(1 + oP(1))

)2

= K2
n

1 +
∑
βj ̸=0

β2
j

(
λ2

β2
jK

2
n

(1 + oP(1))−
2λ

|βj |Kn
(1 + oP(1))

) ,

since ∥β∥2 = 1. It follows that

∥β̃(yn)∥22 = K2
n

(
1− 2λ∥β∥1

Kn
(1 + oP(1))

)
,
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with probability tending to one, leading to

1

∥β̃(yn)∥2
=

1

Kn

(
1 +

λ∥β∥1
Kn

(1 + oP(1))

)
.

Combining with (11), one has, for all j ∈ {1, . . . , p} such that βj ̸= 0,

β̃j(yn)

∥β̃(yn)∥2
= βj

(
1 +

λ

Kn

(
∥β∥1 −

1

|βj |

)
(1 + oP(1))

)
,

or equivalently,

σ−1
n

(
β̃j(yn)

∥β̃(yn)∥2
− βj

)
=

λ

Knσn

(
∥β∥1 −

1

|βj |

)
βj (1 + oP(1)),

and Knσn
P−→ c proves the result.
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