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Abstract—This article investigates the usage of Artificial 
Intelligence (AI) techniques in the prediction of network 
performance for Industrial Internet of Things (IIoT). In industrial 
environments, 5G Ultra Reliable Low Latency Communications 
(URLLC) are intended for serving critical services with very 
stringent latency requirements, such as those involving 
collaborative robots. Even if the flexible 5G New Radio (NR) 
design is able to achieve the target IIoT performances, the 
necessary spectrum resources need to be available and reserved 
for URLLC. A Quality of Service (QoS) prediction scheme is thus 
needed for anticipating performance degradation and undertake 
necessary actions, such as network resource provisioning or 
application adaptation, e.g. by entering an adapted mode. We 
explore the design of AI algorithms for QoS prediction in 
industrial environments, and compare different tools for 
regression and classification, including Neural Networks (NN) and 
K Nearest Neighbors (K-NN). We explore prediction based on 
Signal to Interference and Noise Ratio (SINR), or simply based on 
the position of robots within the plant. As the latency degradation 
event is rare in general, we observe that the training data is highly 
imbalanced leading to a low prediction accuracy. We show how 
the prediction performance can be enhanced by importance 
sampling techniques and by a modified detection threshold in 
what we call M-KNN scheme. 
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I. INTRODUCTION 
5G is envisioned as a federating communication technology 

as it is designed to serve three main service categories that are 
eMBB for enhanced Mobile Broadband, massive Machine 
Type Communications (mMTC) and Ultra Reliable Low 
Latency Communications (URLLC).  These latter services are 
suitable for Industrial Internet of Things (IIoT) applications, as 
they enable an overwhelming proportion of packets (99,999%) 
to be received within a latency budget ranging from 0.5 to 10 
ms, depending on the use case [1]. These very stringent Quality 
of Service (QoS) requirements are made possible due to several 
features such as the flexible numerology of 5G New Radio 
(NR), punctured scheduling in the downlink and the enhanced 
retransmission schemes in the uplink that allow for blind and 
repeated retransmission of URLLC packets [2].  

 
These advanced URLLC features have to be accompanied 

by an adequate provisioning of resources for URLLC slice as 
the available resources may not be sufficient in high traffic 
scenarios, leading to a degraded performance of the industrial 
system. In this context, a reactive scheme where resources are 

allocated to URLLC upon QoS degradation is not adequate and 
may lead to a violation of the reliability constraint, especially 
that the reconfiguration phase of the URLLC slice may take 
several tens of milliseconds [3]. A solution may be in over-
provisioning of resources to the URLLC slice, but this is clearly 
inefficient and not always possible. We propose in this paper a 
QoS prediction framework that detects in advance the QoS 
degradation in order for enabling proactive schemes. On one 
hand, this will allow the provisioning of adequate resources for 
the URLLC slice, and on the other hand, in case of impossibility 
of provisioning sufficient resources in very high traffic regimes, 
this may allow the industrial system to enter an adapted mode 
that generates less traffic by relying on local information [4].  

The problem of predicting QoS in wireless networks has 
attracted some attention in the past years. [5] used a Random 
Forest algorithm for predicting the achievable data rate for 
mobile broadband applications, based on measurement data 
including radio and network management measurements. When 
it comes to specific services, [6] considered the video streaming 
service and used machine learning tools, namely Generalized 
Linear Model (GLM) and Support Vector Machine (SVM) for 
predicting buffer starvation events, based on the user’s radio 
conditions and the system load. [7] developed a random forest 
based algorithm that estimates the YouTube quality observing 
the IP packet arrivals. To the best of our knowledge, this work 
is the first one to consider AI-based prediction for URLLC.  

 
Our proposed framework uses Artificial Intelligence (AI) to 

predict the packet loss due to delay violation. The considered 
scenario is Automated Guided Vehicles (AGV) in confined 
industrial environments where the application layer is able to 
send reliable trajectory and data traffic predictions to the 
network controller. The network controller then associates 
these traffic and trajectory information with network-related 
information to predict QoS in the near future state. The training 
phase is based on data from the network with known AGV 
locations and traffic profiles. We explore two sets of AI 
methods that are Neural Networks and K-Nearest Neighbors 
(K-NN) classifier. We explore the prediction schemes with 
different types of training data, ranging from network level 
parameters (Signal to Interference and Noise Ratio (SINR)) to 
application-level information (trajectory-based position 
estimation). As our target application is URLLC, classical AI 
performance metrics such the prediction accuracy are not 
adequate, as the detection of loss events remains far from being 



 

 

suitable for URLLC, even for a high prediction accuracy. This 
is due to two reasons. First, the loss event is rare for URLLC so 
that the training set does not contain sufficient data points for 
learning about loss conditions. And second, the AI methods are 
classically designed to predict the most likely outcome, while 
in the case of URLLC detecting risks is primordial. For coping 
with the rareness of the loss events, we make use of importance 
sampling for generating data that is less imbalanced. As of 
algorithm tuning, we modify the classical K-NN clustering 
algorithm and propose a new scheme, named (M,K)-NN that 
predicts a loss event when at least M among the K nearest 
neighbors is a loss. We show how the values of M and K can be 
tuned so that losses are detected with an acceptable price on 
false negatives. 
The contributions of this paper are the following: 
● We develop an AI-based QoS prediction framework for 

URLLC in industrial environments. 
● We compare the performances of neural network and K-

NN algorithms depending on the use case and the available 
network data. 

● We propose an important sampling framework for 
accelerating the convergence of the learning phase. 

● We propose an enhanced (M,K)-NN algorithm that is 
tailored towards detecting risks of losses in critical use 
cases. 

 
The remainder of this paper is organized as follows. In 

section II, we describe the problem of QoS prediction in 
industrial environments and the corresponding data. Section III 
develops a Neural Network based method for predicting 
URLLC QoS when the SINR is known and shows how 
importance sampling enhances the prediction performance. 
Section IV considers a more realistic setting where only the 
positions of AGVs are available and not their SINR. We 
compare the NN performance with a modified K-NN algorithm. 
Section V discusses the impact of the proposed QoS prediction 
framework on the network management. Section VI eventually 
concludes the paper. 

II. QOS PREDICTION SCENARIO 

The predictive QoS is a mechanism that enables the mobile 
network to provide notifications about the potential QoS 
changes in order to adjust the system  in advance. This feature 
is particularly interesting to use cases of critical nature. For 
instance the industry automation and automotive applications 
have very demanding QoS requirements and the network may 
not always guarantee the required QoS. In such cases, a 
notification in advance of a potential change in the QoS may 
avoid or reduce undesired behavior and damages. We present 
in this section the QoS prediction scenario and describe the 
dataset that will be the basis of our prediction framework. 

A. Studied scenario 
We consider a scenario of a typical factory including a number 
of wireless connected robots equipped with URLLC transceiver 
and communicate with a central controller via a number of 

gNodeBs that are deployed within the factory. Regarding the 
spectrum aspects, the mmWave 5G band is privileged in such 
scenario as it offers extreme capacity and very low latency [10].  
 
As of the traffic pattern, we consider per-robot Poisson traffic 
generation with a 1 ms interval between two consecutive 
packets. Each packets is of size 12 Bytes. In critical IoT 
services, a latency budget is defined which corresponds to the 
maximum allowed delay to correctly receive and decode a 
packet. Beyond the latency budget the packet transmission is 
failed and the packet is considered as lost. In this study the 
latency budget is equal to 1 ms. For the link adaptation, the 
MCS is chosen so that the target BLER equal to 10-5.  
 
The goal is to predict the degradation of the quality of service 
of URLLC users in order to adapt the configuration of the 
network and / or the application function and the selected key 
performance indicator to trigger the adapted mode is the 
latency. The adopted Key Performance Indicator (KPI) is the 
maximal achieved latency for each user that is compared to a 
given threshold (depending on the latency budget). The 
prediction task is then a classification problem that predicts 
whether the latency exceeds the threshold or not. 
 

B. Dataset acquisition and exploitation 
Our dataset is acquired using a 3GPP-compliant system level 
simulator. Table 1 presents the detailed system parameters. 

TABLE I.  SYSTEM AND TRAFFIC PARAMETERS 

Radio parameters 

Frequency band  26 GHz 

TTD pattern  DUDU  

Bandwidth  100 MHz 

Sub carrier spacing  120 kHz 

Mini slot size  7 OFDM symbols  

Traffic parameters 

Traffic pattern Poisson  

Traffic intensity 1 packet/ms 

Packet size 12 Bytes 

Target radio latency 1 ms 

Network parameters 

Number of gNodeBs 2 

Number of sectors  6 

Number of AGVs 5 
 

The factory communication service area size is equal to 160 
m*160 m and includes 5 robots with uniformly random 
positions. We consider a deployment of 2 ceiling-mounted 
gNodeBs located at height of 10 m and equipped each with 



 

 

three directional antennas. The channel model is based on the 
3GPP Indoor Factory Dense clutter High BS (InF-DH) model 
defined in [9].The prediction module is fed by information from 
the network side about the SINR or the positions of the robots.  
 
We conducted a large number of downlink system level 
simulations of the studied scenario to evaluate the performance 
of URLLC in terms of latency and packet loss probability. The 
above mentioned deployment options (frequency band, 2 
gNodeBs in a small area…) and the low target BLER (used in 
link adaptation and physical layer abstraction) are adapted for 
critical IoT use cases, leading to a very low percentage of lost 
packets, as expected for URLLC.  
During the simulations, we collected a training dataset that 
contains network level information (path loss, SINR, load) and 
QoS information (per packet average and maximal delay) 
associated to the different positions in the network.  
This training data set is exploited to learn the association 
between network parameters and the QoS, as will be explained 
in the next section. In the exploitation phase, a subset of the 
input information is available to the QoS prediction module, 
provided by the application layer or measured by the network. 
Note that detailed architecture for QoS prediction and 
subsequent network management is presented in section V. 
Two practical options are studied: 
 
• SINR available: In this option, detailed radio conditions are 

available when predicting the URLLC QoS, leading to 
known SINR. Note that the SINR embeds the path loss and 
the interferences and is thus expected to provide accurate 
predictions. However, when QoS is predicted based on 
SINR knowledge, degradation is already there or will 
closely occur, and any subsequent network reconfiguration 
scheme can be seen as reactive.  

• Position available: In this option, only the position of the 
AGV is known when predicting the QoS. No radio 
information (SINR or interference) is known and the 
prediction may be less effective. However, such a 
prediction is suitable for proactive system reconfiguration, 
as the position may be obtained from trajectory predictions 
provided by the IIoT controller. 
The SINR and positions data represent two extreme 
prediction features and should give an insight about the 
lower and upper bounds of the prediction performance, and 
on the performances of the reactive vs. proactive schemes.  

III. QOS PREDICTION BASED ON SINR 
As state before, the choice of the SINR as input feature is 

motivated by the high correlation observed between the users 
SINR and the maximum achieved latency. This is illustrated by 
Figure 1 and Figure 2 representing the users’ SINR values and 
the users’ maximum latency, respectively. Compared both 
figures indicates that users with high latency values suffer from 
low SINR values. 

 
Figure 1: SINR map 

  

Figure 2: Latency map 

 

A. Neural Network  prediction on the original dataset 
We start by a prediction technique based on neural network 

(NN) algorithms.  The NN takes as input the predicted SINR of 
the user and provides as output a classification into two classes: 
a normal class where no latency degradation is predicted, and a 
degraded class.  

We perform a fine tuning of the neural network hyper 
parameters. We evaluate different neural network parameters 
such as the number of hidden layers, ranging from 1 to 8 with 
pyramidal architecture, number of neurons and optimizers. The 
simulation data is split and used for training and testing. 
Throughout the remainder of the paper, Table II will present the 
prediction performances for the different models. Each line 
corresponds to a prediction model or scenario. The first two 
columns describe the input data (SINR or positions, simulation 
method). The next two columns describe the prediction model 
(principle and parameters) and the last columns give the 
prediction performance. Three metrics are considered: 

• Accuracy: the percentage of successful predictions over the 
whole test set. We count as a success each time the 
prediction corresponds to what is observed in simulation. 

• False Negatives (FN): the percentage of packets where a 
good delay is predicted, while there was an outage in reality. 



 

 

• False Positives (FP): the percentage of packets where an 
outage is predicted, while the actual delay was below the 
threshold. 

Our trials led us to the estimator that we call “NN-basic”: a 
neural network with one hidden layer including 16 neurons and 
stochastic gradient descent optimizer. We have chosen this 
model because adding layers or neurons does not bring 
additional accuracy for the considered scenario.  

Line 1 of Table II presents the performance of the basic 
model. The results present an interesting global accuracy of 
99%. However the false negatives percentage (FN) is 60% 
meaning that only 40% of the outage cases were predicted . The 
reason behind the misdetection of the latency is the rareness of 
the loss event since the network deployment configuration is 
well adapted for the latency constraint. In our simulations, the 
latency problems happen in around 2% of cases. The data is thus 
largely imbalanced towards the class of “good QoS” that the NN 
tends to predict a good QoS in most of the cases. 

B. Prediction using importance sampling data 
To get around the problem of prediction bias towards the 
dominant event, an importance sampling (IS) approach was 
applied to the simulator. The IS process consists in biasing the 
simulator for generating more input data that belong to the rare 
event class. To do so, a weighting on the probability of 
occurrence was added, thus increasing the number of points in 
the problematic areas where latency issues occur the most often. 
The biasing consists in the following process: 
 
• Start simulations with a uniform distribution of users’ 

positions in the network. 
• Each time a loss event is detected, the spatial distribution 

of the users’ positions is biased by increasing the 
probability of being generated around the area where the 
loss occurred. 

 
This process is classically applied for the performance 
evaluation of rare events in communication networks [9][10], 
and the biasing is followed by the unbiasing of results so that 
the probability of rare events is computed accurately. However, 
in our case, we do not aim at computing the QoS degradation 
event, but to learn how to detect it, so that the final unbiasing is 
not necessary. 
Data issued from simulation with IS was used in the training 
phase of the “Basic-NN” model and regular simulation data was 
used in the testing phase. The corresponding evaluation is given 
in line 2 of  Table II and presents 0% of false negatives (i.e., 
detection of 100% of outage situations). However, the global 
accuracy is reduced to 98% compared to the evaluation without 
IS which is explained by the increase of the relative false 
positives (FP) to 2%, i.e., the NN predicts degradation in some 
outage-free situations. 

IV. POSITIONS-BASED PREDICTION 
We now move to the case of proactive schemes where the 
trajectory information, and thus the positions of AGVs, is 
available to the QoS prediction module. In this case, we do not 
have detailed SINR values, as we suppose that the future 
interference is not known. We always use the importance 
sampling data for the training set. 

A. Neural Network Classifier 
As a first step, the Basic-NN model was trained by the users’ 
positions to predict the QoS class. Line 3 of Table II shows that 
the simple architecture of the Basic-NN is no more adapted to 
the positions as input features, since the global accuracy drops 
to 83% and the prediction degradation impacts both latency 
classes (12% FN and 16% FP) which suggests the need for a 
deeper model to fit with users positions. After hyper parameters 
tuning, another NN structure is proposed and is composed of 2 
hidden layers with 64 neurons. In terms of performance 

TABLE II. PREDICTION RESULTS 

 
 Input 

features 
Data type  Prediction 

Algorithm 
Prediction parameters Prediction performance  

Training Test Acc. FN FP 

1  SINR  No IS  No IS Neural network  Basic-NN:  
Layers: (16) 
Batch size: 1 

Optimizer: SGD 

99% 60% 0.1% 

2  SINR  IS  No IS  Neural network Basic-NN 98% 0% 2% 
3 Positions  IS  No IS Neural network Basic-NN 83% 12% 16% 
4 Positions  IS  No IS Neural network Layers: (64,64) 

Batch size: 16 
Optimizer: RMSProp  

97.4% 8.3% 2.5% 

5 SINR  IS  No IS Neural network Layers: (64,64) 
Batch size: 16 

Optimizer: RMSProp  

98% 0% 2 % 

6 Positions IS  No IS KNN K = 1 96.4% 5.7% 3.6% 
7 Positions IS  No IS KNN K = 3 96.5% 5.7% 3.4% 
8 Positions IS  No IS M-KNN K = 3, M= 1 93.4% 0% 6.7% 

  

 



 

 

evaluation, line 4 of Table II presents a global accuracy of 
97.4% representing a significant enhancement compared to the 
basic model and the misdetection and false alarm probabilities 
are respectively 8.3% and 2.5%. No further enhancement was 
obtained by parameter tuning. 
Before moving to a different set of classifiers adapted to the 
new type of input features, we move back to the SINR-based 
classifier and make use of the enhanced NN structure for 
predicting QoS. Line 5 of Table II shows that the prediction 
results are the same as for the basic-NN model when 
considering the SINR as input, consolidating the result that 
Basic-NN is the best option when SINR is available. 
 

B. K-Nearest Neighbors Classifier 
Even if the results of the NN classifier with positions (line 4) 
are enhanced compared to the basic NN structure (line 3), they 
are still unacceptable for the URLLC use case. We thus 
investigate the usage of other classifiers and our choice comes 
naturally to the K-Nearest Neighbors (KNN) classifier. Indeed, 
the main reason behind exceeding the latency budget is the high 
level of interference in some specific regions of the industrial 
environment, and when the positions are known, clustering 
based on the spatial dimension seems a natural choice. In the 
classification phase, the latency class of a given user is thus 
assigned to the most common class among the K nearest 
neighbors of the user in terms of Euclidian distance. Line 6 of 
Table II presents the performance of KNN algorithm when K is 
equal to 1 and generally the results are comparable to the neural 
networks classifier (line 4). More specifically, we observe a 
slight degradation of the global accuracy and false alarm 
probability and an enhancement of the FN. Increasing the 
parameter K to 3 does not bring any improvement (line 7). 
 

C. M-KNN proposed Classifier 
As our aim is to enhance detection of rare events, we propose 

a generalized version of KNN, called M-KNN, that biases 
results towards the less represented class in the training set. The 
first step of M-KNN operates as the traditional KNN where the 
classes of the K nearest neighbors are determined. We then 
assign the tested point to the “degraded QoS” class if at least M 
among these K neighbors belong to this latter class. This second 
step allows to minimize the probability of misdetection of the 
rare event, when M is smaller than K/2. This method was applied 
for K=3 and M=1, meaning that we predict a degraded QoS if at 
least one of the 3 nearest neighbors in the training set has a 
degraded QoS. The results of this enhanced clustering method is 
given by line 8 of Table II where we can notice a large 
improvement of the QoS degradation prediction (FP=0), with a 
slight increase of the false alarms (from 3.4% to 6.7%). 

V. IMPACT ON THE NETWORK MANAGEMENT 
QoS prediction is a first step towards a management framework 
that anticipates network degradation and reconfigures locally 
the network or the application for preventing, proactively, the 
degradation of critical applications. While the mechanisms for 
network and application reconfiguration are out of the scope of 
this paper, we describe here the architecture that enables such 

adaptation and quantify the cost of mis-predictions in terms of 
number of unnecessary reconfigurations. 

A. QoS prediction architecture 

Figure 3 illustrates the QoS prediction architecture adopted in 
this paper. This architecture is inspired from 3GPP rel-16 
architecture [8]. We propose to use the Network Data Analytics 
Function (NWDAF), that is the network function and technical 
feature of the predictive QoS of the 5G system architecture [8]. 
NDWAF provides analytics to 5G Core Network Functions and 
Operation, Administration  and Maintenance (OAM) functions. 
Different procedures are used to support the network data 
analytics such as the slice and network load analytics. Among 
the different services provided by the NWDAF, the predictive 
QoS solution in 3GPP Rel-16 is called QoS Sustainability 
Analytics where a consumer (a network function) may 
subscribe to NWDAF analytics service regarding the likelihood 
of QoS changes for a given period in the future or in the past in 
a certain area. The outputs depend on the analytics target 
period, which is specified in the request/ subscription message, 
and consists of statistics if the target period refers to the past or 
predictions if the target period refers to the future. In this case, 
the QoS prediction function that is part of the NWDF receives 
network and QoS measurements from the dedicated 
measurement function at the NWDAF, and traffic/trajectory 
planning from the application controller.   

 

Figure 3: QoS prediction architecture. 

B. Example reconfiguration actions 

Figure 3 illustrates the steps for the system reconfiguration 
based on QoS prediction. The OAM module responsible for 
QoS measurements continuously monitors the network and 
QoS Key Performance Indicators (KPI) (step 0). The 
application server sends periodically to the QoS prediction 
module the trajectory planning and the traffic predictions (step 
1). The QoS prediction module combines these two sources of 
information (steps 0 and 1) and makes use of the AI methods 
described in this paper to predict QoS. If a degraded QoS is 
predicted for some devices, the NWDAF sends this information 
to the network reconfiguration module (step 2), that applies the 
necessary reconfiguration actions (step 3). The impact of these 
actions is translated to the NWDAF via a change in the network 
KPIs. The QoS prediction module predicts again the QoS. If the 
predicted QoS is still degraded despite the network 
reconfiguration, it sends a notification to the application 
controller that needs to adapt the application (step 4).  



 

 

Note that the QoS changes may be triggered due to various 
reasons, as for example the handover towards a cell with lower 
radio signal strength, or the traffic overload. The network 
reconfiguration procedures may involve additional spectrum 
reservation, enabling multi-connectivity, interference 
management, activation of small base stations in high spectrum, 
etc.  When the QoS is predicted to degrade, despite the network 
reconfiguration, the industrial application has to reconfigure. 
Note that industrial applications have typically two operation 
modes: 

• Normal mode:  where the end to end communication 
service is delivered according to agreed QoS. 

• Safe mode:  where the end to end communication service 
cannot be delivered according to agreed QoS. The safe 
operation mode is intended for maintenance and 
troubleshooting to bring application back to Normal mode. 

The predictive QoS introduces an additional mode that is 
“adapted mode”, where the End to End communication service 
may not be delivered according to agreed QoS, but the 
application temporarily continues with adapted behavior such 
as reduced speed [4]. 

C. Quantifying the excessive reconfiguration overhead 

While the network and application reconfiguration itself is out 
of the scope of this paper, we are able to estimate the impact of 
our proposed QoS prediction method on the initiation of 
reconfiguration tasks. We apply our prediction framework on 
the system simulator described in Section II, and observe QoS 
compared to the predicted QoS when using SINR values (NN 
parameters of Table II, line 2) or predicted positions (M-KNN 
parameters of Table II, line 8). We made use of these prediction 
methods as they ensure 100% detection of the degradation (no 
False Negatives), with a cost on some false positives (2% and 
6.7%, respectively). A false positive may trigger an 
unnecessary reconfiguration action if it occurs for a user that is 
attached to a cell which does not present any other user with 
degraded QoS.  

 
Figure 4: Quantification of the impact of prediction errors on 
the network reconfiguration planning 

Figure 4 illustrates the number of reconfiguration actions 
that are effectively needed, compared with those based on 

predictions. There are 300 different simulated positions. We 
observe that the SINR-based predictions trigger in average 3.7 
times more reconfiguration actions, while the position-based 
prediction applies 9.4 more reconfigurations. 

VI. CONCLUSION 
This paper has investigated AI-based QoS prediction for 5G 

networks in industrial environments. The targeted services are 
latency-critical and are usually rare in well dimensioned 
networks. This makes the prediction task hard as the training set 
is largely imbalanced. We propose an importance sampling 
technique for re-balancing the training set. We then test 
prediction methods on two sets of inputs: SINR and device 
positions. We found out that a Neural Network predictor is 
adequate for SINR inputs, while a nearest neighbor classifier is 
better for positions inputs. As the service is critical, we showed 
how to tune the parameters of the predictors to detect the QoS 
degradation, with the cost of some false positives. We then 
propose an architecture for implementing our proposed 
framework and assessed the impact of the false positives on the 
system management overhead. 
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