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Athermal (i.e. zero-temperature) under-constrained systems are typically floppy, but they can be
rigidified by the application of external strain, which is theoretically well understood. Here and in
the companion paper, we extend this theory to finite temperatures for a very broad class of under-
constrained systems. In the vicinity of the athermal transition point, we derive from first principles
expressions for elastic properties such as isotropic tension t and shear modulus G on temperature
T , isotropic strain ε, and shear strain γ, which we confirm numerically. These expressions contain
only three parameters, which depend on the microscopic structure of the system. These respectively
describe entropic rigidity, energetic rigidity, and an interaction between isotropic and shear strain.
Our results imply that in under-constrained systems, entropic and energetic rigidity interact like
two springs in series. This also allows for a simple explanation of the previously observed scaling
relation t ∼ G ∼ T 1/2 at ε = γ = 0. Our work unifies the physics of systems as diverse as polymer
fibers & networks, membranes, and vertex models for biological tissues.

Understanding rigidity of amorphous materials still
represents a fundamental challenge, which is relevant for
questions ranging from the glass transition in inert ma-
terials [1] to solid-fluid transitions in living systems [2].

In the athermal limit, i.e. at zero temperature, the
rigidity of many systems, including spring networks and
particulate matter, can be predicted using Maxwell-
Calladine constraint counting [3–6]. In this approach,
one compares the number of constraints, Ns (e.g. the
number of springs in a spring network), to the number
of degrees of freedom, Ndof (e.g. the node positions in
a spring network). Roughly, if Ns > Ndof , the system
is expected to be rigid. Conversely, if Ns < Ndof , the
system is under-constrained and expected to be floppy.

However, it is known that even under-constrained sys-
tems can be rigidified [4, 7–12]. This occurs for instance
when there is geometric incompatibility between spring

FIG. 1. Analytical predictions for the isotropic tension t
depending on isotropic strain ε, shown for the athermal limit
(red dashed line), the infinitely-stiff-spring limit (blue dashed
line), and the general case of finite spring stiffness and temper-
ature (black solid line). (inset) Same plot in log-log scaling.

rest lengths and externally applied strain. For exam-
ple, in the simple spring network in Fig. 2b, we illustrate
what happens when progressively increasing the exter-
nally applied isotropic strain ε while keeping the spring
rest lengths fixed. Eventually, as ε is increased above a
critical value, here for convenience defined as the point
of zero strain, ε = 0, the springs necessarily need to be
stretched. At the boundary of geometric incompatibil-
ity (ε = 0), a so-called state of self-stress (SSS) emerges
[6]. This means that specific combinations of virtual ten-
sions can be put on the springs without resulting in any
net forces on any of the (movable) nodes. In previous
work, we used the properties of the SSS created at the

FIG. 2. (a) Schematic: Variation of the accessible phase
space volume Ω with isotropic strain ε in the limit of in-
finitely stiff springs. Starting at the athermal transition point
at ε = 0, upon isotropic compression (ε < 0), Ω is expected
to increase with the distance |ε| to the athermal transition
point. The abscissa represents the Ndof -dimensional configu-
ration space. (b) Illustration of a simple two-spring system in

3D of linear dimension 3
√
V = eε 3

√
V ∗, where the black nodes

have fixed positions and the blue node is freely movable. In
panels a and b, blue dashed lines represent the accessible parts
of the phase space.
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rigidity transition to analytically derive the elastic prop-
erties in the athermal limit [9, 13]. Our approach applies
not only to spring networks, but also to other systems
such as polymer networks [14–17] and vertex models for
biological tissues [9, 10, 18–20].

While we analytically understand rigidity in the ather-
mal limit, there are mostly only numerical results for
the case of a finite temperature, i.e. for thermal under-
constrained systems [21–25]. For instance, previous stud-
ies showed numerically that upon increasing temperature
T from the athermal rigidity transition point, the shear
modulus G scales as G ∼ T 1/2 [22, 23]. For specific
spring networks, this scaling could be derived analyti-
cally using effective-medium theory (EMT) before [26],
but a derivation from first principles independent from
the assumptions inherent to EMT has been lacking so
far. There is also work treating a related abstract con-
straint satisfaction problem using the replica approach
[27], work studying these questions in isostatic or over-
constrained systems [26, 28–30], and work discussing the
effect of singularities on under-constrained systems [31].
However, despite these advances, we still miss a gen-
eral understanding for the elastic properties of thermal,
under-constrained systems, in particular their response
to isotropic and shear strain.

Here and in the companion paper [32], we develop a
generic analytical theory for thermal, under-constrained
systems in the vicinity of the athermal transition point.
We first derive the elastic system properties in the limit of
infinitely stiff springs, where only entropic elasticity plays
a role. To then discuss the general case of finite spring
stiffness and finite temperature (black solid line in Fig. 1),
we then combine the stiff-spring results (blue dashed line)
with our earlier results for the athermal limit, where only
energetic elasticity plays a role (red dashed line) [9, 13].
We provide an intuition for why the system behaves as if
the two limiting cases were “put in series”, i.e. entropic
and energetic strains add up (illustration in Fig. 1). Fi-
nally, we test our analytical results numerically, using
simulations of randomly cut triangular networks. With
only three fit parameters, our analytical results reproduce
the observed behavior of tension t and shear modulus G
over many orders of magnitude of varying isotropic strain
ε, shear strain γ, and temperature T .

To discuss the key ideas of our approach, we focus here
on an under-constrained network of linear springs with
equal spring constants K and rest lengths L0. The more
general case of varying spring constants and rest lengths
is discussed in the companion paper [32]. The system
energy is:

E =
K

2

Ns∑
i=1

(Li − L0)2, (1)

where the sum is over all springs i. The length Li of
spring i depends on isotropic strain ε, shear strain γ, and

the positions Ra of the nodes it connects, where a is the
node index. We use periodic boundary conditions in D
spatial dimensions with periodic box volume V . Isotropic
strain ε is defined as linear strain, i.e. V = eDεV ∗, where
V ∗ is the system volume at the athermal transition point.
Shear strain γ can be either pure shear strain, or sim-
ple shear strain using Lees-Edwards-like boundary con-
ditions [33].

It will be convenient to consider geometric quantities
that are rescaled with respect to system size. For in-
stance, we consider the rescaled node positions ra :=
V −1/DRa = e−ε(V ∗)−1/DRa. Because the springs in
our network are linear, the spring lengths are homoge-
neous with respect to isotropic strain. Thus, the rescaled
spring lengths `i({ra}, γ) := e−εLi({Ra}, ε, γ)/L0 do not
depend on isotropic strain ε any more.

In the athermal limit, the elastic properties arise from
purely energetic interactions, and their analytical ex-
pressions have been derived before [9, 13]. Briefly, for
small isotropic and shear strain, the system is rigid for
ε+ bεγ

2 > 0, where bε is a constant that depends on the
microscopic network structure. In the rigid regime close
to the transition, energetically created isotropic tension
tE and shear modulus GE are given by (red dashed line
in Fig. 1) [32]:

tE = κE
(
ε+ bεγ

2
)

(2)

GE = 2DbεκE
(
ε+ 3bεγ

2
)
, (3)

where κE is a constant that depends on the microscopic
network structure.

In the thermal case, the configurational degeneracy of
the system becomes important (Fig. 2). To discuss its in-
fluence, we first consider the stiff-spring limit, K → ∞,
which implies a hard constraint for all spring lengths:
Li = L0. To sketch the derivation of the elastic sys-
tem properties in this limit we set for simplicity γ = 0
here. The general case including γ is described in the
companion paper [32]. To derive how the accessible
phase space volume Ω scales with ε, we first note that
the spring length constraints Li = L0 link the rescaled
spring lengths `i to isotropic strain ε: To linear order in
ε, the definition of `i implies: ∆`i := `i − 1 = −ε. We
then Taylor-expand all rescaled spring lengths around the
transition:

−ε ≡ ∆`i = Cin∆rn +
1

2
Mimn∆rm∆rn, (4)

where we use Einstein notation (implied sum over equal
indices). We introduced ∆rn := rn − r∗n, where the rn
with n = 1, . . . , Ndof correspond to all components of
the rescaled node positions ra, and r∗n denotes their re-
spective values at the transition point. The matrix Cin

is the compatibility matrix at the transition point, and
Mimn is the second spring length derivative at the tran-
sition point. Performing a singular-value decomposition
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on Cin, we can express Eq. (4) in terms of the “eigen
modes” of Cin:

−εw̃p = s
˙
p∆r̃

˙
p +

1

2
M̃pmn∆r̃m∆r̃n, (5)

where the sp with p = 1, . . . , Ns are the singular values of
Cin, indices with underdot are not summed over, and the
quantities with tilde were transformed into the respective
“eigen space” of Cin. In particular, the Ns-dimensional
vector (w̃p) corresponds to the Ns-dimensional vector
(wi) = (1, . . . , 1) transformed into the eigen space of Cin.
In general, in disordered networks, a single SSS is created
at the transition point [6, 9]. Sorting the sp in decreasing
order, we thus have that sp > 0 for p < Ns and sNs

= 0.
Retaining only the lowest-order terms in ε, we obtain

from Eq. (5) after some discussion [32]:

−εw̃p = s
˙
p∆r̃

˙
p+

1

2

Ndof∑
m,n=Ns

M̃pmn∆r̃m∆r̃n

for p = 1, . . . , Ns. (6)

Each of these Ns equations includes all the ∆r̃n with
n ≥ Ns. However, each of the ∆r̃p with p < Ns appears
only once in total; as linear terms in the equation with
index p. Thus, for a given value of ε, the first Ns − 1
equations only fix the values of the ∆r̃p with p < Ns.
Meanwhile, the last equation, p = Ns, puts a constraint
on the ∆r̃n with n ≥ Ns. Because sNs = 0, this equa-
tion describes the surface of a hyper-ellipsoid (compare
Fig. 2b) whose half axes scale as ∼

√
−ε. Some of the

eigen values of the matrix M̃Nsmn are zero; for instance
those that correspond to a global translation of all nodes.
The ellipsoid is thus Ne-dimensional, where Ne is the
number of non-zero eigen values of M̃Nsmn, which ful-
fills Ne ≤ Ndof − Ns − D + 1. Thus, the surface of the
ellipsoid scales as ∼ (−ε)(Ne−1)/2. Together with an ad-
ditional prefactor of ∼ 1/

√
−ε due to the constraint on

the spring lengths [32], we obtain for the accessible phase
space volume:

Ω ∼ (−ε)
Ne−2

2 . (7)

The free energy consists only of an entropic contribution
FS = −kBT log Ω = −kBT ([Ne − 2]/2) log [−(ε+ bεγ

2)],
where kB denotes the Boltzmann constant, and we ne-
glected constant offsets. Also, we have included the de-
pendency on γ, which we derive in the companion paper
[32]. We thus obtain for the purely entropic tension tS =
(∂FS/∂ε)/V and shear modulus GS = (∂2FS/∂γ

2)/V :

tS = − κST

ε+ bεγ2
(8)

GS = −2DbεκST
ε− bεγ2

(ε+ bεγ2)2
, (9)

with κS = kB(Ne − 2)/2DV ∗. Hence, not only energetic
rigidity [9, 13], but also entropic rigidity is determined by

FIG. 3. Numerical results for zero shear strain, γ = 0. (a) We
find three scaling regimes. (a inset) For ε = 0, we numerically

confirm the scaling t ∼ T 1/2. The red dashed line is a fit to
the curve t =

√
κEκST for T ≤ 10−6 to extract the value

of
√
κEκS . (b,c) When plotting isotropic tension t (b) or

shear modulus G (c) over isotropic strain ε, a rescaling by
√
T

leads to a collapse of the curves for the different temperatures.
(respective inset) Same data without rescaling. All curves in
panels b, c and their insets are predictions from Eqs. (11) and
(12) using a single parameter set (κE , κS , bε) [34].

the properties of the SSS that is created at the athermal
transition point.

For γ = 0, the scaling of the tension is plotted in Fig. 1
(blue dashed line). This scaling is consistent with known
results for some under-constrained systems. For instance,
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FIG. 4. Numerical results for varying shear strain, γ > 0, with
fixed ε = −9.15 × 10−5. (a) When plotting isotropic tension

t over the combined strain, ε+ bεγ
2, a rescaling by

√
T leads

to a collapse of the curves for the different temperatures. (a
inset) Same data without rescaling, and on the x axis shear
strain is plotted directly. (b) Shear modulus G over shear
strain γ. All curves are predictions from Eqs. (11) and (12)
using the same parameter set as in Fig. 3.

the tension of a freely jointed chain scales as ∼ −T/ε
close to the fully stretched chain configuration [35], and
so does the tension of an incompressible membrane with-
out bending rigidity close to the fully stretched state [36].

We now discuss the general case of finite spring stiff-
ness K and finite temperature T , where entropic and
energetic elasticity compete with each other. Entropic
effects generally tend to elongate individual springs in
order to increase the phase space volume, but strongly
elongated springs are less favorable energetically. To get
a more quantitative intuition for the interplay between
entropic and energetic elasticity, we consider boundary
conditions that ensure γ = 0 and constant tension t > 0
(horizontal gray line in Fig. 1). In the thermal stiff-spring
limit, K → ∞, this leads to a negative strain εS < 0
(blue arrow), which is according to Eq. (8): εS = −κST/t
(blue dashed line). When we now allow for a finite spring
constant K, the springs additionally stretch, increasing
the total strain by some amount εE to the total strain

ε = εS + εE (red and black arrows, respectively). For
sufficiently small temperatures, the network geometry is
on average not very different from the athermal network.
So, using Eq. (2), we have εE = t/κE (red dashed line).
Thus, the total strain depends on tension as (black solid
line)

ε = −κST
t

+
t

κE
. (10)

In other words, the interaction between entropic and en-
ergetic elasticity corresponds to an entropic and an ener-
getic spring acting in series (Fig. 1). The rigorous anal-
ysis in our companion paper confirms that this intuitive
explanation leads to the exact result for Ne � 1 [32].

Inverting Eq. (10) we find:

t =
κE
2

(
ε+ bεγ

2 +
∣∣ε+ bεγ

2
∣∣√1 + θ

)
, (11)

where θ := 4κST/[κE(ε + bεγ
2)2]. The γ dependency

that we have included here is derived in the companion
paper [32]. We find for the shear modulus [32]:

G = 2Dbεt

[
1 +

2bεγ
2

|ε+ bεγ2|
√

1 + θ

]
. (12)

Thus, the shear modulus is proportional to tension for
γ = 0, but not for varying γ.

Our approach also provides a simple explanation for
the previously observed G ∼ T 1/2 scaling for ε = 0 and
γ = 0. In this limit, we find from Eqs. (11) and (12) that
t =
√
κEκST and G = 2Dbεt. The relation for t can also

be obtained immediately from Eq. (10) with ε = 0.
More generally, we find three scaling regimes, which

we discuss here for γ = 0 (Fig. 3a and inset to Fig. 1).
(i) For θ � 1 and ε < 0, the system behaves like in the
stiff-spring limit with G ∼ t ∼ T 1|ε|−1. (ii) For θ � 1
and ε > 0, the system behaves like in the athermal regime
with G ∼ t ∼ T 0ε1. (iii) For θ � 1, the system shows the
scaling G ∼ t ∼ T 1/2ε0. This is remarkably analogous
to previous results [26], where strain is replaced by the
network connectivity. We discuss a possible reason for
this in the companion paper [32].

We tested our analytical results using Monte-Carlo
(MC) simulations of a 2D under-constrained randomly
cut triangular network in periodic boundary conditions
[37]. We first set shear strain to zero, γ = 0, varying only
isotropic strain ε and temperature T (Fig. 3). We con-
firmed the t ∼ T 1/2 scaling for ε = 0 (inset to Fig. 3a).
Furthermore, Eqs. (11) and (12) predict that for γ = 0
the tension-strain and shear-modulus-strain curves re-
spectively collapse when rescaling each of t, G, and ε by√
T , which we confirm numerically in Fig. 3b,c. The the-

oretical predictions are shown as dashed and solid curves,
where the values of κE , κS , and bε were obtained inde-
pendently, from data at T = 0 and at ε = 0 [34]. Note
that the value of κS can also directly be obtained from
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Ne, by counting the non-zero eigen values of M̃Nsmn with
m,n ≥ Ns. Indeed, for our network studied here, we find
Ne = 433, which is consistent with the observed value for
κS [34].

We further tested our analytical results for varying
shear strain, γ > 0, fixing isotropic strain ε (Fig. 4). For
the tension t, Eq. (11) again implies a scaling collapse
onto a theoretical curve, which we confirm numerically
in Fig. 4a. The solid and dashed lines in Fig. 4a and
inset indicate again the prediction according to Eq. (11),
using the same parameter values as before [34]. Similarly,
the shear modulus data follows the analytical prediction
in Eq. (12) (Fig. 4b). Deviations in the shear modulus at
the lowest temperature are consistent with slightly insuf-
ficient equilibration, and deviations at larger shear strain
are likely due to higher-order terms.

In conclusion, we have developed a generic analyi-
cal theory for the elastic properties of thermal, under-
constrained systems, and their behavior under isotropic
and shear strain. We expect this work to unify the
physics of a broad class of materials, including polymer
fibers, polymer networks, membranes, and vertex models
for biological tissues.
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