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Abstract

The objective of the present study is to create a parametric model of an ideal 3D woven textile

from a computed tomography at mesoscale without prior knowledge of the fabric architecture. The

model is constructed by identifying a minimal number of parameters from the tomography and includes

further assumptions about the textile properties (e.g., equally-spaced vertical yarn columns). A novel

registration procedure called Model-based Digital Image Correlation (MDIC) is introduced for mapping

the whole textile image onto its own model. It leads to a realignment of the yarn columns after

deforming the textile image, from which the model is updated. Model extraction and registration

steps are iterated up to a stationary solution. The final result is a perfect textile geometry with

straight and orthogonal yarn columns and its mapping onto the original tomography image. The

proposed procedure is applied successfully to a 3D woven textile and a 3D-injected woven composite.

This novel technique is useful as a pre-processing step to image segmentation procedures or to ease the

visual inspection performed by operators in correcting the yarn paths and yarn column deformations

occurring during composite material manufacturing. Additionally, this alignment procedure could be

used to deform a numerical ideal model to better fit the geometry of a real weave.

Keywords: Digital Image Correlation, Computed Tomography, 3D Woven Composites

1. Introduction

Nowadays, the use of composite materials is soaring in industries where lightweight components are

key. The aeronautic industry is a clear example of such. For example, the introduction of composite

parts in the LEAP engine lead to an overall reduction of 15% of fuel consumption with respect to the
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best-performing engine of the previous generation [1]. In particular, the use of 3D woven technology

for the fan blade and fan case was fundamental in its design. Moreover, the use of this textile architec-

ture allows for optimizing the textile reinforcement so that its customized mechanical properties best

respond to the operational loads and even complex net shapes such as the fan blade. For instance,

3D woven interlock fabrics, interlacing two-yarn types (warp and weft) along the thickness dimension,

confer very interesting out-of-plane properties, hence reducing the risk of delamination.

In order to guarantee the final mechanical performances, non-destructive testing (NDT) techniques

based on high-resolution X-ray computed tomography (micro-CT) images have proven to be extremely

useful and suitable to composite materials [2]. Indeed, this allows non-destructive inspections of the

actual arrangement of yarns within manufactured textiles (i.e., just after weaving of the reinforce-

ment and/or after matrix injection). From these CT images, visual inspection is performed through

operators. Their role is, for example, to check the absence of missing yarns or anomalous yarn paths

due to the weaving (e.g., as could result from friction with the shuttle inserting weft yarns) or any

misplacement of yarns. Even if very rare, these defects could be detrimental to the final mechanical

performance and NDT is thus a crucial step in quality control. Moreover, these tomographic volumes

allow to create digital material twins of fibrous reinforcements as well.

Indeed, many works devoted to extracting the mesoscale textile model, employ image processing

techniques and perform quantitative analyses therein [3, 4, 5]. The techniques range from “classical”

methods such as clustering operations [6] or texture analysis [7], up to the more recent Deep Learning

approaches [8, 9, 10, 11, 12]. Other approaches based on deformable models have also been explored [13,

14]. The main idea is to start from a rough initial yarn path and a very coarse description of yarn shapes

and to progressively deform the latter to fit them to the observed ones minimizing yarn interpenetration

and adjusting yarn orientations, to name but a few.

So extracting the textile mesoscale model presents clearly many advantages to perform Finite

Element Analyses on such complex structures. It could also be a pre-processing step to an automated

control based on image analysis or machine learning. That being said, another strategy aiming at

helping the aforementioned automated control (e.g., , based on image analysis or machine learning) as

a pre-processing step or simply easing the operator’s visual inspection could also be explored.

Let z denote the thickness direction, while x and y correspond, respectively, to the warp and

weft mean orientations. Weaving technology of 3D textiles leads to some generic constraints: warp

yarns are structurally held in parallel planes (x, z), and weft yarns are also inserted in parallel planes
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(y, z) orthogonal to the former. Thus, textiles are engineered through ideal models that obey these

constraints so that the architecture describes how each yarn (weft or warp) navigates in the thickness

direction. However, after manufacturing, the weave may be deformed and shaped to the final desired

composite shape. Hence the initially parallel, equally spaced, orthogonal families of planes become

distorted to curved and sheared surfaces. The fact that the weave has been deformed makes the visual

inspection of CT images quite tricky, as one has to navigate in different cross-sections to follow each

yarn individually. The present study aims to start from a CT volume and correct it so that warp

and weft are “moved” back to their ideal configuration (that of the loom or the CAD model). The

question is thus to find the geometrical transformation, T , that will restore the perfect alignment of

warp and weft planes. Because of its use for NDT purposes, the textile model is not assumed to be

known in this work, so even if the topology is not obeyed strictly, it will not affect the transformation

or its determination. Thus, the deliberate choice is not to segment individual yarns to reconstruct the

deformed warp or weft planes. Instead, the large-scale structure will be considered, and the altered

underlying warp and weft planes will guide our methodology for a robust approach. Such corrected CT

images are thus much easier to control, limiting workload and the risk of misinterpretation. However,

it is important to note that the proposed alignment is a deformation that affects the yarn cross-sections

and fiber or yarn fractions. Those quantities are to be measured on the original CT volume. If needed,

however, they can be mapped onto the ideal configuration, where a proper labeling of yarns for instance

is naturally defined.

The above transformation also offers a side benefit. To assess the mechanical properties of the

composite structure, it is usual to rely on finite element numerical simulation at the mesoscale. How-

ever, these simulations are often based on the CAD model of the textile in its ideal configuration. The

mesh should be matched to the actual geometry to evaluate the effect of distortion or a defect (e.g., a

missing/broken yarn). This can easily be done using the inverse transformation, T −1 (now from the

ideal geometry to the actual one).

As such, the aim of the present work is to develop a method based on the registration of “abstract”

textile models for transforming the real images into ideal ones. Here, the abstract model aims to

provide a simpler representation of the textile that conforms to an ideal configuration (e.g., equally-

spaced vertical yarn columns).

Since this method is based on measuring the relative deviations of a “known” real sample, in the form

of a tomographic image, with respect to a numerical textile descriptor model, a registration method
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such as Digital Image Correlation (DIC) (local [15] or global [16]), or Digital Volume Correlation

(DVC) (here again local [17], or global[18, 19]) is well-suited. Previous works have shown the potential

of such methods in the context of 3D-woven composites [20].

This study is presented as follows. Section 2 presents the studied tomographic samples (woven

textile and composite part). Then, section 3 presents the chosen strategy for describing an ideal

textile by incorporating some a priori (e.g., perfectly aligned, orthogonal yarn columns, equal spacing

between the columns). Afterward, section 4 details the proposed Model-based DIC (MDIC) by building

up the problem from a 1D formulation up to a 3D solution. Finally, section 5 presents the results on

both studied samples before concluding with some remarks and perspectives in section 6.

2. Tomography of 3D woven textiles

This section describes the two samples used for this study. The first one is a flat textile reinforcement

(without a matrix), and the second one is a composite panel (with a resin matrix). Both samples are

ply-to-ply angle interlocks (but with different weaving patterns) composed of carbon-fiber-based yarns.

Both samples were scanned with a GE Phoenix X-ray tomograph (GE v|tome|x L300) and an image

resolution set to allow for a mesoscale analysis (i.e., the yarns are distinguishable from each other, but

the carbon fibers within them are not). Also, the samples are placed so that the warp columns are

aligned with the x axis, the weft columns are oriented with the y axis, and the z axis corresponds to

the textile thickness direction.

It should be noted that all calculations and computing times listed here been performed on an Intel

i7 processor (4 cores) with 32 GB of RAM. Moreover, the code was developed using MATLAB.

2.1. Textile reinforcement sample

This first “dry” sample is shown in figure 1. It contains 39 warp yarns and 32 weft yarns (total of

71 yarns). The warp yarns are distributed alternately in a sequence of 4 and 3 yarns in two consecutive

columns. Similarly, two consecutive weft columns are composed of 5 and 4 yarns respectively. In this

sample, there are 11 warp columns and 7 weft columns. The chosen voxel size of 20 µm leads to a

volume image of 1472× 1776× 408 voxels.

This image is coarsened with an anisotropic downsampling with a ratio of 2:2:1 so that the yarns

cross-sections are closer to a circular shape rather than elliptical. This was shown useful when analyzing
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Figure 1: Reconstructed volume of the 3D woven fabric specimen.

(a) Original volume (warp slice) (b) Original volume (weft slice)

(c) Coarsened volume (warp slice) (d) Coarsened volume (weft slice)

Figure 2: Visualization of mid x-z and mid y-z planes for both the original and coarsened volumes
of the 3D woven fabric specimen. The indicated yarn types are seen longitudinally. The fine texture
within the yarns is lost but the overall textile information is kept.

displacements of yarns [21] as similar displacement values along the two different in-plane directions will

not have the same influence on the overall textile architecture. Afterwards, an isotropic downsampling

by a factor 8 helps condensating the image so that only the useful features are maintained (i.e., yarn

boundaries are kept, while fiber definition is lost). Thus, the size of the obtained coarsened volume is

92× 111× 51 voxels, with a final resolution of 320× 320× 160 µm.

The two vertical mid-planes (for warp and the weft directions) are shown in figure 2 for the original

and the coarsened volumes.

2.2. Flat composite sample

This second sample contains around 180 yarns distributed over warp and weft columns that are

much closer between themselves than in the previous sample. It was scanned at a resolution of 42 µm
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Figure 3: Reconstructed volume of the injected specimen

(a) Original volume (warp slice) (b) Original volume (weft slice)

Figure 4: Visualization of mid x-z and mid y-z planes for the volume of the injected specimen. The
indicated yarn types are seen longitudinally.

(voxel size). An isotropic downsampling was performed so that the resulting volume would have a

similar final voxel size as the previous sample in x and y directions, resulting in a volume image of

254× 256× 41 voxels (i.e., 320 µm). It should be noted that in this case, the anisotropic scaling was

found to be less favorable to the calculations. Given that this step merely acts as a numerical trick to

speed-up the calculations, the results shown for this sample will keep its original aspect ratio. Figure 3

shows a 3D visualization of the coarsened volume, and figure 4 shows the two vertical mid-planes

representing both warp and weft orientations.

3. Textile models

This section introduces the parametric textile model that will be used thoroughly in all the text.

It is designed to describe an idealized textile and the actual one observed in the tomographic volume.

It should be noted that the textile model used here is essentially of 2D nature. As such, it does not

seek to describe the exact position of every yarn on every textile layer but rather the average position

of multiple yarns in their respective columns. Thus, the proposed processing pipeline adapts a single

2D model for an averaged representation of the 3D woven textile. Then, the same 2D model is adapted

for every layer of the 3D woven composite, with the additional advantage to enforce regularity between

layers.
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As such, the first part of this section will focus on some preprocessing steps on the tomographic

volume to ease a simple two-dimensional treatment of the textile. Next, the “building blocks” for the

parametric model will be described. They hinge upon simple 1D functions defined over the 2D space.

Finally, details are given for a simple identification procedure to construct the base textile model. As

evoked earlier, this single model is meant to be adapted either to a 2D representation of the textile as

well as to all of its layers. In such a case, the identification procedure is performed only once.

3.1. Preprocessing of the tomographic volume

The first type of transformation applied to tomographic volume Vct(x, y, z) is represented by a

z-average operation which can be carried out to “summarize” the overall textile information (from 3D

volume to a 2D image). The resulting image Iz(x, y) represents the global averaged position of the

yarn columns, which can be obtained by:

Iz(x, y) =
1

Nz

Nz∑
z=1

Vct(x, y, z) (1)

where Nz denotes the number of voxels along the thickness.

In an ideal case, where yarn columns would be perfectly aligned with z and yarn orientations

perfectly orthogonal, as shown in figure 5a, the resulting image Iidealz (x, y) (see figure 5c) would be

a grid of projected yarn columns as thick “stripes” whose intensities would indicate the number of

yarns per column. However, from the actual image shown in figure 5b, the z-averaged image Iz(x, y)

(see figure 5d) presents distorted and non-uniform stripes. This is due to local yarn distortions,

uneven distances between yarn columns, non-perfectly vertical columns, non-perfectly orthogonal yarn

orientations, and even image aberrations due to tomographic artifacts (e.g., cone artifact).

Next, in order to isolate just one yarn orientation, a blurring operation, consisting of a convolution

with a 2D Gaussian kernel G(lx, ly) of width lx and ly respectively along x and y axes, is applied to

Iz(x, y). Let us introduce λx and λy respectively as the average distance (expressed in voxels) between

weft and warp yarn columns. In order to separate warp yarn columns, the chosen kernel is G(λx, 0),

while in case of weft yarn columns, the kernel would be G(0, λy).

These preprocessing operations can be written as

Iz,warp(x, y) = G(λx, 0)⊛ Iz(x, y) (2)

Iz,weft(x, y) = G(0, λy)⊛ Iz(x, y) (3)
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(a) Ideal textile (b) Vct(x, y, z)

(c) Iidealz (x, y) (d) Iz(x, y)

Figure 5: 3D textile image: top row (a) and (b) the 3D volume images; bottow row (c) and (d) the
z-averaged projections
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(a) Iz(x, y) (b) Iz,warp(x, y) (c) Iz,weft(x, y)

Figure 6: 2D Gaussian blurring: (a) raw image (in red the mean yarn column distances λx and λy); (b)
and (c) the blurred images showing respectively only the warp and the weft yarn columns as continuous
stripes.

where ⊛ denotes a convolution product.

It should be noted that λx and λy could be identified either by visual inspection (as it can be seen

on figure 6a) or via numerical means (as mentioned in section 3.3). As a result, the obtained images

Iz,warp(x, y) and Iz,weft(x, y), which are shown in figures 6b and 6c, depict a continuous evolution

either for warp or weft yarn columns in the x-y plane without any discontinuities or holes.

Finally, for convenience, let us define a Z_MEAN function that computes the z-average Iz(x, y) of

the input volume Vct(x, y, z), and a GAUSSIAN_BLUR function that operates on Iz(x, y) to compute

Iz,warp(x, y), Iz,weft(x, y).

3.2. Construction of the parametric model

The proposed parametric model is built based on the tomographic image of the textile (e.g., back-

ground gray level, or average yarn column spacing), and some assumptions about its characteristics

(e.g., yarn sizes). It should be underlined that such assumptions do not represent a prior knowledge of

the full textile description or initial design, but rather a set of “common-sense” textile features easily

measured in the image which will be tailored in this work to 3D woven ply-to-ply angle interlocks.

These assumptions are depicted in figure 5a and can be summarized as:

• Yarn columns are mostly vertical (i.e., roughly aligned with the z axis).

• Yarns undulate on their respective vertical planes and do not steer-off horizontally: warp yarns

remain in their corresponding x-z planes, while weft yarns remain in their corresponding y-z
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planes.

• Yarn columns are roughly equidistant and sufficiently separated.

• The warp and weft orientations are overall aligned with the x and y axes respectively (i.e.,

orthogonality of yarn orientations).

• Yarns are continuous all along the observed sample (no cuts or missing segments).

First, a single parametric model IM (x, y) that describes the yarn column positions can be applied

to Iz(x, y). Second, the orthogonality of warp and weft yarns can be taken into account for isolating

their contributions. As such, the model can be defined as:

IM (x, y) = c0 + IMwarp(y) + IMweft(x) (4)

with IMwarp(y) and IMweft(x) as two one-dimensional functions that represent the ideal dispositions of

warp columns on y, and weft columns on x, and c0 is a constant used to account for the arbitrary gray

level background used during the tomographic reconstruction.

Third, given that yarn columns are meant to be sufficiently separated, each one-dimensional signal

can be modeled using a series of Gaussian profiles. Let us introduce the following notation

G(x; c1, c2, c3) = c1 exp

(
− (x− c2)2

2c23

)
(5)

defining the elementary Gaussian profile defined by its maximum intensity value c1, its (central)

position c2, and its width c3.

Warp and weft column distributions are hence described by a series of Gaussian profiles as follows:

IMwarp(y) =

ncwarp∑
m=1

G(y; βm, ym, ω) (6)

IMweft(x) =

ncweft∑
l=1

G(x; αl, xl, ω) (7)

Here, IMwarp(y) and IMweft(x) are respectively composed of ncwarp and ncweft yarn columns. The

peak intensities, {βm} and {αl}, as well as the peak positions, {ym} and {xl}, are unique for each

Gaussian profile (for m ∈ [1, ncwarp] and l ∈ [1, ncweft]).. A single profile width ω is used for both

warp and weft yarn columns because the yarn sizes are identical. In conclusion 2 + 2ncwarp + 2ncweft

parameters need to be identified.
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It is worth noting that more complex functions could be used for describing the yarn column profiles

(at the cost of additional parameters). For instance, higher power exponential functions could be used

here instead of Gaussian profiles in order to better describe a flattened shape for the peaks. Similarly,

polynomial functions could be used to better capture possible inhomogeneous background intensity

(instead of a constant value).

3.3. Identification of the parametric model

Let us first define the parametric model using the z-averaged information. Instead of performing

a single identification on the Iz(x, y) image, we propose to exploit the respective x and y-average of

Iz(x, y) (from 2D image to 1D signals), defined as follows:

Iref,idwarp (y) =
1

Nx

Nx∑
x=1

Iz(x, y) (8)

Iref,idweft (x) =
1

Ny

Ny∑
y=1

Iz(x, y) (9)

where Nx and Ny respectively representing the image size along the x and y directions. Both strategies

are equivalent but require different implementations.

As such, ncwarp and ncweft are identified using a peak detection algorithm on Iref,idwarp (y) and

Iref,idweft (x) respectively. At this stage, a first estimation of the distance between two consecutive peaks

is provided as follows:

∆ym = ym+1 − ym (10)

∆xl = xl+1 − xl (11)

As well for the model, their mean values can be used to define λx and λy which will also use for the

blurring operations. As such, for the dry textile sample, λx = 13 and λy = 10 were found.

Next, the peak positions and intensities are further refined using least squares regression on each

cross-average image

βm, ym = argmin∥IMwarp(y)− Iref,idwarp (y)∥2 (12)

αl, xl = argmin∥IMweft(x)− I
ref,id
weft (x)∥2 (13)
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While the average width and background intensity are adjusted from the global model IM (x, y). This

regression step is necessary since the detected peaks may not correspond to the overall best position

for the Gaussian profiles.

Finally, for convenience, let us define a GET_MODEL function that solves equations (12) and (13) on

Iz(x, y) and returns IM (x, y), IMwarp(x, y), IMweft(x, y) as defined in equations (4), (6) and (7).

4. Model-based Digital Image Correlation (MDIC)

The proposed correlation (DIC) algorithm is applied between a given image (i.e., the real textile)

and a model that has to be created starting from the same image but incorporating some assumptions

about the weaving. As such, it represents an original extension of DIC called Model-based DIC

(MDIC).

As presented beforehand, the first step of the proposed method consists of constructing a model

image from the observed textile, based on its tomographic image. Next, a correlation should be

performed between this model image and the tomographic one to estimate the displacement field that

better registers them. Then, the inverse of the found displacement field is applied on the tomographic

image so as to “align” the textile. This new image is used to re-adapt (i.e., to correct) the parametric

model and this registration procedure is repeated as many times as needed for convergence (overall

correction displacement field close to zero). Each iteration of the whole procedure is called “great

MDIC iteration”.

This process can be carried out as a 2D problem or as 2 independent 1D problems. In the former

case, the model aligns both yarn orientations simultaneously. In the latter case, each calculation

identifies the displacement orthogonal to the analyzed yarn orientation.

As the distortions present along the textile thickness are not corrected by a simple 2D algorithm,

the z invariance of the method is successively relaxed and the proposed MDIC algorithm is illustrated

in its 3D version for re-aligning the entire textile volume.

This section will first recall the basis of DIC. Then, the full MDIC method will progressively be

detailed.

4.1. Classical DIC

This section presents the principles of Digital Image Correlation (DIC) [22, 23, 24] for the regis-

tration of image pairs. DIC is based on the assumption of conservation of the gray level and aims to
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find the displacement field u(x) that best aligns (registers) a given image g(x) onto a reference one

f(x) [25] by minimizing the L2 norm of their residual :

ρ(x) = g̃(x)− f(x) (14)

with the corrected image is defined as

g̃(x) = g(x+ u(x)) (15)

and the displacement field u(x) that is discretized using a set of shape functions ψi(x) inspired from

the FE method [16, 26]. Then, an iterative Newton-Raphson algorithm is used to solve a linear version

of the problem as:

[M ]{δu} = {b} (16)

with:

Mij =
∑
x∈Ω

Si(x)Sj(x) (17)

bi =
∑
x∈Ω

Si(x)ρ(x) (18)

where Ω corresponds to the region of interest, and the sensitivity fields Si(x) are commonly computed

as

Si(x) = ∇g̃(x) · ψi(x) (19)

≈ ∇f(x) · ψi(x)

It should be noted that the latter approximation is frequently used in DIC implementations since

∇g̃(x) approximates ∇f(x) at convergence. As a consequence, the matrix [M ] needs to be computed

only once (as f(x) does not change).

Finally, the displacement field at a given iteration k is updated with:

{u}(k+1) = {u}(k) + {δu} (20)

This process is carried out until convergence or a maximum number of iterations is attained.
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4.2. 1D-MDIC formulation

The 1D-signal model is constructed using the sum of Gaussian profiles as defined equations (6)

and (7), for which, during the registration, the positions of the warp columns ym(x) = y0m + uym(x)

depend only on x, while the positions of weft columns xl(y) = x0l + uxl (y) depend only on y. Since

for each yarn column, the correction to obtain is in the cross direction to the yarn longitudinal one,

a two-dimensional image is required. As such, for the correction of weft yarns, the Gaussian model

g = IMweft(x) is spread along the yarn longitudinal direction y.

There are two main advantages of such a model. First, it involves displacements u, identified by

1D-MDIC, of each 1D-Gaussian profile with respect to an initial position. The second advantage is,

paradoxically, the non-conservation of gray levels. Indeed, by definition, gray levels between Gaussian

profiles increase when yarns become closer to each other or decrease if they get farther apart. This is

in contrast with the usual assumption of DIC that would keep and stretch the initial gray values in

between, but this is in agreement with a more realistic yarn transformation.

In summary, g(x, y) can handle the model kinematics by a mere translation of the Gaussian profiles

while also allowing for the proper conservation of X-ray attenuation (displacement has an impact on

gray levels). Then, in the case of wefts, the corrected image, labeled as g̃weft(x, y), is written as

g̃weft(x, y) =

ncweft∑
l=1

G(x; αl, x
0
l + uxl (y), ω) (21)

This summarizing image is fundamental for computing the new sensitivity fields

Sl(x, y) =
∂

∂uxl (y)
g̃weft(x, y) (22)

=
∂

∂uxl (y)
G(x; αl, x

0
l + uxl (y), ω)

= αl
(x− x0l − uxl (y))

ω2
exp

(
− (x− x0l − uxl (y))2

2ω2

)

whose horizontal lines are used in equations (17) and (18) for the minimization problem. It should be

noted that in the case of warp columns, the same kind of equations take place but with inverted axes

and indices (i.e., β and m instead of α and l).

Figure 7 shows an example of the 1D-MDIC algorithm on the top line of figure 6c and the model

image g(x) = IMweft(x) defined in equation (7).

Finally, let us explain how to extend the 1D-MDIC formulation so that it can be applied to 2D
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Figure 7: Example of 1D-MDIC algorithm where each line represents a signal (gray value as intensity).
The reference f(x) is indicated above and below the g̃(x) block in which its evolution is shown for
n = 6 iterations that lead to convergence. The evolution of the root mean square of the residuals
(normalized with respect to the image dynamic range) is shown on the left.

images. The first “dense” strategy consists in performing 1D-MDIC computations in each line along

the main column direction in the 2D images. However, as it was pointed out in the previous section,

the pre-processing steps (namely blurring along x and y orientations) enforce a continuity between

successive lines. So, the idea is to compute 1D-MIC only at the cross position of the in-plane orthogonal

direction. So only ncweft calculations are performed for Iz,warp(x, y), while only ncwarp calculations

are performed for Iz,weft(x, y).

Moreover, in order to obtain a complete displacement field over the 2D space of the image, simple

interpolation can be used. Here, the same FE framework is employed as in classical DIC, and the

resulting displacement field is expressed over a structured mesh with nodes at every yarn column

crossing point. It is noteworthy that this latter strategy is considerably faster than the former (dense

one) and avoids regularization issues as well.

An example using these two strategies is shown in figure 8 (using figure 6c as the reference image)

at which a registration along x is carried out. The results obtained from both methods are essentially

identical: the final disposition of yarn profiles (oriented along the second column), their final residual

maps (oriented along the third column) and the obtained displacement fields (oriented along the fourth

column), are almost coincident. In other words, the difference maps present very low values both in

terms of normalized gray level and displacement. Moreover, note that, since both cases share a common

reference image (see figure 8a), ∆g̃ = ∆ρf .

Even if, in this case (the dry textile), the computational time is very fast, the dense approach is

10 times slower than the interpolated one (1.1 seconds vs 0.10 seconds, respectively), due to the very

different number of registrations. For these reasons, the interpolated strategy is chosen for all further

calculations and a 1D_MDIC(f(x, y), g(x, y)) function is defined.
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(a) f(x, y) (b) g(x, y) (c) ρi(x, y)

(d) g̃dense(x, y) (e) ρfdense(x, y) (f) udense(x, y)

(g) g̃(x, y) (h) ρf (x, y) (i) u(x, y)

(j) ∆g̃(x, y) (k) ∆ρf (x, y) (l) ∆u(x, y)

Figure 8: Analysis of 1D-MDIC efficiency, comparison between a “dense” and an interpolated approach:
first row the initial configuration in terms of real image (a), the model image (b) and the initial
residual (c); second to fourth row: respectively the results of “dense” approach ((d) to (f)), the results
of interpolated approach ((g) to (i)) and their differences ((j) to (l)), in terms of final deformed
image g̃, final residuals ρf and displacement field u. The residual and difference maps (except for
the displacement field) are normalized with respect to the image dynamic range and refer to the left
colorbar, while the displacement fields refer to the right colorbar. The final disposition of yarn columns
is shown in green, while their initial configuration is in red.
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4.3. 2D-MDIC formulation

The 2D formulation for the MDIC algorithm builds on top of the chosen 2D extension of 1D-MDIC

(interpolated version). Indeed, the calculations are not performed at every vertical or horizontal line of

the 2D images, but rather a FE formulation is used for interpolating the obtained displacement field.

As such, a structured 2D FE mesh with nodal positions corresponding to the yarn crossing points

(identified in the 1D signals as detailed in section 3.3).

Also, just as in the case for 1D-MDIC, the parametric formulation of deformed image g(x, y) embeds

the kinematics as offsets to the center of the Gaussian profiles. These are uxi and uyi , corresponding

to the nodal displacements of the horizontal and vertical Gaussian profiles respectively, whose index

i ∈ [1, ncweftncwarp] sweeps all yarn columns crossing points. Let us stress that a horizontal profile

corresponds to a Gaussian signal oriented along the x axis, while a vertical profile corresponds to a

signal oriented along the y axis. As such, the corrected image is defined as

g̃(x, y) = c0 +

ncweft∑
l=1

G(x; αl, x
0
l + uxl (y), ω) +

ncwarp∑
m=1

G(y; βm, y
0
m + uym(x), ω) (23)

where the displacement fields uxl (y) and uym(x) can vary along the cross direction of the Gaussian

profiles (vertical stripes, here corresponding to weft yarn columns, are horizontally deformed while

horizontal stripes, the warps, are vertically deformed).

The implementation details for solving this 2D MDIC formulation are given in Appendix A and,

for convenience, the function 2D_MDIC(f(x, y), g(x, y)) is defined.

As done previously, this 2D MDIC formulation will be compared with a multiple 1D MDIC strat-

egy (along each direction). The former case implies only calculation, while the latter requires blurring

operations (to obtain Iz,warp(x, y) and Iz,weft(x, y)) and multiple 1D MDIC calculations at the yarn

columns positions (FE mesh lines). The chosen reference image is the z-averaged image of the to-

mographic volume, i.e., Iz(x, y). The obtained vertical and horizontal displacement fields, shown

in figure 9, are very similar. Yet, the elapsed time for the 2D MDIC calculation is 20 times that of

the multiple 1D MDIC calculations (2 seconds vs 0.2 seconds, respectively). Thus, in the next para-

graphs, the solution only the 1D MDIC algorithm will be taken for performing the correction of yarn

distortions (i.e., 1D_MDIC).
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(a) ux(x, y) 1D MDIC (b) ux(x, y) 2D MDIC (c) ∆ux(x, y)

(d) uy(x, y) 1D MDIC (e) uy(x, y) 2D MDIC (f) ∆uy(x, y)

Figure 9: Comparison of sought displacement fields obtained using a series of interpolated 1D MDIC
registrations ((a) and (d)) vs a 2D MDIC formulation ((b) and (e)) and their differences ((c) and (f)):
the top row describes the registration directed along x (correction of weft yarns) while the bottom row
describes the registration directed along y (correction of warp yarns). Displacement fields refer to the
left colorbar, while difference maps refer to the right colorbar.
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4.4. MDIC algorithm - 2D correction

The whole MDIC iterative procedure aims to analyze an input image I ′z(x, y) for identifying the

optimal displacement field u(x, y) that best aligns the textile. For convenience, let us first define

some helper functions: GATHER(ux(x, y), uy(x, y)), which combines two 2D displacement fields, and

DEFORM2(Iz(x, y), u(x, y)), that applies the displacement field given by GATHER onto the 2D image to

realign. In particular, the DEFORM2 function is as follows:

Ĩz(x, y) = Iz(x+ ux(x, y), y + uy(x, y)) (24)

Algorithm 1: Complete MDIC algorithm - 2D correction
1 I ′z(x, y) ← Z_MEAN(Vct(x, y, z)) // section 3.1
2 u(x, y) ← 0
3 do
4 Iz,warp(x, y), Iz,weft(x, y) ← GAUSSIAN_BLUR(I ′z(x, y)) // section 3.1
5 IM (x, y), IMwarp(x, y), IMweft(x, y) ← GET_MODEL(I ′z(x, y)) // sections 3.2 and 3.3
6 if use 1D variant
7 ux(x, y) ← 1D_MDIC(Iz,weft(x, y), IMweft(x, y)) // section 4.2
8 uy(x, y) ← 1D_MDIC(Iz,warp(x, y), IMwarp(x, y))
9 else if use 2D variant

10 ux(x, y), uy(x, y) ← 2D_MDIC(I ′z(x, y), IM (x, y)) // section 4.3
11 end
12 u(x, y) ← u(x, y) + GATHER(ux(x, y), uy(x, y)) + ueq(x, y)

13 Ĩz(x, y) ← DEFORM2(Iz(x, y), u(x, y))
14 I ′z(x, y) ← Ĩz(x, y)

15 while RMS(I ′z(x, y), Ĩz(x, y)) < ϵ

A great MDIC iteration is detailed within the do/while loop in algorithm 1. Here, both 1D or

2D variants of MDIC registrations can be used in order to obtain the displacement fields ux(x, y) and

uy(x, y). Note that when the 1D method is employed, the partial images Iz,weft(x, y) and Iz,warp(x, y)

and their corresponding models are employed (i.e., IMweft(x, y) and IMwarp(x, y)). For the 2D method,

the image I ′z(x, y) and the image model IM (x, y) are used.

Next, it is important to note that both model creation and model identification steps are always

applied on the current best-aligned image I ′z(x, y)← Ĩz(x, y). They follow the procedure detailed

in section 3 and are summarized by the functions GAUSSIAN_BLUR and GET_MODEL used in algorithm 1.

Moreover, as each of these 1D_MDIC and 2D_MDIC are also iterative procedures, they have their own

convergence criteria.

Finally, a 2D displacement field ueq(x, y) (also expressed using FE shape functions) can be added
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to u(x, y) for imposing a supplementary textile assumption: yarn columns are equally spaced. The

nodal values of this constant additional displacement field are

ux,eql = xl − (x1 + (l − 1)λx) (25)

uy,eqm = ym − (y1 + (m− 1)λy) (26)

and can be computed just once immediately after the identification of the model. Note that at the

end of every great iteration, this additional displacement field is just added to the one obtained by the

correlations previously described.

When using such an iterative method, the correction of the textile image has been reached in

three great iterations in less than 4 seconds. The structured mesh and deformed mesh superposed

on their corresponding 2D images are shown in figure 10. During the process, nodal positions in

the model image (see figure 10a) move towards the real textile (see figure 10b). The opposite of

the displacement field re-aligns the yarn columns to a more regular configuration which completely

matches the structural nodal positions of the model image, as shown in figure 10c. Finally, the addition

of equal spacing between yarn columns translates the nodes to a disposition with a perfectly constant

distance in both directions (see figure 10d). However, one can see that most of the in-plane distortions

are well corrected when taking into account either with or without yarn column equal spacing. So,

the simplest case (including equal spacing assumption) could be taken into account for easing the

realignment treatment of the tomography.

4.5. MDIC algorithm - 3D correction

During the forming process, the yarn columns within 3D woven textiles are most of the time bent

due to the shearing. These kinds of in-plane yarn distortions could be observed from figure 2 on few

yarn columns. In real parts, this phenomenon is even more pronounced. This leads to the fact that

the previous 2D method based on the z-averaging is no longer suitable.

However, over small distances along z, the same methodology is expected to be applicable. Thus,

it is proposed to introduce a Gaussian blurring operation along the z axis to be applied on the to-

mographic volume Vct(x, yz), as a first transformation. This is achieved with a kernel G(0, 0, lz) of

“zero-width” on the x and y axes, and lz along the z axis. Using a large value of lz (such as the

entire thickness of the sample) leads to the previous 2D approach, since the z-blurring will become

z-averaging. However, a lower limit on lz is the average distance λz between two consecutive textile
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(a) IM (x, y) (b) Iz(x, y)

(c) Icorz (x, y) (d) Icor,eqz (x, y)

Figure 10: Correction of the woven textile using the procedure of algorithm 1: (a) represents the
model with a structured mesh built upon, (b) shows the deformed mesh at the end of MDIC correlation
following the distorted paths of the real textile image, while (c) and (d) display the corrected disposition
of yarn columns, respectively without and with equally spacing assumption, which perfectly match the
undeformed mesh nodal positions.
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(a) Vct(x, y, z) (b) Vz(x, y, z) (c) Vwarp(x, y, z) (d) Vweft(x, y, z)

Figure 11: 3D Gaussian blurring: (a) raw volume (in red the mean inter-yarn distance along the
thickness λz); (b), (c) and (d) the blurred volumes showing respectively the evolution of the yarn
crossing points along the thickness, just the warp surfaces, and just the weft surfaces.

layers (e.g., see figure 11a). The appropriate value for lz should be such that the distortion of the

textile along z does not lead to an overlap of two yarn columns over this distance. In the following,

the minimum value lz = λz is chosen to show that such an extreme choice, i.e., the most tolerant to

large textile distortion, works nicely.

For example, λz = 10 in the dry textile sample. Thus, the z-blurring transforms every initial warp

and weft yarn column as smoothly varying along the z axis, as shown in the resulting volume Vz(x, y, z)

figure 11b.

Afterwards, in order to separate warp yarns from weft ones, two further Gaussian blurring op-

erations are performed directly on the volume Vz(x, y, z), similarly to the process detailed in sec-

tion 3.1. Figures 11c and 11d, representing respectively Vwarp(x, y, z) and Vweft(x, y, z) volumes after

the z-blurring operation, show the yarn columns as vertical layered structures which are not entirely

straight.

The series of Gaussian blurring operations are synthesized as

Vz(x, y, z) = G(0, 0, λz)⊛ Vct(x, y, z) (27)

Vwarp(x, y, z) = G(λx, 0, 0)⊛ Vz(x, y, z) = G(λx, 0, λz)⊛ Vct(x, y, z) (28)

Vweft(x, y, z) = G(0, λy, 0)⊛ Vz(x, y, z) = G(0, λy, λz)⊛ Vct(x, y, z) (29)

It can be noted that Iz(x, y), Iz,warp(x, y) and Iz,weft(x, y) can be retrieved just by applying Z_MEAN

function respectively to Vz(x, y, z), Vwarp(x, y, z) and Vweft(x, y, z).

Let us define the helper function PREPROCESS which incorporates both the function Z_MEAN and the

three-dimensional version of function GAUSSIAN_BLUR, for computing I ′z(x, y), Vz(x, y, z), Vwarp(x, y, z),

Vweft(x, y, z) from input volume V ′
ct(x, y, z). Here, for keeping coherence with notations, the z-averaged

image Iz is labeled with ′ for underlying, similarly to what is illustrated in the 2D correction algorithm,
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its varying nature in the algorithm (it is computed from the updated volume V ′
ct). Moreover, let the

volume transformation

Ṽct(x, y, z) = Vct(x+ ux(x, y, z), y + uy(x, y, z), z) (30)

be represented by the function DEFORM3(Vct(x, y, z), u(x, y, z)) applied onto the initial volume. Note

that this transformation, although performed in 3D, respects the two-dimensional kinematics of the

problem, described by displacement fields orthogonal to each mean yarn orientation.

The three-dimensional version of the procedure reported in algorithm 2 has the purpose of finding,

at each great iteration, the displacement field that best aligns an updated volume V ′
ct(x, y, z) with its

ideal modeling representation, also in this case described by the model image IM (x, y) or by its one-

dimensional versions IMwarp(x, y), IMweft(x, y), computed as in sections 3.2 and 3.3. Again, it is important

to underline that all PREPROCESSING and GET_MODEL steps are always applied on the current aligned

volume V ′
ct(x, y, z)← Ṽct(x, y, z). This procedure is repeated until a convergence criterion based on the

RMS(V ′
ct(x, y, z), Ṽct(x, y, z)) is fulfilled.

The 3D displacement field can be estimated by multiple uses of the 2D_MDIC algorithm (or its

one-dimensional version 1D_MDIC) for all slices zk belonging to the blurred volume Vz(x, y, z) (or the

uncoupled versions Vwarp(x, y, z), Vweft(x, y, z)) with the corresponding model image. In concordance

with the two-dimensional use of 1D_MDIC, the choice of computing as many z-slices as the thickness

size is permitted. However, for improving the computational time, further simplification can take place

and subsequent calculations are performed just on a set of chosen z-slices. Indeed, a similar reasoning

to that in sections 4.2 and 4.3 is used here: to benefit from the regularization and continuity provided

by FE interpolation. As such, instead of analyzing all possible z-slices, only those corresponding to

the textile layers are chosen (gathered into zchosen). Naturally, a single 3D structured FE mesh can

be built with nodes placed at every yarn column mean crossing points (on x and y) and separated by

a distance of λz (on z).

These calculations are illustrated in sections 4.2 and 4.3 and are detailed within the forall loop

in algorithm 2 and highlighted in the diagram in figure 12. It is possible to note that the main difference

with the simple 2D correction algorithm is that here the identified model image IM (x, y) is correlated

with each z-slice of Vz(x, y, z) and not directly with I ′z(x, y).

In the following section, the results obtained with the 3D correction from algorithm 2 of both a

woven textile and an injected woven composite will be illustrated. Let us recall that given the more
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Algorithm 2: Complete MDIC algorithm - 3D correction
1 V ′

ct(x, y, z) ← Vct(x, y, z)
2 u(x, y, z) ← 0
3 do
4 I ′z(x, y), Vz(x, y, z), Vwarp(x, y, z), Vweft(x, y, z) ← PREPROCESS(V ′

ct(x, y, z))
5 IM (x, y), IMwarp(x, y), IMweft(x, y) ← GET_MODEL(I ′z(x, y)) // sections 3.2 and 3.3
6 for all zk ∈ zchosen
7 if use 1D variant
8 ux(x, y) ← 1D_MDIC(Vweft(x, y, zk), IMweft(x, y)) // section 4.2
9 uy(x, y) ← 1D_MDIC(Vwarp(x, y, zk), IMwarp(x, y))

10 else if use 2D variant
11 ux(x, y), uy(x, y) ← 2D_MDIC(Vz(x, y, zk), IM (x, y)) // section 4.3
12 end
13 u(x, y, zk) ← u(x, y, zk) + GATHER(ux(x, y), uy(x, y)) + ueq(x, y)

14 end
15 Ṽct(x, y, z) ← DEFORM3(Vct(x, y, z), u(x, y, z))
16 V ′

ct(x, y, z) ← Ṽct(x, y, z)

17 while RMS(V ′
ct(x, y, z), Ṽct(x, y, z)) < ϵ

Figure 12: Diagram of MDIC algorithm for the complete textile volume correction.

regular disposition of yarn columns, only the case of equally spaced columns is taken into account.

5. Results

This section presents the results of the MDIC algorithm on both samples: a 3D woven preform and

a woven composite sample. The MDIC formulation is the one that benefits from interpolation (from

3D to 2D and from 2D to 1D), hence it uses multiple 1D MDIC registrations. Moreover, the equal

spacing variant is also enforced.
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Figure 13: Illustration of the 3D correction showing the deformed mesh of four z-slices of the complete
textile volume. The slices are extracted from the volume as shown on the top figure, whereas the
bottom line displays the four slices z = z̄1 to z̄4 from left to right.

5.1. 3D woven preform sample

The results of the MDIC for the 3D woven textile corrections show both yarn columns orientations

in a perfectly straight and orthogonal disposition. Moreover, the assumption of equally spaced columns

forces this yarn disposition to be much more regular.

A total number of six greater iterations are enough for a full correction of the volume image, which

has been obtained with a total elapsed time of 20 seconds (each great iteration is performed in no

more than 3.5 seconds). Given that all calculations are computed in the coarsened volume, the found

displacement at this scale can be interpolated so that a finer correction can be provided also for the

original volume. It should be noted that its intensity has been multiplied by 16, which represents the

in-plane scale factor between the original and the coarse volumes.

Figure 13 illustrates the 3D correction of the preform with the mesh plotted in red on top of the

yarns, for four different slices equally distributed in the sample height.

Figures 14 and 15 show three equally-spaced vertical slices of the tomography directed both as

the x-z plane (representing weft yarn cross-sections) and the y-z plane (representing warp yarn cross-

sections). For the same chosen slice it is shown the initial, the final configuration, and the corresponding

difference map. As it can be observed, after the correction the columns are more vertical and present

a more regular disposition. Moreover, as shown in the difference maps, most of the displacement
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14: Correction of weft yarn columns of a 3D woven textile at different x-z slices: (from top to
bottom y = 444, y = 888 and y = 1332 pixel) first column initial, second column corrected (a thick red
line corresponding to a yarn column highlights the performed correction), third column their difference
maps normalized by the image dynamics.

occurred along the weft direction, whilst the warp yarns remain almost untouched. This is described

by a stronger alternation of positive and negative values of the difference map in the x-z slices around

the yarn cross-sections, while, along the y-z direction, the elongated structures representing the cross

yarns show a high absolute value. This can be easily explained by the fact that the direction of the

warp is more controllable and denser than the weft.

However, it should be noted that given the fact that the method was applied at a coarser scale

(focusing only on the change in position of the yarn neutral fiber), the displacements cause some

non-physical distortions of the cross-sections.

Moreover, similar results are exploitable when looking at the volume images of the initial and final

configurations, reported in figure 16. Two vertical slices of the volumes are properly chosen to help

read these transformations: if, before the correction, yarn columns corresponded rather to irregular

surfaces and yarns continuously appeared and disappeared on these slices, after the correction the

regularity mean that the displaced yarns are clearly visible throughout their entire length.

Finally, z-averaging of the volume has been computed for observing all the transformations that

occurred in the textile within a single 2D image. As shown in figure 17, yarn columns are much more

aligned, and the structure formed by the crossing points presents constant distances in both directions.

In addition, it is noteworthy how the intensity of the image at various points has changed due to the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15: Correction of warp yarn columns of a 3D woven textile at different y-z slices: (from top
to bottom x = 368, x = 736 and x = 1104 pixel) first column initial, second column corrected, third
column their difference maps normalized by the image dynamics.

(a) Vct (b) V cor
ct

Figure 16: (a) Initial and (b) corrected volumes of the 3D woven textile.
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(a) Iz (b) z-mean projection of V cor
ct

Figure 17: z-averaged image of a 3D woven textile: (a) initial and (b) corrected configurations.

3D correction. This is due to having “moved” the yarns back to a correct position belonging to vertical

columns; thereby, the integral of the gray level in the volume (i.e., matter density), is affected by this

“physical” change.

5.2. 3D woven composite sample

While the previous sections used a dry sample (i.e., only the textile reinforcement is present), here

a “complete” composite is explored (injected with an epoxy resin). Now the specimen images use inj

subscript for referring to an injected preform (i.e., a woven composite) sample.

For this volume, λx = 23, λy = 15, and λz = 8 were estimated as the distances between weft

columns, warp columns, and thickness layers, respectively. Given the more regular textile structure,

the results of the full 3D alignment are obtained with just one great iteration, computed in 8.5 seconds

(note the higher number of yarns, but however the use of just one great iteration).

Figures 18 and 19 show three equally-spaced vertical slices of the volume, directed both along the

warp and weft directions, in their initial and final configurations. As well, the third column of each

figure illustrates the relative difference map. It is even more evident in this case, that the most of

textile deformations occurred along the weft direction, while the warp yarn columns remain very similar

to the initial configuration, which already presented a regular pattern. Indeed, strong variations of

the gray level around the weft yarn cross-sections for the x-z slices are accompanied by those within

inter-cross-section spaces for the y-z slices.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 18: Correction of weft yarn columns of a 3D woven composite at different x-z slices: (from
top to bottom y = 64, y = 128 and y = 192 pixel) first column initial, second column corrected (a
thick red line corresponding to a yarn column highlights the performed correction), third column their
difference maps normalized by the image dynamics.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 19: Correction of warp yarn columns of a 3D woven composite at different y-z slices: (from
top to bottom x = 64, x = 128 and x = 192 pixel) first column initial, second column corrected, third
column their difference maps normalized by the image dynamics.
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(a) Vct,inj (b) V cor
ct,inj

Figure 20: (a) Initial and (b) corrected volumes of the 3D woven composite.

(a) Iz,inj (b) z-mean projection of V cor
ct,inj

Figure 21: z-averaged image of a 3D woven composite: (a) initial and (b) corrected configurations.

When looking at the whole volumes shown in figure 20, not only yarn columns are now aligned

with the x and y axes (and orthogonal between themselves), but also the yarns in each column remain

now properly in the same vertical thick plane (respectively x-z for warp and y-z for weft columns).

Moreover, the global composite deformation suggests that shearing of the weft structure directed

along the thickness occurred during the manufacturing process. This is confirmed also when z-mean

projection images (see figure 21), which decodes this deformation of weft columns to an increase of

their z-mean gray levels.
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6. Conclusions

In this study, a novel use of Digital Image Correlation has been proposed for converting the to-

mography of a woven textile to a more ideal configuration, in which the yarn columns are perfectly

straight, vertical and orthogonal. It is noteworthy that the proposed method could be seen as a

pre-processing step to image segmentation procedures or to ease the visual inspection performed by

operators since the yarn paths and yarn column deformations could be significant during the composite

material manufacturing.

This objective has been accomplished by registering the tomography with a parametric model of the

textile, which stemmed directly from the observed weaving (e.g., yarn sizes, column spacing, weaving

pattern). Moreover, the registration process is based on only one reference image, from which the

“deformed” state is constructed. This novel idea leads to the MDIC method.

Besides, the construction of the model provides more freedom in the DIC formulation, as the

elements included in the model are easily adapted to the DIC minimization problem. Also, since the

goal of this study is to realign the real textile image, the latter is back-corrected with the opposite of

the displacement field obtained by the registration of the model image onto the real one.

The MDIC method has been presented as multiple 2D problems or as multiple 1D problems. In the

former case, the algorithm tackles the misalignment of warp and weft columns simultaneously. In the

latter case, each orientation is handled separately. Moreover, the 1D version of the MDIC formulation

is much faster and provides better-conditioned results compared to the 2D one.

Furthermore, it has been shown that if the yarn columns of the textile are sufficiently straight, a

correction of the z-mean projection of the tomographic volume can be directly performed. However,

for more distorted yarn columns along the thickness, the correction should be carried out by registering

the same model throughout a given number of z-slices.

The complete correction method has been applied both on a woven textile and a composite tomo-

graphic volume for re-aligning yarn column distortions.

Furthermore, the displacement required for aligning the weft columns was found to be greater than

the one for warp columns (in both specimens). Moreover, since the composite part is more compact

than the textile sample, all columns seem to have a homogeneous shearing along the thickness direction.

As such, it is worth noting that this method not only provides a successful correction of yarn column

distortions but also allows quantitative and qualitative analysis of all textile deformations that occurred
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during the manufacturing process (e.g., bending, shearing).

As a perspective, the presented procedure could be extended to deform ideal textiles performed by

some Textile Geometry Pre-processors such as TexGen [27] or WiseTex [28] in order to generate from

them more realistic textile models suitable for mechanical FE simulations. This would presumably

open the methodology to more complex textile architectures. A further extension of this work could

be to address the through-the-thickness displacement field, after the (x, y) alignment.
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Appendix A. Derivation details for 2D MDIC

It is important to note that, while the initial position of the Gaussian profiles remains constant for all

“lines” orthogonal to the orientation of the profiles, the associated displacements do not. As such, when

initially uxl (y) = 0 and uym(x) = 0, the obtained image is essentially composed of perfectly vertical and

horizontal stripes (weft and warp). However, as these values evolve, the vertical stripes are horizontally

deformed, and the horizontal stripes are vertically deformed. Crucially, this is performed on the

parametric function g̃(x, y), which allows for the non-conservation of gray levels evoked beforehand.

As such, the displacements uxl (y) and uym(x) are also expressed using a 1D FE formulation

uxl (y) =

ncwarp∑
m=1

uxl,m · ψ1Dm
(y) (A.1)

uym(x) =

ncweft∑
l=1

uym,l · ψ1Dl
(x) (A.2)

with uxl,m labeling the displacement of the horizontal profile l at the vertical position of node m,

while uym,l identifies the displacement of the vertical profile m, at horizontal position of node l. It

may be worth noting that, given that the series of Gaussian profiles naturally provide the continuity

along the signal direction, such interpolation is only required in directions orthogonal to the Gaussian

profile. As such, this formulation represents something unusual for DIC, for which rather a classical

two-dimensional FE mesh is used for computing the algorithm. Let us call uxi and uyi the nodal values
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(counted now as the total degrees of freedom of the MDIC problem), which are gathered into a vector

{p}. This vector of parameters is of length 2ncweftncwarp (l ∈ [1, ncweft] and m ∈ [1, ncwarp], or

equivalently i ∈ [1, ncweftncwarp]).

The solution to the linear approximation of the problem is iteratively solved with the linear system:

[M ]{δp} = {b} (A.3)

with

[M ] =

Mxx Mxy

Myx Myy

 (A.4)

{b} =


bx

by

 (A.5)

because of the interaction between directions x and y, the sub-matrices and sub-vectors are then

defined as:

Mxx
ij =

∑
(x,y)∈Ω

Sx
i (x, y)S

x
j (x, y) (A.6)

Mxy
ij =

∑
(x,y)∈Ω

Sx
i (x, y)S

y
j (x, y) (A.7)

Myx
ij =

∑
(x,y)∈Ω

Sy
i (x, y)S

x
j (x, y) (A.8)

Myy
ij =

∑
(x,y)∈Ω

Sy
i (x, y)S

y
j (x, y) (A.9)

bxi =
∑

(x,y)∈Ω

Sx
i (x, y)ρ(x, y) (A.10)

byi =
∑

(x,y)∈Ω

Sy
i (x, y)ρ(x, y) (A.11)

33



The corresponding sensitivity fields are also differentiated with respect to directions x and y

Sx
i (x, y) =

∂

∂uxi
g̃(x, y) (A.12)

=

[
∂

∂uxi
G(x; αi, x

0
i + uxi , ω)

]
ψ1Di

(y)

=

[
αi

(x− x0i − uxi )
ω2

exp

(
− (x− x0i − uxi )2

2ω2

)]
ψ1Di

(y)

Sy
i (x, y) =

∂

∂uyi
g̃(x, y) (A.13)

=

[
∂

∂uyi
G(y; βi, y

0
i + uyi , ω)

]
ψ1Di

(x)

=

[
βi

(y − y0i − u
y
i )

ω2
exp

(
− (y − y0i − u

y
i )

2

2ω2

)]
ψ1Di(x)

Finally, the parameters at iteration k are updated following:

{p}(k+1) = {p}(k) + {δp} (A.14)
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