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Athermal (i.e. zero-temperature) under-constrained systems are typically floppy, but they can be
rigidified by the application of external strain. Following our recently-developed analytical theory
for the athermal limit, here and in the companion paper, we extend this theory to under-constrained
systems at finite temperatures close to the athermal transition point. We derive from first principles
the partition sum for a broad class of under-constrained systems, from which we obtain analytic
expressions for elastic material properties such as isotropic tension t and shear modulus G in terms
of isotropic strain ε, shear strain γ, and temperature T . Our work unifies the physics of systems as
diverse as polymer fibers & networks, membranes, and vertex models for biological tissues.

I. INTRODUCTION

Under-constrained systems possess more degrees of
freedom (dofs), Ndof , than constraints (or springs), Ns.
In the athermal limit, i.e. at zero temperature, under-
constrained systems are generally floppy. Conversely,
over-constrained systems, which have Ndof < Ns, are
generally rigid [1, 2]. We recently developed a generic
analytic framework to predict the elastic properties of
athermal, under-constrained systems [3, 4]. However,
such a framework does not yet exist for thermal, i.e.
finite-temperature, under-constrained systems.

In the athermal limit, under-constrained systems are
typically floppy due to the existence of zero modes. For
instance, there are infinitesimal zero modes, i.e. collec-
tive displacements of the dofs that do not affect any of the
constraints to linear order. The number of linearly inde-
pendent infinitesimal zero modes, N0, is given by [1, 2]:

N0 = Ndof −Ns +NSSS , (1)

where NSSS is the number of linearly independent states
of self-stress (SSS). A SSS is a combination of virtual
tensions put on the springs of a network that does not
result in any net force on the dofs. According to Eq. (1),
under-constrained systems always have a positive number
of infinitesimal zero modes.

There are three possibilities regarding the nature of in-
finitesimal zero modes. First, they could be trivial zero
modes, i.e. global translations or rotations of the sys-
tem, which leave the “shape” of the system unchanged.
Second, they could correspond to mechanisms, i.e. finite
displacements that change the “shape” of the system,
but do not affect any of the constraints [5, 6]. Third,
while inducing no changes to the constraints to linear
order, they could induce changes to higher order, corre-
sponding to higher-order rigidity [7, 8]. Here, we refer to
this third kind as lower-order zero mode. At zero tem-
perature, under-constrained are typically floppy because
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many of the infinitesimal zero modes often correspond to
mechanisms.

Still, under-constrained systems can be rigidified by
global strain, such as isotropic expansion or shear [2, 3, 7–
11]. This athermal rigidity transition is due to the
shrinkage of the hyper-volume of dof configurations that
are geometrically compatible with the constraints. At
this rigidity transition, a SSS is created [5], and a posi-
tive number of mechanisms turns into lower-order zero
modes. Beyond this transition point, the constraints
cannot be fulfilled any more, i.e. the external strain is
geometrically incompatible with the constraints, and in
the case of a spring network, any further strain creates
prestresses in the springs. These prestresses, together
with the SSS created at the transition, rigidify the sys-
tem [2, 3, 5, 9, 12, 13]. In previous work, we used these
insights to analytically predict the elastic material prop-
erties close to the rigidity transition in the athermal limit
[3, 4]. These ideas apply not only to spring networks, but
also to other systems such as polymer networks [14–17]
and vertex models for biological tissues [3, 13, 18–20].

Despite these advances for the athermal limit, there
is still relatively little known about thermal, i.e. finite-
temperature, under-constrained systems [21–23]. Recent
work used effective-medium theory (EMT) to obtain an-
alytical expressions for the shear modulus of spring net-
works [24, 25], and Mannattil et al. discuss the effect of
singularities in the configuration space on the mechanics
of the system [6]. However, we still lack a generic theory
for the elastic properties of thermal, under-constrained
systems.

Here, we analytically derive from first principles the
partition sum and elastic properties of thermal, under-
constrained systems close to the athermal transition for
varying isotropic strain ε, shear strain γ, and small
temperatures T . After defining the class of under-
constrained systems that we discuss here (section II), we
first revisit the athermal limit (section III). This will
provide the foundations for discussing at finite tempera-
ture both the limit of infinitely stiff springs (section IV)
and the general case of finite spring stiffness (section V).
In the companion paper [26], we numerically verify the
analytical results obtained here.
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II. MODEL

A. Under-constrained system

We consider a Hookean network with fixed connectivity
of Ns generalized springs with length Li, labeled by i =
1, . . . , Ns. The system energy is:

E =
1

2

Ns∑
i=1

Ki

(
Li − L0i

)2
, (2)

where the sum is over all springs i with spring constants
Ki and rest lengths L0i.

Each generalized spring length Li has dimension di.
For example, angular springs have di = 0, ordinary linear
springs or perimeter springs in the vertex model have
di = 1, and area and volume springs in the vertex model
have di = 2 and di = 3, respectively. Thus, also models
that, for example, combine 2D or 3D vertex models with
spring networks are accounted for [27]. The notion of the
dimension di of a generalized spring length Li is further
formalized in Eq. (5) below.

The spring network is embedded in D spatial dimen-
sions with periodic boundary conditions with total sys-
tem volume V . The periodic box can be sheared with
shear strain variable γ. Our framework applies both to
simple and pure shear [3].

The generalized spring lengths depend on Nnode node
positions Ra with a = 1, . . . , Nnode, which correspond to
the Ndof = DNnode degrees of freedom. We denote the
collection of all components of all node positions by the
Ndof -dimensional vector

#–

R. Here we consider an under-
constrained spring network, where Ndof > Ns. To be
precise, we discuss here a slightly stricter class of under-
constrained models that will be specified later.

Throughout this article, we treat all Ki and L0i as
constant and study the behavior of the Li depending on
system size V , shear γ, and temperature T .

B. Athermal transition

We consider a network that in the athermal limit tran-
sitions from floppy (zero shear modulus) to rigid (finite
shear modulus) at some critical volume. For spring net-
works or vertex models, this is typically the case when
the network percolates the periodic box (in the sense of
connectivity percolation). For zero shear strain, γ = 0,
we denote this critical volume by V ∗, where, consistent
with earlier findings [3, 4], we assume here that the sys-
tem is floppy for V < V ∗ and rigid for V > V ∗.

For simplicity, we assume here and in the following
that there are no states of self-stress (SSS) in the floppy
regime. Also, we assume that only a single SSS forms
at the transition, which is generally true for disordered
networks.

C. Isotropic strain

We define isotropic strain ε with respect to the critical
volume V ∗:

ε :=
1

D
log

(
V

V ∗

)
. (3)

Thus, for γ = 0, the transition occurs at ε = 0.
We introduce the dimensionless degrees of freedom

(ddofs) #–r as:

#–r := V −1/D #–

R = e−ε(V ∗)−1/D #–

R. (4)

This allows us to formalize the notion of spring dimen-
sion. We say that a spring i has dimension di if the spring
length Li(

#–

R, ε, γ) is homogeneous of degree di with re-
spect to an isotropic rescaling. In other words, Li can be
written as:

Li(
#–

R, ε, γ) = L0ie
diε`i(

#–r , γ) (5)

with a function `i(
#–r , γ) that depends on the ddofs #–r and

shear strain γ, but not on isotropic strain ε. We call `i
the dimensionless spring length. At the transition, where
Li = L0i, we have `i = 1.

Finally, we define the dimensionless weights

wi :=

√
KiL2

0i

E0
, (6)

where we have introduced the energy scale E0 :=
(
∑
iKiL

2
0i)/Ns such that

∑
i w

2
i = Ns. This allows us

to rewrite the system energy as

E =
E0

2

Ns∑
i=1

w2
i

(
ediε`i − 1

)2
. (7)

To lowest order in ε, and with ∆`i = `i−1, we thus have:

E =
E0

2

Ns∑
i=1

w2
i

(
∆`i + diε

)2
. (8)

To obtain Eq. (8) from Eq. (7), we have factored out
the prefactor ediε in front of the parentheses, which scale
to lowest order as ∼ ε. The prefactor of ediε only adds
higher-order terms and is thus neglected.

III. ATHERMAL LIMIT (T → 0)

While in previous work we derived the elastic system
properties in the athermal limit based on a minimal-
length function [3, 4], we present here an alternative
derivation, which will prepare our discussions in the sub-
sequent sections.
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A. Alternative derivation

We denote the values of the ddofs #–r at the transi-
tion by #–r ∗. For simplicity, we assume here that #–r ∗ is
uniquely defined. Global translations do not change any
of the arguments below, and we focus on networks where
mechanisms do not have any influence on the SSS that
forms at the transition.

We now expand the dimensionless spring lengths `i
around the transition point at #–r ∗ and for small γ. This
is possible because each dimensionless spring length `i
is an analytical function of #–r and γ [28]. Denoting the
components of #–r by rn, we can write to second order in
∆rn := rn − r∗n and γ:

w
˙
i∆`

˙
i = Cin∆rn +

1

2
Mimn∆rm∆rn +B

(1)
i γ +

1

2
B

(2)
i γ2.

(9)
Here and in the following, we imply summation over
equal indices (except for indices with underdots, and in
the absence of explicit sums). On the right-hand side,
Cin is a generalized compatibility matrix, and the ma-
trix Mimn is symmetric in the last two indices. We intro-
duce the shear strain dependence through the coefficients

B
(1/2)
i . In general, matrices Cin and Mimn may depend

on γ. However, including this dependency turns out not
to be important to lowest order in our final results, both
here and in the following sections (appendix B). There
are no ε-dependent terms in Eq. (9), because the `i func-
tions are independent of ε.

We further simplify the problem of minimizing the sys-
tem energy by performing a singular-value decomposition
(SVD) on the compatibility matrix:

Cin =

Ns∑
p=1

UipspVnp, (10)

where each of Uip and Vnp is an orthogonal square matrix,
and the singular values sp are sorted in decreasing order:
s1 ≥ · · · ≥ sNs . Because at the transition a single SSS
is created, we have sNs−1 > 0 and sNs = 0, where UiNs
is the corresponding SSS. Furthermore, all Vnp with p =
Ns, . . . , Ndof are infinitesimal zero modes.

Based on the SVD of the compatibility matrix,
Eq. (10), we define changes of spring lengths and of de-
grees of freedom in the “eigen bases” of Cin:

∆˜̀
p :=

∑
i

Uipwi∆`i (11)

∆r̃p := Vnp∆rn. (12)

Thus, the expansion in Eq. (9) transforms into:

∆˜̀
p = s

˙
p∆r̃

˙
p+

1

2
M̃pmn∆r̃m∆r̃n+B̃(1)

p γ+
1

2
B̃(2)
p γ2, (13)

where we have also transformed M and B(1/2) into the
eigenbases of C: M̃pmn := UipMim′n′Vm′mVn′n and

B̃
(1/2)
p := UipB

(1/2)
i .

We now insert the Taylor expansion of w
˙
i∆`

˙
i into the

system energy, Eq. (8). First, using Parseval’s theorem,
we have:

E =
E0

2

Ns∑
i=1

(
w

˙
i∆`

˙
i + d

˙
iw

˙
iε
)2

=
E0

2

Ns∑
p=1

(
∆˜̀

p + w̃pε
)2

.

(14)

Here, we have introduced w̃p :=
∑
i Uipdiwi. Note that

Eq. (10) is invariant with respect to a sign flip in the SSS,
whose components are given by UiNs for each spring i.
For convenience, we choose this sign such that w̃Ns =∑
i UiNsdiwi ≥ 0.
Inserting Eq. (13) into the energy, Eq. (14), we obtain:

E =
E0

2

Ns∑
p=1

G2
p. (15)

with

Gp := ∆˜̀
p + w̃pε

= s
˙
p∆r̃

˙
p +

1

2
M̃pmn∆r̃m∆r̃n

+ w̃pε+ B̃(1)
p γ +

1

2
B̃(2)
p γ2.

(16)

To discuss the energy minimum we focus here for clarity

on the case where B̃
(1)
p = 0 for all p. The general case of

arbitrary B̃
(1)
p is discussed in appendix B. As we discuss

in appendix A, at the energy minimum, the ∆r̃n do not
scale in the same way with the strain variables ε and γ
for different n. For p < Ns we find that ∆r̃p is of order of
at least O(ε) +O(γ2), and for n ≥ Ns we find that ∆r̃n
is of order of at least O(|ε|1/2) +O(γ). Consequentially,

all of the M̃ terms involving any of the ∆r̃p with p < Ns
can be neglected in all the Gq with q ≤ Ns. Thus, each of
the ∆r̃p with p < Ns only appears in total once, namely
as linear term in the respective Gp. Thus, to the lowest
relevant order, when minimizing the energy in Eq. (15),
each of the first Ns − 1 terms Gp for p < Ns can become
zero by adjusting ∆r̃p accordingly:

∆r̃p = − 1

s
˙
p

(
1

2

Ndof∑
m,n=Ns

M̃
˙
pmn∆r̃m∆r̃n

+ w̃pε+
1

2
B̃(2)

˙
p γ2

)
.

(17)

The remaining term is:

GNs =
1

2

Ndof∑
m,n=Ns

M̃Nsmn∆r̃m∆r̃n + w̃Nsε+
1

2
B̃

(2)
Ns
γ2.

(18)
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We know that for γ = 0 and ε > 0, where the system
is in the rigid regime, the energy minimum is strictly
positive, E = E0G

2
Ns
/2 > 0. This is only possible if the

matrix M̃Nsmn is positive semi-definite; otherwise GNs
could become zero. As a consequence, for the athermal
rigid regime, ε+bεγ

2 > 0, the energy is minimal if ∆r̃n =
0 for all Ns ≤ n ≤ Ndof , and it has the value

E =
E0w̃

2
Ns

2

[
ε+ bεγ

2
]2
, (19)

where we introduced

bε :=
B

(2)
Ns

2w̃Ns
if B̃(1)

p = 0 for all p. (20)

In the more general case where the B̃
(1)
p do not vanish,

the definition of bε includes more terms, while Eq. (19)
remains the same up to a shift in γ (appendix B).

Note that the matrix M̃Nsmn is closely linked to the
Hessian of the system and the emergence of rigidity in
the athermal limit (appendix C).

B. Comparison to earlier results

The published expression for the energy of a network
with only d-dimensional springs in the rigid regime cor-
responds to [3, 4]:

E =
E0Ns

2(L∗0)2(1 + a2
`)

[
−∆L0 + bγ2

]2
, (21)

where ∆L0 = −dL∗0ε, and L∗0, a`, and b are constants
that depend on the network structure. We included here
the prefactor of 1/2 in our energy definition as compared
to [3, 4]. Comparing Eqs. (19) and (21), we find:

w̃Ns = d

[
Ns

1 + a2
`

]1/2

(22)

bε =
b

dL∗0
. (23)

In addition to the earlier work [3, 4], our approach here
also clarifies why the result is analytic in γ; it is inherited
from the analytic nature of the `i functions (Eq. (9)).

C. Elastic properties

In the rigid regime of the athermal limit, i.e. for ε +
bεγ

2 > 0, tension tE = ∂E/∂V = (∂E/∂ε)/DV and
shear modulus GE = (∂2E/∂γ2)/V are to lowest order
in ε and γ:

tE = κE

[
ε+ bεγ

2
]

(24)

GE = 2DbεκE

[
ε+ 3bεγ

2
]

(25)

= 2Dbεt

(
1 +

2bεγ
2

|ε+ bεγ2|

)
, (26)

where we defined

κE :=
E0w̃

2
Ns

DV ∗
. (27)

The index E indicates purely energetic rigidity.

IV. STIFF-SPRING LIMIT (Ki →∞)

In the limit of infinitely stiff springs but at finite tem-
perature T , elasticity is created purely by entropic effects.
For ε+bεγ

2 > 0 (rigid regime in the athermal limit), there
are no configurations where all springs can attain their
respective rest lengths. Thus, this regime is inaccessible
in the stiff-spring limit. Conversely, for ε + bεγ

2 ≤ 0
(floppy regime in the athermal limit) there are configu-
rations where the springs can attain their rest lengths.
In this section, we derive an expression for the accessible
configurational phase space volume Ω, from which we can
directly derive the elastic network properties. We focus
again on the limit of small ε and γ, in which the network
is almost rigid [29].

A. Configurational phase space volume

Up to a constant factor, the configurational phase
space volume is given by (appendix D)

Ω ∼
∫ (Nnode∏

a=1

dDRa

)
Ns∏
i=1

δ(Li − L0i), (28)

which, using the rescaling from Eqs. (4) and (5), trans-
forms into

Ω ∼
∫ (Ndof∏

n=1

drn

)
Ns∏
i=1

δ(ediε`i − 1), (29)

where we ignore any prefactors in Ω that are powers of
eε, because these factors only create higher-order terms
in the final result.

We aim to obtain an analytical expression for Ω in
the vicinity of the transition point, i.e. for |ε| � 1 and
|γ| � 1. We can thus rewrite Ω as:

Ω ∼
∫ (Ndof∏

n=1

d∆rn

)
Ns∏
i=1

δ
(
wi∆`i + diwiε

)
. (30)

Here, we have included a constant factor of wi in each of
the Dirac deltas, and we again ignored prefactors of eε

in Ω.
To insert the Taylor expansion, Eq. (13), into Eq. (30),

we first apply a rotation by Vnp to the integration vari-
ables ∆rn, and a rotation by Uip on the argument of the
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multi-dimensional Dirac delta, neither of which yields an
additional factor in Ω:

Ω ∼
∫ (Ndof∏

n=1

d∆r̃n

)
Ns∏
p=1

δ
(

∆˜̀
p + w̃pε

)

=

∫ (Ndof∏
n=1

d∆r̃n

)
Ns∏
p=1

δ
(
Gp
)
.

(31)

The constraints by the Dirac deltas in this equations im-
ply Gp = 0 for all p ≤ Ns.

In the case where all B
(1)
p = 0, we can again use the

same arguments as in appendix A to show that all terms
involving the ∆r̃p with p < Ns can be neglected in all
Gq with q ≤ Ns. Thus, like in the athermal limit, the
value of each of the ∆r̃p with p < Ns is adjusted by
the respective equation Gp = 0, and the remaining GNs
simplifies to Eq. (18). In other words, we can split the
integrations in Eq. (31) as follows:

Ω ∼
∫ ( Ndof∏

n=Ns

d∆r̃n

)
δ(GNs)

Ns−1∏
p=1

∫
d∆r̃p δ(Gp). (32)

Here, each of the N − 1 inner integrals evaluates to a
constant factor of 1/sp. We are thus left with:

Ω ∼ ΩNs(ε, γ) (33)

with

ΩNs(ε, γ) :=

∫ ( Ndof∏
n=Ns

d∆r̃n

)
δ
(
GNs

)
=

∫ ( Ndof∏
n=Ns

d∆r̃n

)

× δ

(
1

2

Ndof∑
m,n=Ns

M̃Nsmn∆r̃m∆r̃n

+ w̃Ns

[
ε+ bεγ

2
])
.

(34)

To evaluate ΩNs(ε, γ), we first diagonalize the matrix

M̃Nsmn:

M̃Nsmn =

Ndof−Ns+1∑
k=1

µkv
k
mv

k
n, (35)

with m,n = Ns, . . . , Ndof , and where µk are the eigen-
values and vkm are the associated orthonormal eigen-
vectors. We sort the eigenvalues in decreasing order,
µ1 ≥ · · · ≥ µNdof−Ns+1, where µk ≥ 0, since the ma-

trix M̃Nsmn is positive semi-definite.
With ∆qk := vkm∆r̃m, the equation GNs = 0 trans-

forms into:

−w̃Ns
[
ε+ bεγ

2
]

=
1

2

Ndof−Ns+1∑
k=1

µk∆q2
k. (36)

Because the vkm represent a rotation, the differential
transforms without prefactor:

ΩNs =

∫ (Ndof−Ns+1∏
k=1

d∆qk

)

× δ

(
1

2

Ndof−Ns+1∑
k=1

µk∆q2
k + w̃Ns

[
ε+ bεγ

2
])
.

(37)

To evaluate this integral, we first discuss the zero modes
of M̃Nsmn, i.e. modes k with µk = 0, for which there
are two possibilities: First, such a mode k could be one
of the D global translations, or it could be related to a
mechanism. In the first case, the integral over a global
translation leads to a factor of eε, which can again be
neglected in the end result. Similarly, the integral over
the manifold corresponding to the mechanisms that exists
at the transition yields a constant (describing the hyper-
volume of that manifold) plus, possibly, a higher-order
term in ε and/or γ (describing the change of the manifold
volume upon strain), which can be neglected. Another
possibility is however that any change of the zero mode
∆qk does affect ∆`Ns , but only to higher than quadratic
order. We believe this is an exceptional case and do not
consider it further in the main text, but we discuss it in
appendix E.

We denote the number of non-zero eigen values of
M̃Nsmn by Ne. Integrating out the zero modes in
Eq. (37), we have:

ΩNs ∼
∫ ( Ne∏

k=1

d∆qk

)

× δ

(
1

2

Ne∑
k=1

µk∆q2
k + w̃Ns

[
ε+ bεγ

2
])

.

(38)

The Dirac delta ensures that the integral is over the sur-
face ∂E of an ellispoid E in Ne-dimensional space, defined
by the equation:

Ne∑
k=1

∆q2
k

ρ2
k

= 1 (39)

with half axes ρk := (−2w̃Ns [ε + bεγ
2]/µk)1/2 ∼ [−(ε +

bεγ
2)]1/2. Using standard transformation rules of the

Dirac delta, we get:

ΩNs ∼
∫
∂E

dS

∣∣∣∣∂GNs∂∆q

∣∣∣∣−1

, (40)

where ∣∣∣∣∂GNs∂∆q

∣∣∣∣2 =

Ne∑
k=1

(
∂GNs
∂∆qk

)2

=

Ne∑
k=1

µ2
k∆q2

k.

(41)



6

With µmax := µ1 and µmin := µNe > 0, we thus have on
the ellipsoid surface:

−µmin

[
ε+ bεγ

2
]
≤ 1

2w̃Ns

∣∣∣∣∂GNs∂∆q

∣∣∣∣2 ≤ −µmax

[
ε+ bεγ

2
]
.

(42)
Thus, |∂GNs/∂∆q| ∼ [−(ε+bεγ

2)]1/2. As a consequence,
we obtain that the integral in Eq. (40) scales as the hyper-
surface area of the ellipsoid divided by [−(ε + bεγ

2)]1/2:

ΩNs(ε, γ) ∼
[
− (ε+ bεγ

2)
](Ne−2)/2

. (43)

Hence, Ω ∼ ΩNs scales as a power law with the distance
to the transition point as long as Ne > 2.

In appendix B, we discuss the more general case where

the B̃
(1)
p do not vanish. The definition of bε changes like

in the athermal case, while the result Eq. (43) remains

the same up to an additional term B
(1)
Ns
γ, which can be

removed through redefining γ.

B. Free energy, tension, and shear modulus

The free energy of the system in the stiff-spring limit,
FS , is up to a constant:

FS = − 1

β
log Ω

= −Ne − 2

2β
log
[
− (ε+ bεγ

2)
]
,

(44)

where β := kBT with kB being the Boltzmann constant.
The index S stresses that FS results entirely from en-
tropic effects.

We then obtain for the tension tS = (∂FS/∂ε)/DV
and the shear modulus GS = (∂2FS/∂γ

2)/V , to lowest
order:

tS = − κST

ε+ bεγ2
(45)

GS = −2DbεκST
ε− bεγ2

(ε+ bεγ2)2
(46)

= 2Dbεt

(
1 +

2bεγ
2

|ε+ bεγ2|

)
(47)

with

κS :=
kB(Ne − 2)

2DV ∗
. (48)

Note that only the regime with ε+ bεγ
2 < 0 is accessible

here, which corresponds to the athermal floppy regime.

V. GENERAL CASE

A. Partition sum

To study how entropic and energetic elasticity interact,
we evaluate the partition sum of the system

Z =

∫ (Nnode∏
a=1

dDRa

)
e−βE . (49)

In terms of rotated dimensionless node positions relative
to the transition point, ∆r̃n, we have:

Z ∼
∫ (Ndof∏

k=1

d∆r̃n

)
e−βE , (50)

where we again ignore prefactors proportional to eε.
We evaluate the partition sum for small ε, γ, and T .

Because ε � 1, we can use the energy expression from
Eq. (15):

E =
E0

2

Ns∑
p=1

G2
p. (51)

Here we discuss the case where all B̃
(1)
p = 0, while the

more general case of arbitrary B̃
(1)
p is discussed in ap-

pendix B.
We focus on small temperatures, kBT � E0[ε+bεγ

2]2,
such that states with smaller energies E receive an ex-
ponentially higher Boltzmann weight. Using our discus-
sion in appendix A, we find again that in all Gq with
q ≤ Ns all the ∆r̃p with p < Ns can be neglected in the
quadratic terms. Thus, to lowest order each of the ∆r̃p
with p < Ns appears only once, namely in the linear term
of in the respective Gp. As a consequence, the integrals
in the partition sum in Eq. (50) can be rearranged as
follows:

Z ∼
∫ ( Ndof∏

n=Ns

d∆r̃n

)
e−

βE0G
2
Ns

2

Ns−1∏
p=1

∫
d∆r̃p e

−
βE0G

2
p

2 .

(52)
The innermost first Ns − 1 integrals are Gaussian in-
tegrals, each of which evaluates to the constant Zp =√

2π/βE0s2
p. When combined with the thermal wave-

length of the nodes, each of the factors Zp corresponds
to the partition sum of a harmonic oscillator with eigen
frequency ωp = sp

√
E0/m with m being the mass of the

nodes. This means that each of the nonzero eigen modes
of the Hessian at the transition point just creates a har-
monic oscillator, like for isostatic and over-constrained
systems. However, for under-constrained systems, we ad-
ditionally have the last integral, which stems from the
SSS that forms at the transition:

ZNs :=

∫ ( Ndof∏
n=Ns

d∆r̃n

)
e−

βE0G
2
Ns

2 . (53)
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Neglecting the factors Zp with p < Ns, which solely
depend on temperature, but not on strain, we have
Z ∼ ZNs .

B. Saddle point approximation

To simplify the remaining integral ZNs in Eq. (53),
we introduce in its integrand an additional integral over
some variable εS that trivially evaluates to one:

ZNs =

∫ ( Ndof∏
n=Ns

d∆r̃n

)
e−

βE0G
2
Ns

2

× w̃Ns
∫ ∞
−∞

dεS δ
(
GNs + w̃Ns [εS − ε]

)
.

(54)

After exchanging the order of integration and substitut-
ing ΩNs , defined in Eq. (34), we have:

ZNs = w̃Ns

∫ ∞
−∞

dεS ΩNs(εS , γ)e−βENs (ε−εS), (55)

with:

ENs(ε− εS) :=
E0w̃

2
Ns

2

(
ε− εS

)2
=
DV ∗κE

2

(
ε− εS

)2
.

(56)

Here, we used the definition for κE in Eq. (27). From
Eq. (43) in the previous section, we have for εS+bεγ

2 ≤ 0:

ΩNs(εS , γ) ∼
[
− (εS + bεγ

2)
](Ne−2)/2

, (57)

while for εS + bεγ
2 > 0, no configurations are possible,

ΩNs(εS , γ) = 0. These transformations identify εS as the
entropic strain discussed in the companion paper [26].

We use a saddle point approximation to simplify the
integral in Eq. (55):

ZNs = w̃Ns

∫ ∞
−∞

dεS e
−βF̄ , (58)

where F̄ is the free energy of the system for imposed εS :

F̄ (εS ; ε, γ) := ENs(ε− εS)− 1

β
log ΩNs(εS , γ)

= DV ∗
(
κE
2

(
ε− εS

)2
− κST log

[
− (εS + bεγ

2)
]) (59)

On the second line, we used the definition of κS , Eq. (48),
and ignored a constant offset.

For small temperatures, we can apply the saddle point
approximation, where we Taylor expand F̄ (εS) to second
order around its minimum at εS = ε̂S , which results in:

ZNs ∼
∫ ∞
−∞

dεS e
−βF̄ = e−βF̄ (ε̂S)

√
2π

βF̄ ′′(ε̂S)
, (60)

where F̄ ′′ := ∂2F/∂ε2
S :

F̄ ′′(ε̂S) = DV ∗

(
κE +

κST

[ε̂S + bεγ2]2

)
. (61)

To find the minimum ε̂S , we transform ∂F̄/∂εS = 0, and
obtain:

ε̂S + bεγ
2 =

ε+ bεγ
2

2
−
√

1 + θ

∣∣∣∣ε+ bεγ
2

2

∣∣∣∣ , (62)

with

θ :=
4κST

κE(ε+ bεγ2)2

=
2(Ne − 2)kBT

E0w̃2
Ns

(ε+ bεγ2)2
.

(63)

Note that for γ = 0, the equation ∂F̄ (ε̂S)/∂εS = 0, defin-
ing the minimum ε̂S of F̄ (εS) = E(ε−εS) +FS(εS), cor-
responds to equating energetic and entropic tension, like
in our intuitive explanation in the companion paper [26].

C. Free energy, tension, and shear modulus

Up to terms that depend only on temperature and
higher-order terms in the strain variables, the free en-
ergy of the system, F = −(logZ)/β, is:

F = F̄ (ε̂S) +
1

2β
log F̄ ′′(ε̂S). (64)

After some transformations, we find for the isotropic
tension t = (∂F/∂ε)/DV and the shear modulus G =
(∂2F/∂γ2)/V , to lowest order in ε and γ (appendix F):

t = κE
(
ε− ε̂S

) [
1 +

1

2(Ne − 2)

θ

1 + θ

]
(65)

and

G = 2DbεκE
(
ε− ε̂S

)[
1 +

2bεγ
2

|ε+ bεγ2|
√

1 + θ

+
1

2(Ne − 2)

θ

1 + θ

(
1 +

2bεγ
2

|ε+ bεγ2|
√

1 + θ

− 4bεγ
2

(ε+ bεγ2)(1 + θ)

)]
.

(66)

Note that the last terms in both t and G scale as ∼
(Ne − 2)−1. These terms stem from the term ∼ log F̄ ′′
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in the free energy. For Ne � 1, these contributions can
be neglected, and we have:

t = κE
(
ε− ε̂S

)
(67)

G = 2DbεκE
(
ε− ε̂S

)[
1 +

2bεγ
2

|ε+ bεγ2|
√

1 + θ

]
(68)

= 2Dbεt

[
1 +

2bεγ
2

|ε+ bεγ2|
√

1 + θ

]
. (69)

D. Limits

1. Small temperature, θ � 1

For θ � 1, Eq. (62) becomes:

ε̂S + bεγ
2 =

ε+ bεγ
2

2
−
(

1 +
θ

2

) ∣∣∣∣ε+ bεγ
2

2

∣∣∣∣
= (ε+ bεγ

2)×

{
1 + θ/4 for ε+ bεγ

2 < 0,

−θ/4 for ε+ bεγ
2 > 0.

(70)

Thus, to lowest order in θ:

ε− ε̂S = (ε+ bεγ
2)×

{
−θ/4 for ε+ bεγ

2 < 0,

1 for ε+ bεγ
2 > 0,

(71)

and we recover the purely entropic and energetic tensions
and shear moduli, respectively (compare Eqs. (24), (26),
(45), and (47)):

t =

{
tS for ε+ bεγ

2 < 0,

tE for ε+ bεγ
2 > 0,

(72)

G =

{
GS for ε+ bεγ

2 < 0,

GE for ε+ bεγ
2 > 0.

(73)

2. Small strain, θ � 1

For θ � 1, Eq. (62) becomes:

ε̂S + bεγ
2 = −

√
κST

κE
+
ε+ bεγ

2

2
(74)

And thus:

ε− ε̂S =

√
κST

κE
+
ε+ bεγ

2

2
. (75)

We then find:

t =
2Ne − 3

2Ne − 4

(√
κEκST + κE

ε+ bεγ
2

2

)
, (76)

and for the shear modulus:

G = Dbε

[
2
√
κEκST + κE(ε+ bεγ

2)

]
×

[
2Ne − 3

2Ne − 4

(
1 + bεγ

2

√
κE
κST

)

− bεγ
2

2Ne − 4

κE(ε+ bεγ
2)

κST

)]
.

(77)

For Ne � 1 both expressions simplify to:

t =
√
κEκST + κE

ε+ bεγ
2

2
(78)

G = 2Dbεt

(
1 + bεγ

2

√
κE
κST

)
. (79)

Note that we assumed in our derivation for the general
case that kBT � E0[ε+bεγ

2]2. Using the definitions of θ
in Eq. (63), of κE in Eq. (27), and of κS in Eq. (48), this
condition corresponds to θ � 2(Ne− 2)/w̃2

Ns
. Thus, this

limit corresponds to 1� θ � 2(Ne − 2)/w̃2
Ns

, which can
be fulfilled for large systems. Note that in our numeri-
cal results for randomly-cut triangular networks, we also
found that our prediction was accurate for finite temper-
atures even for vanishing strain, ε+ bεγ

2 → 0 [26].

VI. DISCUSSION

In this article, we developed a theory for thermal,
under-constrained systems with fixed connectivity. We
provide analytical expressions for the elastic material
properties such as tension t and shear modulus G close
to the athermal rigidity transition depending on isotropic
strain ε, shear strain γ, and temperature T . The only
three parameters are κE , which characterizes energetic
rigidity, κS , which characterizes entropic rigidity, and bε,
which characterizes the interaction between isotropic and
shear strain. These parameters are phenomenological co-
efficients that depend on the microscopic structure of the
system.

We first discussed the limits of zero temperature
(athermal limit), and infinitely stiff springs, before dis-
cussing the general case of finite temperature and finite
spring stiffness. In the athermal limit, the elastic prop-
erties were analytically derived before [3, 4], where the
system is floppy for ε+bεγ

2 ≤ 0 and rigid for ε+bεγ
2 > 0.

We showed that in the stiff-spring limit, the phase space
volume is given by the surface of a hyper-ellipsoid, which
leads to a free energy that scales logarithmically with the
combined strain ε+ bεγ

2. In both cases, the mechanical
properties are inherently linked to the properties of the
SSS that is created at the transition. Finally, we derive
the partition sum for the general case, where energetic
and entropic rigidity are coupled only through the SSS.
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We introduced under-constrained system as systems
that have Ndof > Ns, and our results apply to a sub-
set of such systems. In particular, we consider systems
that fulfill the following three criteria: (i) there is no SSS
in the floppy regime, (ii) only a single SSS forms at the
transition, and (iii) Ne > 2. Here, Ne is the number

of non-zero eigen values of the M̃Nsmn matrix. In other
words, in the athermal limit Ne is the number of eigen
values of the Hessian that are zero in the floppy regime
and become finite in the rigid regime (appendix C). Lift-
ing the restriction on the number of SSS in the floppy
regime probably does not change our results. Similarly,
we do not expect the number of SSS that form at the
transition to substantially affect our results. Finally, it
will be interesting to study the marginal cases of Ne = 1
and Ne = 2 in future work.

While not explicitly studied here, our results have im-
mediate consequences with respect to the scaling with
network connectivity z. For γ = 0, earlier work by Zhang
and Mao using EMT indicated three scaling regimes for
the shear modulus G of randomly-cut triangular net-
works [24]. Remarkably, these scaling regimes are very
similar to what we report in section V D, where up to
a prefactor, isotropic strain ε is replaced by the rela-
tive connectivity ∆z = z − zc, with zc being the con-
nectivity at isostaticity [24]. To understand how this
could be, we discuss the ∆z scaling that results from
our findings by separately discussing the ∆z scaling for
κS and κE . Eq. (48) predicts that κS essentially only
depends on Ne, i.e. the number of non-zero eigen val-
ues of the matrix M̃Nsmn with m,n ≥ Ns. Thus, if for
large systems Ne scales to dominating order linearly with
∆z = −4(Ndof−Ns)/Ndof , then this implies κS ∼ |∆z|1.
Meanwhile, how energetic elasticity κE scales with con-
nectivity ∆z depends on the class of the network [4].
For instance, for |∆z| � 1 our results for the a` scal-
ing in Refs. [3, 4] imply that κE ∼ |∆z|2 for Delaunay
networks, κE ∼ |∆z|1 for randomly-cut, packing-derived
networks, and κE ∼ |∆z|0 for phantom triangular net-
works. Because of Eq. (67), these scaling relations of κS
and κE with ∆z determine the scaling of tension t. How-
ever, for the scaling of the shear modulus G, Eq. (69),
the scalings of bεκS and bεκE are the relevant ones, and
thus the scaling of bε ∼ b needs to be taken into ac-
count. Based on earlier results for the scaling of b [3, 4],
we have bεκS ∼ |∆z|−1 and bεκE ∼ |∆z|0 for Delaunay
networks, bεκS ∼ |∆z|0 and bεκE ∼ |∆z|0 for randomly-
cut, packing-derived networks, and bεκS ∼ |∆z|0.5 and
bεκE ∼ |∆z|−0.5 for phantom triangular networks. Taken
together, this suggests that the scaling of the elastic
properties with ∆z is expected to depend on the class
of network studied. For instance, the results by Zhang
and Mao [24] can be explained from the perspective
of our results if the randomly-cut triangular networks
have bεκS ∼ |∆z|0 and bεκE ∼ |∆z|0 like randomly-
cut, packing-derived networks. In this case, the scaling
is entirely determined by the scaling of the strain of the
network state after network initialization, εini, with con-

nectivity ∆z, which is generally linear to lowest order:
εini ∼ ∆z (remember that we define isotropic strain here
with respect to the athermal transition point) [3, 4]. This
would be a simple explanation for why the shear modulus
of Zhang and Mao has the same form as our results when
replacing ε by ∆z. We leave a more thorough numerical
test of all these predicitons for the scaling with ∆z, and
a study of their consequences, for future work.

In general, there can be a degeneracy of the possible
network configurations #–r ∗ at the transition, and here we
have assumed that this does not affect our result. To
this end, we needed to explicitly restrict ourselves to sys-
tems where the choice of the transition configuration #–r ∗

does not affect the properties of the SSS. In particular,
while properties like the other singular values, sp with
p < Ns, of the compatibility matrix Cin may depend on
#–r ∗ [6, 30], our results should be unaffected as long as the
SSS (more precisely w̃Ns) and its behavior with respect
to shear (more precisely bε) are independent of the choice
of #–r ∗. While this seems to be true intuitively, prelimi-
nary results suggest that stronger assumptions about the
system than those listed in section II A are required to
rigorously show it. The tools required for such a proof
are outside the scope of the ideas presented here, and
their development is left for future work.

Previous work discussing the athermal limit was based
on a minimal-length function [3, 4], where a Taylor ex-
pansion with a quadratic dependence on γ relied on the
assumption that the minimal-length function was ana-
lytic in γ. With the approach here we now that the
dependence on γ is analytic, because we know that the
functions `i(

#–r , γ) are analytic. However, it is in prin-
ciple still possible that higher-order terms could create
isolated discontinuities in the emergent behavior of the
system.

Finally, we note that all results obtained here are based
on Taylor expansions for systems of a given finite size. As
discussed in Ref. [4], the strain ranges over which these
predictions hold may depend on system size. In par-
ticular, depending on the type of network studied, the
extent of these ranges may decrease with increasing sys-
tem size, and beyond this strain range, different scaling
regimes may appear [31].
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Appendix A: Orders of magnitude of the ∆r̃n

We discuss the scaling of the ∆r̃n with ε and γ in the
athermal limit at the energy minimum, for which we will
also have to discuss the scaling of the Gp. We focus here

for clarity on the case where B̃
(1)
p = 0 for all p. The

general case of arbitrary B̃
(1)
p is discussed in appendix B.

Using Eq. (15), the energy minimum must fulfill:

0 =
1

E0

∂E

∂∆r̃p
= s

˙
pG

˙
p +GqM̃qpn∆r̃n for p < Ns,

(A1)

0 =
1

E0

∂E

∂∆r̃m
= GqM̃qmn∆r̃n for m ≥ Ns.

(A2)

At the transition all ∆r̃n = 0, and so they must be of
higher than absolute order in ε or γ. Moreover, let us
choose p̂ < Ns such that none of the of Gp with p < Ns
is of lower order in ε than Gp̂. Because of Eq. (A1), the
order of Gp̂ in ε is higher than that of the minimum order
of all Gq with q ≤ Ns. Because the order of Gp̂ is minimal
among the Gp with p < Ns, this implies that the order
of Gp̂ is higher than that of GNs . According to Eq. (18),
GNs is of order O(ε) or higher [32]. Thus, because the
order of Gp̂ is minimal, all Gp with p < Ns are of higher
order than O(ε). Analogously, one can argue that all Gp
with p < Ns are of higher order than O(γ2). Thus, up
to order [O(ε) +O(γ2)]2, the energy in Eq. (15) becomes
E = E0G

2
Ns
/2.

We know that for γ = 0 and for positive ε, where the
system is in the rigid regime, the minimum of the energy
is strictly positive, E > 0. Using Eq. (18), this is only

possible if the matrix M̃Nsmn is positive semi-definite.
Minimization of the energy E = E0G

2
Ns
/2 implies that

GNs = 0 or else GNs = 0 is minimal. As a consequence,
using Eq. (18), none of the ∆r̃n with 1 ≤ n ≤ Ndof can
be of lower order than O(|ε|1/2) + O(γ). Thus, because
up to order O(ε) + O(γ2) we have Gp = 0 for p < Ns,
Eq. (16) implies that none of the ∆r̃p with p < Ns is
of lower order than O(ε) + O(γ2). Further, this implies
that any terms involving the ∆r̃p with p < Ns can be
neglected in the Gp with p ≤ Ns. Thus, each of the ∆r̃p
with p < Ns appears in total only once, namely as linear
term in the respective Gp. As a consequence, each of the
equations Gp = 0 for p < Ns can be fulfilled by adjusting
∆r̃p accordingly.

Appendix B: Non-zero first-order terms, B̃
(1)
p , in γ

To discuss the general case of non-vanishing B̃
(1)
p , we

first simplify by applying shifts to both ε and γ,

ε̄ := ε−∆ε (B1)

γ̄ := γ −∆γ (B2)

such that in the athermal limit (ε̄, γ̄) = (0, 0) is on the
transition line and, after again carrying out the Taylor
expansion, Eq. (13), the linear-order γ̄ term in GNs van-
ishes at the energy minimum:

GNs =
1

2
M̃Nsmn∆r̃m∆r̃n + w̃Ns ε̄+

1

2
B

(2)
Ns
γ̄2. (B3)

Note that the Gp with p < Ns do in general still have a
linear-order term in γ̄:

Gp = s
˙
p∆r̃

˙
p+

1

2
M̃pmn∆r̃m∆r̃n+ w̃pε̂+B(1)

p γ̄+
1

2
B(2)
p γ̄2,

(B4)
and that the ∆r̃n are also redefined due to the shifts
in ε and γ. If ∆ε and ∆γ are sufficiently small such
that to lowest order C, M , and B(2) in Eq. (9) are un-
affected, it can be shown that the shifts are given by

∆ε = (B̃
(1)
Ns

)2/4w̃2
Ns
bε and ∆γ = −B̃(1)

Ns
/2w̃Nsbε, where

B̃
(1)
Ns

is the linear-order term before the shift, and bε is
given by Eq. (B8) below.

We first discuss the athermal limit. Using the ar-
guments from appendix A, one finds again that at the
energy minimum, all Gp = 0 for p < Ns up to order
O(ε̄) + O(γ̄2), and none of the ∆r̃n with 1 ≤ n ≤ Ndof

can be of lower order than O(|ε̄|1/2) +O(γ̄). As a conse-
quence, up to linear order in γ̄, we have from Eq. (B4):

∆r̃p = − B̃
(1)
p

sp
γ̄ for p < Ns. (B5)

Inserting this into Eq. (B3) together with the diagonal-

ization of the matrix M̃Nsmn with m,n ≥ Ns, Eq. (35),
we obtain:

GNs =
1

2

Ndof−Ns+1∑
k=1

µk

(
∆qk −∆q0

k

)2

+ w̃Ns
[
ε̄+ bεγ̄

2
]
,

(B6)
where we introduced

∆q0
k :=

γ̄

µk

∑
m≥Ns
p<Ns

vkmM̃Nsmp
B̃

(1)
p

sp
for µk > 0, (B7)

and ∆q0
k := 0 for µk = 0, and

bε :=
1

2w̃Ns

B̃(2)
Ns

+
∑

p,q<Ns

B̃
(1)
p

sp
M̃Nspq

B̃
(1)
q

sq

−
∑

p,q<Ns
m,n≥Ns
k:µk>0

B̃
(1)
p

sp
M̃Nspm

vkmv
k
n

µk
M̃Nsnq

B̃
(1)
q

sq

.
(B8)
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We assumed here that for all k with µk = 0 the relation∑
n≥Ns,p<Ns v

k
nM̃NsnpB̃

(1)
p /sp = 0. If the second-order

zero mode k stems from a mechanism or a trivial zero
mode (i.e. linked to a global translation), this relation
is necessarily true; otherwise there would be no energy
minimum. If the mode k is neither mechanism nor trivial
zero mode, but a higher-than-second-order zero mode,
then higher-order terms need to be taken into account.
However, we regard this as an exceptional case.

The additional terms in bε in Eq. (B8) as compared to

Eq. (20) scale as ∼ B̃
(1)
p B̃

(1)
q . The symmetry of the sys-

tem with respect to the sign of γ combined with the cen-
tral limit theorem suggest that, in general, these linear

terms scale with system size as B̃
(1)
p ∼ N

−1/2
s . Indeed,

we numerically found earlier for phanomized triangular

networks that B̃
(1)
Ns
∼ ∆γ ∼ N

−1/2
dof ∼ N

−1/2
s [4]. We

thus expect that the additional contributions in bε scale
as N−1

s .
For the stiff-spring limit and the general case of finite

spring stiffness and temperature, these arguments are es-
sentially the same. The only difference in the stiff-spring
limit is that we immediately have Gp = 0. Moreover,

for non-vanishing B̃
(1)
p , the ellipsoid that describes the

possible system configurations is now centered at (∆q0
k)

(compare Eqs. (36) and (B6)). According to Eq. (B7)
this ellipsoid center displaces linearly with shear strain
γ̄. In the general case, we can follow the same arguments
as in the athermal limit, using that the terms where the
Gp with p < Ns are of order O(ε̄) +O(γ̄2) or lower have
an exponentially reduced Boltzmann weight and can thus
be neglected in the partition sum.

In our Taylor expansion, Eq. (9), we have left out terms
that are linear in both ∆r̃n and γ. We expect such terms

to also scale with system size as ∼ N
−1/2
s . They create

additional contributions to ∆q0
k and, in interaction with

the B̃
(1)
p terms, contributions to bε. However, other than

adding a correction to the value of bε they do not affect
the results presented in the main text.

Appendix C: Relation between the Hessian and the
matrix M̃Nsmn

We evaluate the Hessian of the system,

Hmn :=
∂2E

∂∆r̃m∂∆r̃n
, (C1)

in the rigid athermal regime, at an energy minimum close
to the transition point, where we assume for simplicity

that B̃
(1)
p = 0 for all p ≤ Ns.

Using Eq. (15):

Hmn = E0

Ns∑
p=1

(
∂Gp
∂∆r̃m

∂Gp
∂∆r̃n

+Gp
∂2Gp

∂∆r̃m∂∆r̃n

)
. (C2)

Further, according to our discussion in section III A, at
an energy minimum, ∆r̃p is at least of order O(ε)+O(γ2)

for p < Ns, and ∆r̃n = 0 for n ≥ Ns. Also, Gp = 0 for
p < Ns up to order O(ε) +O(γ2). Thus, we have up to
order O(ε) +O(γ2):

Hmn = E0

Ns−1∑
p=1

s2
pδpmδpn

+ E0

Ns−1∑
p,q=1

sp∆r̃q

(
δpmM̃pqn + δpnM̃pqm

)
+ E0GNsM̃Nsmn.

(C3)

In this expression, the first term, which is of absolute
order in ε and γ, corresponds to the Hessian at the tran-
sition point. The second and third term are of order
O(ε) +O(γ2).

Eq. (C3) shows that to lowest order, the Ne nonzero

eigen modes of M̃Nsmn for m,n ≥ Ns, are those eigen
modes of Hmn that have zero eigen value at the transi-
tion point, and whose eigen values become nonzero in the
rigid regime, scaling as ∼ O(ε) +O(γ2). This is because
for m,n ≥ Ns only the third term in Eq. (C3) can be
nonzero.

Appendix D: Partition sum for stiff-spring limit

In Eq. (29), to define the configurational phase space
volume Ω, we use a Dirac delta for each of the Ns spring
lengths in the system. One could instead have the idea
to use a single Dirac delta for the system energy E, since
E = 0 is equivalent to all springs simultaneously attain-
ing their rest length. However, both definitions will lead
to different results. This is because the integration of a
Dirac delta involves the evaluation of the Jacobian of the
argument of the Dirac delta with respect to the integra-
tion variable. Since the Jacobian of the energy creates
additional prefactors that correspond to the prestresses
in the system, such prefactors would additionally appear
when using a Dirac delta of the energy.

To see why the definition Eq. (29) is the correct one in
the stiff-spring limit, we start form the partition sum:

Z =

∫ (Nnode∏
a=1

dDRa

)
exp

(
−β

2

Ns∑
i=1

Ki

(
Li − L0i

)2)
.

(D1)
A Gaussian converges to a Dirac Delta in the limit of
small standard deviation:

lim
Ki→∞

√
βKi

2π
exp

(
−βKi(Li − L0i)

2

2

)
= δ(Li − L0i).

(D2)
Thus, whenever all Ki are large enough such that the
(βKi)

−1/2 becomes much smaller than all relevant length
scales of the system, the partition sum can be expressed
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as:

Z =

(
2π

β

)Ns/2(Ns∏
i=1

Ki

)−1/2

×
∫ (Nnode∏

a=1

dDRa

)
Ns∏
i=1

δ
(
Li − L0i

)
.

(D3)

This indicates that the correct approach is to use Dirac
deltas on the spring lengths rather than the energy E.
Note that in Eq. (29), we have ignored the first prefactor
that only depends on temperature, and so is not relevant
for the elastic system properties. Moreover, while the sec-
ond prefactor does not depend on strain or temperature,
it converges to zero for Ki → ∞. However, to discuss
the elastic system properties, we only need derivatives
of log Ω, where this term only creates a constant albeit
diverging offset.

Appendix E: Higher-order dependencies of ∆`Ns on
the dofs

Here we outline how our arguments change in the pres-
ence of eigen vectors with eigen value zero of the matrix
M̃Nsmn with m,n ≥ Ns, but which affect ∆˜̀

Ns to some
order α > 2. We first note that the exponent α needs to
be even, because otherwise, such a mode would allow for
states with GNs = 0 for ε > 0 and γ = 0, even though
the system is supposed ot be rigid with E > 0 in this
regime.

Setting again for simplicity B̃
(1)
p = 0, we discuss the

following generalization of the expansion of ∆˜̀
Ns from

Eqs. (13), (36):

∆˜̀
Ns =

∑
α

1

α!

N(α)
e∑
k=1

µα,k∆qαα,k +
1

2
B̃

(2)
Ns
γ2, (E1)

where the sum over α is over all positive even integers,

α! denotes the faculty of α, the variable N
(α)
e denotes the

number of modes ∆qα,k that enter ∆˜̀
Ns to lowest order

as ∼ ∆qαα,k, and µα,k are the associated coefficients.

Thus, the phase space volume is governed by an inte-
gral of the following kind:

ΩNs ∼ I(ε, γ) :=

∫ ∏
α

N(α)
e∏
k=1

d∆qα,k


× δ

∑
α

1

α!

N(α)
e∑
k=1

µα,k∆qαα,k + w̃Ns

[
ε+ bεγ

2
] ,

(E2)

To extract the dependency of I on ε and γ, we first define:

I1 :=

∫ ∏
α

N(α)
e∏
k=1

dxα,k


× δ

∑
α

1

α!

N(α)
e∑
k=1

µα,kx
α
α,k + w̃Ns

 ,

(E3)

which depends neither on ε nor on γ. Now we can trans-
form the expression in Eq. (E2) using the following sub-
stitutions for all integration variables:

∆qα,k =
[
ε+ bεγ

2
]1/α

xα,k, (E4)

which yields:

ΩNs(ε, γ) ∼ I(ε, γ) =
[
ε+ bεγ

2
]NΩ

I1 (E5)

with:

NΩ = −1 +
∑
α

N
(α)
e

α
. (E6)

The first term in NΩ arises from removing the factor [ε+
bεγ

2] from the Dirac delta, and all the remaining terms
arise from the substitution of the integration variables.
Note that for the case discussed in the main text, i.e. for

Ne := N
(2)
e and N

(α)
e = 0 for α > 2, we have indeed

NΩ = (Ne− 2)/2. Hence, also higher-order dependencies

of ∆˜̀
Ns on the dofs also contribute to the exponent NΩ,

and thus to κS = NΩkB/DV
∗; they are just attenuated

according to their order α.
In this argument, we have excluded modes that leave

∆˜̀
Ns invariant. They do not contribute to NΩ. This is

because any substitution like in Eq. (E4), while creat-
ing a prefactor, also rescales the integral bounds by the
same prefactor, both of which exactly cancel each other
out. Meanwhile, for any mode that does affect ∆˜̀

Ns , the
rescaling of the integral bounds does not matter, since
the integration domain of these modes is effectively lim-
ited by the Dirac delta, not the integral bounds.

Appendix F: Tension and shear modulus in the
general case

To obtain the isotropic tension t := (∂F/∂ε)/DV , we
first use the chain rule. To lowest order, V = V ∗, and so
we obtain from Eq. (64):

t =
1

DV ∗

[
∂F̄

∂ε̂S

∂ε̂S
∂ε

+
∂F̄

∂ε

+
1

2βF̄ ′′

(
∂F̄ ′′

∂ε̂S

∂ε̂S
∂ε

+
∂F̄ ′′

∂ε

)]
.

(F1)
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We compute to lowest order:

∂ε̂S
∂ε

= − ε̂S + bεγ
2

|ε+ bεγ2|
√

1 + θ
(F2)

1

DV ∗
∂F̄

∂ε̂S
= −κE(ε− ε̂S)− κST

ε̂S + bεγ2
= 0 (F3)

1

DV ∗
∂F̄

∂ε
= κE(ε− ε̂S) (F4)

1

DV ∗
∂F̄ ′′

∂ε̂S
= − 2κST

(ε̂S + bεγ2)3
(F5)

1

DV ∗
∂F̄ ′′

∂ε
= 0. (F6)

We thus obtain:

t = κE(ε− ε̂S)

[
1 +

1

2(Ne − 2)

θ

1 + θ

]
, (F7)

where we have also used that

F̄ ′′ = −DV ∗κE

∣∣ε+ bεγ
2
∣∣√1 + θ

ε̂S + bεγ2
(F8)

and

κE(ε− ε̂S) = − κST

ε̂S + bεγ2
, (F9)

which follows from Eq.(62). The term ∼ (Ne − 2)−1 in
Eq. (F7) corresponds to the terms involving F̄ ′′.

For the shear modulus G := (∂2F/∂γ2)/V , we have to
lowest order:

G =
1

V ∗

[
∂2F̄ (ε̂S(ε, γ); ε, γ)

∂γ2

+
1

2β

∂2

∂γ2
log F̄ ′′(ε̂S(ε, γ); ε, γ)

]
.

(F10)

We compute with Eqs. (F3) and (F9):

1

V ∗
∂F̄ (ε̂S(ε, γ); ε, γ)

∂γ
=

1

V ∗
∂F̄ (ε̂S ; ε, γ)

∂γ

= −2DκSTbεγ

ε̂S + bεγ2

= 2DκE(ε− ε̂S)bεγ,

(F11)

and further:

1

V ∗
∂2F̄ (ε̂S(ε, γ); ε, γ)

∂γ2

=
1

V ∗

[
∂2F̄ (ε̂S ; ε, γ)

∂γ∂ε̂S

∂ε̂S
∂γ

+
∂2F̄ (ε̂S ; ε, γ)

∂γ2

] (F12)

with

1

V ∗
∂2F̄ (ε̂S ; ε, γ)

∂γ∂ε̂S
= −2DκEbεγ (F13)

∂ε̂S
∂γ

= −bεγ
(

1 +
ε+ bεγ

2

|ε+ bεγ2|
√

1 + θ

)
(F14)

= −2bεγ
ε− ε̂S

|ε+ bεγ2|
√

1 + θ
(F15)

1

V ∗
∂2F̄ (ε̂S ; ε, γ)

∂γ2
= 2DκE(ε− ε̂S)bε. (F16)

Thus:

1

V ∗
∂2F̄ (ε̂S(ε, γ); ε, γ)

∂γ2

= 2DκE(ε− ε̂S)bε

(
1 +

2bεγ
2

|ε+ bεγ2|
√

1 + θ

)
.

(F17)

Furthermore:

∂F̄ ′′(ε̂S(ε, γ); ε, γ)

∂γ

=
∂F̄ ′′(ε̂S ; ε, γ)

∂ε̂S

∂ε̂S
∂γ

+
∂F̄ ′′(ε̂S ; ε, γ)

∂γ

= DV ∗κE

[(
1

ε̂S + bεγ2
− ε̂S − ε

(ε̂S + bεγ2)2

)
×
(
−2bεγ

ε− ε̂S
|ε+ bεγ2|

√
1 + θ

)
− 2bεγ

ε̂S − ε
(ε̂S + bεγ2)2

]

= −2DV ∗κEbεγ
ε− ε̂S

(ε̂S + bεγ2)2|ε+ bεγ2|
√

1 + θ

×
[
ε+ bεγ

2 − |ε+ bεγ
2|
√

1 + θ
]

= −4DV ∗κEbεγ
ε− ε̂S

(ε̂S + bεγ2)|ε+ bεγ2|
√

1 + θ
, (F18)

and thus:

∂

∂γ
log F̄ ′′(ε̂S(ε, γ); ε, γ) = 4bεγ

ε− ε̂S
(ε+ bεγ2)2(1 + θ)

.

(F19)

The second derivative is:

∂2

∂γ2
log F̄ ′′(ε̂S(ε, γ); ε, γ)

=
4bε(ε− ε̂S)

(ε+ bεγ2)2(1 + θ)

+
4bεγ

(ε+ bεγ2)2(1 + θ)
× 2bεγ

ε− ε̂S
|ε+ bεγ2|

√
1 + θ

− 16b2εγ
2(ε− ε̂S)

(ε+ bεγ2)3(1 + θ)2

=
4bε(ε− ε̂S)

(ε+ bεγ2)2(1 + θ)

[
1 +

2bεγ
2

|ε+ bεγ2|
√

1 + θ
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− 4bεγ
2

(ε+ bεγ2)(1 + θ)

]
.

(F20)

From Eqs. (48) and (F9) follows:

1

2βV ∗
=
DκST

Ne − 2
=

DκE
Ne − 2

θ
(ε+ bεγ

2)2

4
(F21)

Combining Eqs. (F10), (F17), (F20), and (F21), we ob-
tain Eq. (66) in the main text.
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