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Abstract

Given a times series Y in R
n, with a piece-wise contant mean and independent components,

the twin problems of change-point detection and change-point localization respectively amount
to detecting the existence of times where the mean varies and estimating the positions of those
change-points. In this work, we tightly characterize optimal rates for both problems and uncover
the phase transition phenomenon from a global testing problem to a local estimation problem.
Introducing a suitable definition of the energy of a change-point, we first establish in the single
change-point setting that the optimal detection threshold is

√
2 log log(n). When the energy

is just above the detection threshold, then the problem of localizing the change-point becomes
purely parametric: it only depends on the difference in means and not on the position of the
change-point anymore. Interestingly, for most change-point positions, including all those away
from the endpoints of the time series, it is possible to detect and localize them at a much smaller
energy level. In the multiple change-point setting, we establish the energy detection threshold
and show similarly that the optimal localization error of a specific change-point becomes purely
parametric. Along the way, tight optimal rates for Hausdorff and l1 estimation losses of the vec-
tor of all change-points positions are also established. Two procedures achieving these optimal
rates are introduced. The first one is a least-squares estimator with a new multiscale penalty
that favours well spread change-points. The second one is a two-step multiscale post-processing
procedure whose computational complexity can be as low as O(n log(n)). Notably, these two
procedures accommodate with the presence of possibly many low-energy and therefore unde-
tectable change-points and are still able to detect and localize high-energy change-points even
with the presence of those nuisance parameters.

1 Introduction

Following a long historical line of work, starting with Wald [58], Girshick and Rubin [32], Page
[50], and Fisher [24] in the 1940-1950’s, leading to a huge bibliography including several prominent
monographs such as [9, 13–15, 18, 55], and which is still vivid (e.g. [17, 28, 59]), we consider the
prototypical problem of univariate change-point analysis. Let Y = (Y1, . . . , Yn) be a time series
with values in R

n, with unknown mean vector θ = (θ1, . . . , θn) in R
n. Change-point analysis

amounts to studying possible variations in the mean vector θ. In this work, we focus our attention
on the independent observation setting

Yi = θi + ǫi , i = 1, . . . , n , (1)

where the noise random vector ǫ = (ǫ1, . . . , ǫn) is made of independent mean-zero random variables
satisfying a sub-Gaussian condition

E[etǫi ] ≤ eσ
2t2/2 for all t in R, for i = 1, . . . , n ,
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where σ is known. By homogeneity and standardization, we assume henceworth that σ = 1. Our
general objective is twofold: first, we carefully analyze the intrinsic difficulty of several detection
and localization problems, thereby closing long-standing gaps between the early asymptotic results
and recent non-asymptotic ones. This allows us to define desirable specifications for a change-point
estimation method. Second, we introduce two procedures achieving these specifications.

1.1 Model and change-point procedures

Since we view the mean vector θ as piece-wise constant vector, we can define it through the change
points. Given θ in R

n, there exists an integer 0 ≤ K ≤ n−1, a vector of integers τ ∗ = (τ∗1 , . . . , τ
∗
K)

satisfying 1 = τ∗0 < τ∗1 < . . . < τ∗K < τ∗K+1 = n+1, a vector µ = (µ1, . . . , µK+1) in R
K+1 satisfying

µk 6= µk+1 for all k in {1, . . . ,K} such that

θi =
K+1∑

k=1

µk1τ∗k−1≤i<τ∗k . (2)

Then, τ∗k is called the position of the k-th change-point (or sometimes for the sake of simplicity
the k-th change-point) and ∆k = µk+1 − µk is called the height of the k-th change-point in θ. It
follows from (2) that θ is uniquely defined by τ ∗ and µ. As a consequence, one may easily deduce
an estimator of K, τ ∗, and µ from an estimator of θ. Conversely, any estimator τ̂ with length K̂ of
the change-points positions leads to an estimator θ̂ by simply plugging the empirical mean on the

corresponding partition, that is θ̂i =
∑K̂+1

k=1 1τ̂k−1≤i≤τ̂k−1(τ̂k − τ̂k−1)
−1[
∑τ̂k−1

j=τ̂k−1
Yi] for i = 1, . . . , n.

Hence, any change-point estimation method may be indifferently interpreted as an estimator of θ
and τ ∗.

In general, the number K of change-points is supposed to be unknown. Still, for historical
and mathematical reasons to be discussed below, the literature usually divides into two settings:
the single change-point setting1 where one assumes that K ≤ 1 and the multiple change-point
setting where K is possibly arbitrarily large. In the next paragraphs, we provide a short account
of classical approaches for multiple change-point estimation, and then we explain the connections
between those approaches in the single change-point setting. In the sequel, we write ΘK ⊂ R

n for
the collection of vectors θ with K change-points exactly.

1.2 Main approaches for change-point analysis

It is beyond the scope of this paper to give an exhaustive survey of existing methods and we refer
the interested reader to [49, 57]. Still, we can roughly divide most procedures into two general
categories: the ones based on minimization of (penalized) least-squares criteria and the ones based
on test statistics, mostly related to the CUSUM statistic.

Penalized least-squares minimization If the number K of change-points is known and if
the noise vector follows an homoscedastic Gaussian distribution, then the maximum likelihood
estimator of θ is equal to the least-squares estimator θ̂LS,K = argminθ′∈ΘK

∑n
i=1(Yi − θ′i)

2. While

ΘK is not convex, it has been observed in the pioneering work of Bellman [10] that θ̂LS,K can be
efficiently computed by a dynamic programming algorithm, whose worst-case complexity is O(n2)
operations. In practice, K is unknown and it is natural to select it by adding a penalty term,
such as BIC [62] or more involved forms of penalties [46] arising from the general theory of model

1It is sometimes referred as at most one change-point setting in the literature.
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selection [11]. On the computational aspect, the quadratic complexity turns out to be prohibitive
for some large-scale problems arising for instance in genomics. To address this issue, Killick et
al. [42] (see also [53]) have developed pruning techniques that accelerate the dynamic programming
algorithm and lead to a quasi-linear time complexity in favorable situations.

More generally, penalized least-squares criteria of the form argminθ′∈ΘK

∑n
i=1(Yi−θ′i)2+pen(θ′)

may involve penalty terms pen(θ′) that do not only depend on the number K of change-points of θ′.
For instance, Zhang and Siegmund [63] argue for a penalty pen(θ′) that also depends on the spacing
between the change-points. Alternatively, choosing pen(θ′) proportional to the total variation norm
‖θ′‖TV =

∑n
i=2 |θ′i − θ′i| corresponds to the Fused Lasso estimator [56]. Efficient solvers compute

the Fused Lasso estimator in quasi-linear time [38].

Binary segmentation, CUSUM, and multiscale methods. Beside penalty-based approaches,
the other broad class of methods is based on the CUSUM statistics. In the sequel, T3 refers
to the collection of triads, that is the set of all triplets of integers t = (t1, t2, t3) such that
1 ≤ t1 < t2 < t3 ≤ n + 1. Given t = (t1, t2, t3) in T3, the CUSUM statistic at t is defined as
the weighted difference of empirical means on [t1, t2) and [t2, t3)

C(Y, t) =

[∑t3−1
i=t2

Yi

t3 − t2
−
∑t2−1

i=t1
Yi

t2 − t1

]√
(t2 − t1)(t3 − t2)

t3 − t1
. (3)

For homoscedastic Gaussian noise, this statistic also corresponds to likelihood ratio test statistic
of the null hypothesis {θ is constant over [t1, t3)} versus {θ has one change-point at t2}. Under
the null hypothesis, C(Y, t) follows a standard normal distribution. In principle, one then could
adopt a multiple-testing perspective and apply all tests based on all CUSUM statistics. However,
there are two main caveats with this naive approach. First, |T3| is of the order of n3/6 which can
lead to a prohibitive O(n3) computational complexity. Second, there is no straightforward way of
transforming a collection of |T3| p-values into a single change-point estimator τ̂ . This is why most
earlier CUSUM-based change-point procedures follow greedy approaches. CUSUM statistics have
a long history in the single change-point literature. Originally, Hinkley [36] maximizes the CUSUM
C(Y, (1, t, n + 1)) over all possible change-point positions t = 2, . . . , n + 1. Binary Segmentation
(BS) [54] algorithm for multiple change-points detection amounts to recursively cut the time series
into two parts by applying Hinkley’s method at each step. However, BS does not consistently
estimate the change-points which lead to the introduction of many variants of BS including Wild
Binary Segmentation [26, 27, 29, 44, 59, 60]. Some of these procedure exhibit a quasi-linear time
complexity [27]. While the connection is less clear, other methods based on moving sums such as
MOSUM [21] may also be interpreted as an aggregation procedure of the CUSUM statistics with
symmetric windows t = (τ − h, τ, τ + h) where 1 ≤ τ − h < τ + h ≤ n + 1. An important aspect
of many of these procedures is that they consider CUSUM (3) statistics at many different scales
(t3 − t1) thereby being able to detect close change-points with large heights and change-points
whose heights are small but which are distant from any other change-point.

In the single change-point setting where the statistician knows that K = 1, the estimator τ̂
maximizing the CUSUM equals the change-point of the least-squares estimator θ̂LS,1, so that both
procedures are equivalent. Hence, the distinction between CUSUM-based and least-squares-based
procedures is not clear in that setting.

Post-processing methods. The change-points estimator τ̃ produced by one of the previous
methods is sometimes refined in a second step by removing spurious estimated change-points [27]
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or/and improving the precision of the estimated change-points positions by a local CUSUM max-
imization (see e.g. Sect.3.2 in [26]). See also Lin et al. [47] for another recent post-processing
method.

1.3 Statistical Problems

There are several ways of assessing the quality of a change-point procedure, whose choice mainly
depends on the question of interest. As mentioned earlier, one can easily deduce an estimator of
τ ∗ from an estimator θ (and conversely). However, τ ∗ is not a continuous function of θ and a near
perfect estimator of θ does not necessarily lead to a precise estimation of the number of change-
points. We can broadly summarize the statistical objectives into three classes, that are detailed
below.

(a) Signal Denoising. Here, one mainly aims at estimating the mean θ in R
n from Y taking

into account the side information that θ is a piece-wise constant vector.

(b) Change-points Detection. The objective is now to detect the existence of change-points in
θ. It is easier to state this problem in the single change-point setting where K ≤ 1. Indeed,
this boils down to testing the hypothesis {θ ∈ Θ0} (there is no change-point) versus {θ ∈ Θ1}
(there is exactly one change-point). Obviously, detecting one change-point is feasible only if
its height ∆1 = µ2 − µ1 is not too small (in absolute value). As a consequence, a suitable
detection procedure should have a small type I error probability as well as be able to detect
with high probability a change-point whose height is not too small. We shall further formalize
this problem in the next subsection. For multiple change-points problems, one can possibly
interpret the problem of change-points detection as that of estimating the number K of
change-points (e.g. [25, 26, 28]). Unfortunately, stating this as an estimation problem of
the functional K may hide the fact that, in a vector θ, some change-points may be easier to
detect than some others. One of our contribution in this work is to propose an alternative
formalization of this problem.

(c) Change-point Localization. Again, we start with the single change-point setting where θ

is in Θ1. One aims at building an estimator τ̂ of τ1 such that |τ̂ − τ1| is the smallest possible.
Intuitively, localization is only feasible if the change-point has been detected so that some
minimal assumption on the height has to be done. In the multiple change-points setting, there
are several ways of measuring the localization error that depend whether one is interested
into estimating a specific change-point, a subset of significant change-points or the whole set
of change-points. Given a vector τ with length |τ | and with coordinates (τ1, . . . , τ|τ |) and one
change-point τ ′, let the distance dH,1(τ , τ

′) = mini=1,...,|τ | |τi − τ ′| between τ ′ and its closest
element in τ . Hence, for any 1 ≤ k ≤ K, dH,1(τ̂ , τ

∗
k ) quantifies to what extent τ̂ estimates

well the true change-point τ∗k . We refer to this as a point-wise loss. Besides, we define

dH,1(τ , τ
∗) = max

j=1,...,|τ∗|
dH,1(τ , τ

∗
j ) ; dH(τ , τ

∗) = max {dH,1(τ , τ ∗), dH,1(τ
∗, τ )} , (4)

which respectively correspond to the screening distance and Hausdorff distance between the
sets {τ∗i , i = 1, . . . , |τ∗|} and {τi, i = 1, . . . , |τ |} (see [47] for instance). For simplicity, we will
call them the screening distance from τ ∗ to τ , and the Hausdorff distance between τ ∗ and
τ , thereby confusing vectors and sets of their values. In some sense, the Hausdorff distance
dH(τ , τ

∗) should be understood as an uniform error measure between τ ∗ and τ . Finally,
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when the change-points vectors τ and τ ∗ have the same length (|τ | = |τ ∗|), one considers

dW (τ , τ ∗) =
|τ |∑

j=1

|τj − τ∗j | , (5)

that corresponds, up to the re-normalization by |τ |, to the L1-Wasserstein distance between
the empirical probability measures associated with the vectors. This can be interpreted an l1
-loss and is referred henceforth to as the Wasserstein distance between τ ∗ and τ .

In this manuscript, we mainly focus on the two latter problems where the statistician is more
interested on change-points in themselves than on the signal θ. Before explaining our contributions,
we summarize how these testing and estimation problems are considered in the literature as well
as the best known bounds.

1.4 State of the art

Although we are not specifically interested in signal denoising, we briefly discuss the literature as
this viewpoint falls into the well established field of nonparametric statistic and is well understood.
In particular, Gao et al. [30] have studied the optimal (in the minimax sense) risk E[‖θ̂ − θ‖2]
achievable by any estimator when θ belongs to ΘK . For K ≥ 2, the optimal risk is (up to
a multiplicative numerical constant) of the order of K log(2n/K) (see also [5, 46]) whereas, for
K = 1, the optimal risk is qualitatively different and is of the order of log log(16n). All these
bounds are achieved by least-squares estimators θ̂LS,K [30]. The penalized least-squares estimator
of Lebarbier [46] also achieves such bounds for all K ≥ 2 without requiring the knowledge of K.
By constrast, the Fused LASSO achieves similar near-optimal risk bounds for K ≥ 2 if we further
restrict our attention to evenly spaced change-points [33]. Unfortunately, for some other θ in ΘK

with non-even spaced change-points, the risk of the Fused LASSO is much large; see Theorem 4.1
in [23].

In fact, most works dedicated to such penalized least-squares procedures for signal estimation
provide, as in [30], theoretical risk bounds for the targeted mean vector estimation and then,
empirically evaluate their performances in terms of change-points detection and localization error
(see e.g. [5, 34, 46, 47]). Intuitively, near optimal signal estimation risk bounds should suggest that
the procedures detect most change-points and localize them well. While this heuristic argument
is appealing, tentative formalizations of it lead to quite pessimistic results [5, 47] both in terms of
detection and localization.

Since the difficulty of signal denoising qualitatively changes between the single change-point and
the multiple change-points settings, the remainder of the literature review is organized according
to these two settings.

Detection of a single change-point. As mentioned in the previous section, we need to formalize
the significance of a single change-point τ∗1 . Given θ in Θ1, we define its energy

E1(θ) = |∆1|
√

(τ∗1 − 1)(n + 1− τ∗1 )
n

. (6)

The energy E1(θ) is equal to the l2 distance between θ and Θ0 and thereby quantifies the difficulty
of assessing the existence of τ∗1 . As an alternative to the energy E1(θ), some authors (e.g.[30])
consider the quantity E2

min(θ) = ∆2
1[(τ

∗
1 − 1) ∧ (n + 1− τ∗1 )], where x ∧ y stands for the minimum
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of x and y. Both quantities are equivalent (E2
1(θ) ≤ E2

min(θ) ≤ 2E2
1(θ)), but we use E1(θ) as it is

more intrinsic to the change-point problem. Testing the null hypothesis {θ ∈ Θ0} versus {θ ∈ Θ1}
has been extensively studied since the seminal work of [35, 51, 52]. Csörgö and Horváth [18,
eq.(3.5.22)] have proved that the test rejecting the null for large values of scan CUSUM statistic
max2≤t≤n |C(Y; (1, t, n+ 1))| is asymptotically powerful when E1(θ)/

√
log log(n) → ∞. Recently,

Gao et al. [30] established a non-asymptotic counterpart of this result as well as a minimax lower
bound, stating that no test is able to reject the null with high probability simultaneously for all θ
in Θ1 such that E1(θ) ≥ c1

√
log log(16n) where c1 is a small numerical constant.

Localization of a single change-point. Recall that, in this setting, both the least-squares
estimator and the max CUSUM estimator are equal and are referred to τ̂ in this paragraph. Early
work from [36, 37] considered an asymptotic setting where ∆1 is constant and established that
|τ̂−τ∗1 | = OP (1). Later, Dümbgen [19] and Csörgö and Horváth [18] have worked out the asymptotic
distribution of |τ̂ − τ∗1 | under the assumption that the change-point energy is high-enough so that
E1(θ)/

√
log log(n) → ∞ and under the restriction that τ∗1 is proportional to n. In particular, one

deduces from this asymptotic distribution that |τ̂ − τ∗1 | = OP (1/∆
2
1). When ∆2

1 = O(1), this bound
is minimax optimal (see Proposition 10 in [60]). Up to our knowledge, there are few non-asymptotic
localization results. Still, we can easily deduce from Gao et al [30] that, with positive probability,
|τ̂ − τ∗1 | ≤ c log log(n)/∆2

1 as long as E1(θ) ≥ c′
√

log log(n), where c and c′ are positive constants.

Detection for multiple change-points. Early works typically considered an asymptotic setting
where θi = g(i/n) and g is a fixed (K+1)-step function defined on [0, 1]. Notably, Yao and Au [62]
proved that the least-squares estimator with a BIC penalty selects a number K̂ converging in
probability to K. To formalize the detection problem in a non-asymptotic setting, and define the
significance of each change-point, we extend the notion of change-point energy E1(θ) for θ in Θ1.
Given a vector θ, with K change-points and an integer 1 ≤ k ≤ K, we define the energy Ek(θ) of
the k-th change-point by

Ek(θ) = |∆k|
√

(τ∗k+1 − τk∗)(τ∗k − τ∗k−1)

τ∗k+1 − τ∗k−1

, (7)

so that this matches (6) when k = K = 1. We show later that E2
k(θ) equals the squared

l2 distance between θ and its best approximation by a vector θ′ with (K − 1) change-points
(τ∗1 , . . . , τ

∗
k−1, τ

∗
k+1, . . . , τ

∗
K). As in the single change-point case, one easily checks that E2

k(θ) is
equivalent (up to a factor 2) to ∆2

k[(τ
∗
k+1 − τ∗k ) ∧ (τ∗k − τ∗k−1)]. The non-asymptotic counterpart of

the detection problem would then correspond to establishing minimal condition on E2
k(θ) so that a

change-point procedure detects K̂ = K change-points with high probability. As an alternative to
min1≤k≤K E2

k(θ), most recent papers in the literature (see e.g. [25, 27, 59, 60]) use the following
quantity

Emin(θ) =

[
min

1≤k≤K
|∆k|

] [
min

0≤k≤K
|τ∗k+1 − τ∗k |1/2

]
. (8)

When all |∆k| are equal and all change-points τ∗k are equi-spaced, then E2
min(θ) ≥ mink E

2
k(θ)

but E2
min(θ) is possibly much smaller than mink E

2
k(θ) for heterogeneous jumps. In most of the

modern analyses of change-point procedures [25, 27, 59], authors usually aim at establishing that
K̂ = K with high probability as long as E2

min(θ) ≥ c log(n) (for some c > 0). Such a detection
property is achieved by some penalized least-squares procedures [59] and CUSUM-based procedures
(e.g. [7, 59]). Notably, Frick et al. [25] prove that their SMUCE procedure consistently estimates K
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under the tighter condition E2
min(θ) ≥ c log(n/mink(τ

∗
k+1− τ∗k )) which is of the order of log(K +1)

when there are few equi-spaced change-points. Conversely, Chan and Walther [16] (see [2] for earlier
results) have established in the particular setting of change-point detection that no procedure is
able to consistently estimate K unless mink E

2
k(θ) ≥ 2 log[n/mink(τ

∗
k+1 − τ∗k ) ∧ (τ∗k − τ∗k−1)].

Localization of several change-points. In their asymptotic setting where θi = g(i/n) for a
fixed function g, Yao and Au [62] established the asymptotic distribution of (τ̂k− τ∗k ), k = 1, . . . ,K

where the vector τ̂ is that of the least-squares estimator θ̂LS,K. The differences τ̂k − τ∗k are thus
proved to be asymptotically independent and to have limiting sub-exponential distributions with
parameter 1/∆2

k. This result was later extended by Bai and Perron [6] and Lavielle and Moulines [45]
to asymptotic settings where K is still fixed but the |∆k|’s are allowed to converge to zero. In the
non-asymptotic setting, Frick et al. [25], Wang et al. [59], Baranowski et al. [7] established that,
as soon as E2

min(θ) ≥ c log(n), the estimator τ̂ satisfies dH(τ̂ , τ
∗) ≤ c′ log(n)/[mink∆

2
k] with high

probability. It follows from the analysis of the single change-point case that this upper bound is
optimal up to a (possible) log(n) term. In an almost concomitant but independent work, Cho and
Kirch [17] have recently proved that their multiscale MOSUM procedure satisfies the tighter bound
dH(τ̂ , τ

∗) ≤ c′ log(K + 1)/[mink∆
2
k].

1.5 Our contribution

We now describe our main results.

Pinpointing minimal conditions for change-point detection. In the single change-point
setting, we establish that the uniform detection threshold for the energy E1(θ) is at

√
2 log log(n).

Importantly, change-points τ∗1 that are away from the endpoints of the time series can be detected
at energy level E1(θ) of the order

√
2 log log(16n/(τ∗1 ∧ (n+ 1− τ∗1 ))), which can be as small as

a constant for τ∗1 proportionnal to n. Regarding the multiple change-points setting, we introduce
a new way of assessing the detection of change-points. An estimator τ̂ is said to detect τ∗k if
some estimated change-point τ̂l belongs to [(τ̂∗k + τ̂∗k−1)/2, (τ̂

∗
k + τ̂∗k+1)/2). Conversely, τ̂ does not

detect any spurious change-point if the interval [(τ̂∗k + τ̂∗k−1)/2, (τ̂
∗
k + τ̂∗k+1)/2) contains at most one

estimated change-point τ̂l. Any change-point τ∗k is detectable by a procedure τ̂ whose probability
of estimating spurious change-point is small as soon as

E2
k(θ) ≥ c log

(
c′n

(τ∗k+1−τ∗k )∧(τ∗k−τ∗k−1)

)
, (9)

thereby matching (up to constants) the minimax rate for the simpler problem of segment detec-
tion [16]. What matters here is that we prove such detectability results in settings where we allow
an arbitrarily large number of change-points to have a low energy. This implies that the presence
of many arbitrarily small change-points does not make high-energy change-points much harder to
detect.

Transition from a global to a local estimation problem. As soon as a change-point τ∗k
is detectable (as its energy is above the appropriate threshold, then the change-point τ∗k can be
estimated at a sub-exponential rate with scale ∆2

k. As a consequence, the error rate for estimating a
specific change-point is purely local and neither depends on its energy (as long as it is high enough)
nor on n. Our non-asymptotic analysis bridges the gap between the asymptotic expansions of [18]
and [45] and known non-asymptotic bounds. Besides, we recover that the respective positions
estimation errors of two high-energy change-points behave like nearly independent variables [45, 62].
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In turn, this allows us to establish tight risk optimality results with respect to both the Hausdorff (4)
and Wasserstein (5) distances. Finally, we note that this global to local transition phenomenon also
occurs in the presence of multiple low-energy change-points.

Penalized least-squares estimation with a multiscale penalty. We introduce two multiple
change-points procedures achieving all these optimality properties. The first one is a penalized least-
squares type estimator with a multiscale penalty that promote equi-spaced change-points positions.
As the corresponding penalty is additive, this estimator is easily computed by (pruned) dynamic
programming [42]. In contrast to the BIC-type penalty studied recently in [59], this allows us to
recover the optimal logarithmic terms as well as to handle settings where low-energy change-points
are present.

Optimal post-processing procedure based on aggregation of CUSUM tests. As an
alternative to the penalized least-squares estimator, we promote a two-step method based on the
aggregation of many CUSUM tests. This method can either serve as a self-standing procedure or as
a post-processing procedure to improve the detection and localization properties of a preliminary
estimator. It is shown to satisfy the same optimality property as the previous multiscale procedure,
whereas its computational complexity can be taken as low as n log(n) operations.

From a technical perspective, our main results are based on a novel simultaneous control of all
CUSUM statistic C(Y; t) in Lemma 9 that can be of independent interest. Despite the fact that
we introduce as least minimax formalism as possible, our viewpoint and arguments heavily borrow
from the literature on minimax testing separation rates [8, 41].

1.6 Notation and organization of the paper

In the sequel, we use bold letters for vectors (e.g. θ,µ,Y, τ , . . .), whereas ‖.‖ stands for the
Euclidean norm. For any finite set S, we write |S| for its cardinality. As usual, we denote by Φ the
probability distribution function of a standard univariate normal distribution. Besides, Φ stands
for the corresponding tail distribution function.
In the sequence, c, c′, c1 stand for positive numerical constant whose value may change from line to
line. Given some quantity L, we write cL for a positive function that only depends on L. We write
u . v (resp. u & v) when there exists a numerical constant c > 0 such that u ≤ cv (resp. u ≥ cv).
The notation u ≍ v means that both u . v and u & v. Given x in R, we write x+ = max(x, 0)
for the positive part of x, and ⌊x⌋ (resp. ⌈x⌉) for the largest (resp. smallest) integer smaller than
(resp. larger than) or equal to x. Given two real numbers x and y, x ∨ y (resp. x ∧ y) denotes the
maximum (resp. minimum) value between x and y. When it is clearer, we sometimes use max(x, y)
and min(x, y).
Given a vector θ, we write Pθ for the distribution of Y.

Section 2 is dedicated to testing and estimation problems when θ contains at most one single
change-point. Turning to the multiple change-points problem, we establish impossibility results in
Section 3, which lead us to defining desiderata for a suitable change-point procedure. In Section 4,
we establish that penalized least-squares change-point procedures with a multiscale penalty achieve
the desired specifications, whereas we prove similar results for a post-processing procedure based on
the CUSUM statistic in Section 5. Some extensions and open problems are discussed in Section 6.
The proofs are postponed to the end of the manuscript.
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2 Single change-point analysis

This section deals with the case where the mean vector θ contains at most one change-point, that
is when θ belongs to Θ0∪Θ1. The corresponding model (1) has often been called the At Most One
Change (AMOC) model in the change-point literature (see e.g. [18]). To alleviate the notation,
when θ belongs to Θ1, we simply write τ∗ for τ∗1 and ∆ for ∆1 = µ2 − µ1 in this section and the
corresponding proofs. Recall (see (6)) that the energy E1(θ) of the change-point is defined by

E1(θ) = |∆|
√

(τ∗ − 1)(n + 1− τ∗)
n

.

As explained in the introduction, the change-point detection problem when θ belongs to Θ0 ∪ Θ1

is formalized as the problem of testing the null hypothesis (H0) {θ ∈ Θ0} versus the alternative
(H1) {θ ∈ Θ1}, while the change-point localization problem is treated as a problem of estimation
of τ∗ when θ is assumed to belong to Θ1.

We first state impossibility results in form of minimax lower bounds and then show that match-
ing upper bounds can be obtained from test statistics and estimators based on penalized least-
squares criteria. More precisely, we derive tight lower and upper bounds for the detection rate with
the tight constants. Finally, we built optimal confidence intervals for τ∗.

2.1 Impossibility results for the detection and localization problems

The impossibility results are established in the specific setting where the noise is Gaussian. Hence,
we assume throughout this subsection that ǫ ∼ N(0, In). This assumption is henceforth referred to
as (AG).

2.1.1 Minimax lower bound for the detection problem

Considering the problem of testing (H0) {θ ∈ Θ0} versus (H1) {θ ∈ Θ1}, we want to assess the
minimal energy E1(θ) required so that a test is able to reject the null with high probability. We
start with a simple and known observation, see e.g. [22]. Fix an integer τ in {2, . . . , n} and a real
number δ 6= 0, then Θ1 contains

Θ1[τ, δ] = {θ ∈ Θ1 : τ
∗ = τ, ∆ = δ} .

Testing (H0) versus the alternative (H1,τ,δ) {θ ∈ Θ1[τ, δ]} is arguably simpler than testing (H0)
versus (H1) and the minimal energy requirement for rejecting with high probability is therefore
smaller. The level-α Likelihood Ratio Test (LRT) for this simple (but unrealistic) testing problem
rejects (H0) in favor of the alternative (H1,τ,δ) when the CUSUM statistic C(Y; (1, τ, n+ 1)) with

C(Y, (1, τ, n + 1)) =

( ∑n
i=τ Yi

n+ 1− τ
−
∑τ−1

i=1 Yi
τ − 1

)(
1

τ − 1
+

1

n+ 1− τ

)−1/2

,

has an absolute value larger than a critical value depending on α. Since under the null hypothesis
(H0), C(Y, (1, τ, n + 1)) follows a standard normal distribution, this critical value can be taken

equal to tα = Φ
−1

(α/2). Besides, since under the alternative (H1,τ,δ), C(Y, (1, τ, n + 1)) has a
N(bn,τ , 1) distribution with a bias bn,τ,δ such that |bn,τ,δ| = E1(θ), the type II error probability of
the LRT equals Φ(|bn,τ,δ| − tα) + Φ(|bn,τ,δ| + tα). This probability is small only if E1(θ) is large
enough (compared to the critical value tα). From the fundamental Neyman-Pearson Lemma, it is
the smallest possible type II error probability for any α-level test. As a consequence, noticing that
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when α is small, Φ
−1

(α) is of the order of
√

2 log(1/α), a necessary condition for a change-point
to be reliably detected by a level-α test is that its energy is large compared to

√
2 log(1/α).

In a more realistic setting where the position and the height of the change-point are unknown to
the statistician, that is when considering the initial problem of testing (H0) versus (H1), a slightly
higher energy is necessary for a change-point to be reliably detected, as formalized in the next
proposition.

Proposition 1. Assume that ǫ in (1) satisfies (AG). There exist positive numerical constants c
and n0 such that for all κ in (0, 2/3), for all n > n0, and for any test T of (H0) versus (H1), one
has

sup
θ∈Θ0

Pθ[T = 1] + sup
θ∈Θ1, E1(θ)>

√
2(1−κ)(1−n−1/2) log log(n)

Pθ[T = 0] > 1− c (log(n))
− κ2

8(1−κ) . (10)

The lower bound (10) implies that the sum of the type I and II error probabilities for vectors
θ with E1(θ) >

√
2(1 − κ)(1− n−1/2) log log(n) is close to one. This means that no test performs

better than random guess. Let us interpret this proposition in an asymptotic setting. Taking e.g.
κ = log−1/3(n), we deduce from (10) that any level-α test T of {θ ∈ Θ0 } versus {θ ∈ Θ1 } is not
able to detect a change-point with energy

√
2(1 − o(1)) log log(n) with probability uniformly higher

than 1−α− o(1). Adopting the separation rate terminology of the minimax testing literature, this
enforces that the energy minimax separation rate is of the order of

√
2 log log(n). We establish in

the next subsection that the leading constant 2 is tight.
Gao et al. [30] have established a similar impossibility result in an asymptotic framework but

with a suboptimal leading constant c <
√
2. In an independent work, Han et al. [48] have recently

considered the counterpart of the single change-point detection problem for multivariate time series
Y with values in R

p. Letting both p and n go to infinity, they provide a sharp characterization of
the minimal energy for change-point detection.

Closely examining the proof of Proposition 1, we see that the result of (10) is still valid even
if we restrict our attention to change-point positions τ∗ that are smaller than

√
n. Intuitively, this√

2 log log(n) price rather arises because there are log(n) possible order of magnitudes for τ∗. We
come back to this point below when we build an optimal test.

2.1.2 Minimax lower bound for the localization problem

Let us now focus on a minimax lower bound for the localization problem, viewed as a problem
of estimation of the true change-point position τ∗ of θ, once it is assumed to belong to Θ1. The
arguments provided below are standard and can be found e.g. in [60]. They are repeated here for
the sake of completeness and because a slightly tighter version than [60] is required to handle the
multiple change-points case.

Throughout this subsection, we use the notation θ(τ∗,µ) to stress the dependency of θ on these
two quantities.

Lemma 1. Assume that ǫ in (1) satisfies (AG). Let µ = (µ1, µ2) denote a couple of real numbers
such that µ1 6= µ2, and ∆ = µ2−µ1. There exist positive constants c and c′ such that, for n > 4∆−2

and for any x in [1/2, n/2 − 1− 2∆−2),

inf
τ̂

sup
τ∗∈{2,...,n}

Pθ(τ∗,µ)

(
|τ̂ − τ∗| ≥ 2∆−2 + x

)
> ce−c

′x∆2
,

where the infimum is taken over all possible estimators τ̂ of τ∗.
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The probability Pθ(τ∗,µ)(|τ̂ − τ∗| ≥ 4∆−2 + x) is therefore at best exponential in x with rate
∆2, which in particular leads to the following lower bound for the minimax risk:

inf
τ̂

sup
τ∗∈{2,...,n}

Eθ(τ∗,µ) [|τ̂ − τ∗|] > c

∆2
,

where Eθ(τ∗,µ) denotes the expectation with respect to the probability distribution Pθ(τ∗,µ). As
a consequence, no estimator can estimate τ∗ at a rate smaller than 1/∆2 when the mean values
vector µ = (µ1, µ2) is fixed, with difference ∆.

2.2 Optimal detection and localization by penalized least-squares

In this section, we construct a change-point detection procedure and a change-point estimator both
based on the classical penalized least-squares minimization approach. We do not restrict the model
to the Gaussian assumption (AG) anymore, and we therefore consider an observed random vector
Y such that (1) holds with θ in Θ0 ∪Θ1, whose probability distribution is still denoted by Pθ.

Let L > 0 and define for any τ in {2, . . . , n}, the following penalized least-squares criterion

Cr1(Y, τ) := ‖Y −ΠτY‖2 + Lpen1(τ) , (11)

where Πτ denotes the orthogonal projection onto the linear subspace of Θ0 ∪ Θ1, composed of
vectors θ in R

n with a single change-point τ . The penalty term pen1(τ), chosen as

pen1(τ) = 2 log log

(
emax

{(
τ ∧ n

τ

)
,

(
(n+ 1− τ) ∧ n

n+ 1− τ

)})
, (12)

is of multiscale type. It is worth noticing that pen1(τ) is bounded from above by 2 log log(en) =
2 log log(n) + on(1) which roughly corresponds to the squared lower bound for the minimax detec-
tion rate obtained in Section 2.1.1. Nevertheless, this upper bound is sometimes pessimistic. In
particular, for τ ≍ 1, n− τ ≍ 1, or τ ≍ n, pen1(τ) is of the order of a constant.

2.2.1 Detection

Let us come back to the problem of detecting the existence of a change-point, that is of testing
(H0) {θ ∈ Θ0} versus (H1) {θ ∈ Θ1}. Let the penalty parameter L be in (1, 2] and consider the
test statistic:

T (Y) = min
τ∈{2,...,n}

{
−‖(Πτ −Π0)Y‖2 + L2pen1(τ)

}
= min

τ∈{2,...,n}
Cr1(Y, τ)−‖Y‖2+‖Π0Y‖2 . (13)

For α in (0, 1), we can now introduce the test Tα defined by

Tα = 1T (Y)≤−L2(Cα+CL) , with Cα = 6 log

(
12

α

)
and CL =

2

L
log

(
L

L− 1

)
− 2 log log(L) .

(14)
The test Tα can be interpreted as the aggregation of a collection of tests of {θ ∈ Θ0} versus
{θ ∈ Θ1 with τ∗ = τ} over τ = 2, . . . , n. As for the estimation procedure introduced above, the
threshold −L2pen1(τ)−L2(Cα+CL) depends on τ , thereby giving a multiscale taste to the proce-
dure. One deduces from simple linear algebra that ‖(Πτ −Π0)Y‖2 = C2(Y; (1, τ, n + 1)). Hence,
Tα interprets as a max penalized CUSUM statistic, with position-dependent penalties pen1(τ).
This position-dependent penalization approach differs from the usual max (non-penalized) CUSUM
testing procedure in the literature [18].
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Proposition 2. For any α in (0, 1), the test Tα of {θ ∈ Θ0} versus {θ ∈ Θ1} defined by (13) and
(14) with L in (1, 2], is of level α. Moreover, for any β in (0, 1), and any θ in Θ1 such that

E2
1(θ) > L3pen1(τ

∗) +
2L

L+ 1
log

(
2

β

)
+ L3(Cα + CL) , (15)

Tα has type II error probability smaller than β.

Choosing L close to one in Condition (15) and letting n go to infinity entail that a change-point
can be detected with high probability if its energy E1(θ) is higher than (1 + o(1))

√
2 log log(n).

This matches the impossibility result of Proposition 1 and means that Tα is minimax optimal.
In the minimax separation rate formalism, Proposition 1 and Proposition 2 together imply that
the energy minimax separation rate is equivalent to

√
2 log log(n). In the fact, the same rate√

2 log log(n) was already obtained by [22, 48] using the max CUSUM statistic, which is equivalent
to setting pen1(τ) to 0 in our test. However, Proposition 2 is much more optimistic than [22, 48].
Although we pay a

√
2 log log(n) price for τ∗ = nζ with ζ in (0, 1), which is unavoidable, the

energy requirement (15) is weaker at some other positions. In particular, it is of constant order
when either τ∗ ≍ n or τ∗ ≍ 1. In other words, for most change-point positions, the requirement
E1(θ) >

√
2 log log(n) can be mitigated. This phenomenon is due to careful choice pen1(τ) of the

CUSUM statistic in the test Tα. Regarding considerations on the LRT of (H0) versus (H1,τ,δ) in
Section 2.1.1, the requirement that E1(θ) is large compared to

√
log(1/α) (involved in Cα) is also

unavoidable.

2.2.2 Localization

When θ is assumed to belong to Θ1 and the energy E1(θ) is large enough, we have proved above
that the change-point τ∗ can be reliably detected, so that one can aim at localizing τ∗. Consider
the estimator τ̂ minimizing among all τ in {2, . . . , n} the penalized least-squares criterion Cr1(Y, τ)
introduced in (11) with the multiscale penalty (12).

Proposition 3. Fix the tuning parameter L in (1, 2] and consider the minimizer τ̂ of Cr1(Y, τ).
There exist positive constants c, cL, and c

′
L such that the following holds for all n > c′L. If

E2
1(θ) > L2pen1(τ

∗) + cL , (16)

then, for any x in (0, (E2
1(θ)− L2pen1(τ

∗)− cL)/cL), with probability larger than 1− 32e−x,

|τ̂ − τ∗| ≤ c
1 ∨ x
∆2

and
(τ̂ − 1)(n + 1− τ∗)
(τ∗ − 1)(n + 1− τ̂)

∈ (1/2, 2) . (17)

Proposition 3 is proved in Section 7.5. Condition (16) requires that the squared energy E2
1(θ)

is larger than L2pen1(τ
∗). Choosing L close to 1, we have already seen that this condition is

sharp as it corresponds to the sufficient condition for the arguably simpler problem of detecting the
existence of the change-point in Proposition 1. Thus, the above result entails than once a change-
point is detectable, it can also be estimated by τ̂ with a rate of order ∆−2, which is optimal as
discussed in Section 2.1.2. In fact, the tail distribution of the error is optimal. Indeed, Proposition
3 implies that |τ̂ − τ∗| . ∆−2 + x with probability higher than 1 − e−c

′x∆2
, which is the optimal

dependency in x for this probability according to Lemma 1. In the specific case where the height
is high (|∆| & 1), we use that both τ̂ and τ∗ are integers to conclude that τ̂ = τ∗ with probability
higher than 1− ce−c

′∆2
, which is again optimal by Lemma 1.
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2.3 Confidence intervals for τ
∗

To conclude the present single change-point analysis, we build a confidence interval Iτ̂ for τ∗. Its
construction can be heuristically decomposed in two steps. First, one tests the existence of a
change-point. This step relies on a statistic that slightly differs from (14). The second step then
depends on the conclusion of the test. If no change-point is detected, then τ∗ cannot be localized
and we set Iτ̂ := {2, . . . , n}. If a change-point has been detected, we build a confidence interval Iτ̂
whose width is of order ∆−2 according to the error bound of Proposition 3. As the error bound
depends on the unknown height ∆, this step requires to estimate ∆.

Fix L and κ in (1, 2), and let

TIC(Y) = inf
τ∈{2,...,n}

{
−‖(Πτ −Π0)Y‖2 + (1 + κ)L2pen1(τ)

}
,

where pen1 is the multiscale penalty proposed in (12). Let τ̂ still denote a minimizer among all τ in
{2, . . . , n} of the criterion given by (11). This estimator τ̂ is then plugged into the basic empirical
means to estimate ∆ by

∆̂ =

∑n
i=τ̂ Yi

n+ 1− τ̂
−
∑τ̂−1

i=1 Yi
τ̂

. (18)

For some numerical constants c, cL,κ that are specified in the proof of Proposition 4 in Section 7.6,
let

Iτ̂ :=





[
τ̂ − c log(e/α)

|∆̂|2 ; τ̂ + c log(e/α)

|∆̂|2

]
if TIC(Y) < −cL,κ log(e/α) ,

[2, n] otherwise .
(19)

Proposition 4. Let Iτ̂ denote the confidence interval introduced in (19). There exist constants c,
cL,κ, cL,κ, c

′, and c′L such that the following holds for all n ≥ c′L. For any θ in Θ1 with change-point
position τ∗ and change-point height ∆,

Pθ (τ
∗ ∈ Iτ̂ ) > 1− α .

Besides, if

E2
1(θ) > (1 + κ)L2pen1(τ

∗) + cL,κ log(e/α) , (20)

then, with probability larger than 1− α, one has

|Iτ̂ | ≤ c′ log(e/α)∆−2 .

If one takes κ and L close to one in Condition (20), then Proposition 4 shows that, if the squared
energy of the change-point is larger than pen1(τ

∗), the width of the confidence interval is at most
proportional to log(e/α)∆−2 with probability larger than (1 − α). Conversely, Lemma 1 implies
that no estimator is able to localize τ∗ at the precision c′′ log(e/α)∆−2 with probability higher than
1 − 2α. As a consequence, no (1 − α)-level confidence interval Ĩ of τ∗ has a width smaller than
c′′ log(e/α)∆−2 with probability higher than 1 − α. This entails that the width of the confidence
interval Iτ̂ is optimal both with respect to ∆ and α.

Finally, since τ∗ is an integer, note that Iτ̂ can be reduced to the set of integers inside Iτ̂ . Thus,
for a high-energy change-point and |∆| & 1 we have Iτ̂ = {τ∗} with probability higher than (1−2α)
as long as α ≥ ce−c

′∆2
.
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3 Multiple change-points (K > 1): preliminaries and impossibility

results

3.1 Notation and preliminaries

It has been underlined in the above section that the energy E1(θ) of a single change-point τ∗1 with
height ∆1 = µ2−µ1 in θ defined by E1(θ) = |∆1|

√
(τ∗1 − 1)(n + 1− τ∗1 )/n (see (6)) plays a crucial

role in the analysis. Extending the single change-point analysis to the multiple change-points case
necessarily poses the question of identifying the quantity which will allow to measure the difficulty
for multiple change-points to be detected or localized. Most recent papers in the literature (see
[7, 25, 59, 60]) extend the notion of energy using Emin(θ) (as in (8)). As our main purpose here is
to give tighter guarantees of detection and localization, we use a more local notion of energy. Recall
that T3 refers to the collection of triplets of integers t = (t1, t2, t3) such that 1 ≤ t1 < t2 < t3 ≤ n+1.
For θ in R

n and t = (t1, t2, t3) in T3, define the energy

E(θ, t) =

∣∣∣∣∣

∑t3−1
i=t2

θi

t3 − t2
−
∑t2−1

i=t1
θi

t2 − t1

∣∣∣∣∣

√
(t2 − t1)(t3 − t2)

t3 − t1
, (21)

which is a weighted difference of means on [t1, t2) and on [t2, t3). Given θ in ΘK with change-points
vector τ ∗ and an integer 1 ≤ k ≤ K, define the energy of θ at the k-th change-point Ek(θ) by
Ek(θ) = E[θ, (τ∗k−1, τ

∗
k , τ

∗
k+1)]. More simply, we refer to this quantity as the energy of the k-th

change-point. This extends the definition of E1(θ) when K = 1. Note that

Ek(θ) = |∆k|
√

(τ∗k − τ∗k−1)(τ
∗
k+1 − τ∗k )

τ∗k+1 − τ∗k−1

,

which is of order ∆k

√
ℓk (in fact |∆k|

√
ℓk/2 6 Ek(θ) 6 |∆k|

√
ℓk), where ∆k denotes the height of

the change-point and ℓk := (τ∗k − τ∗k−1)∧ (τ∗k+1− τ∗k ) is the smallest length of the segments adjacent
to the change-point, more simply named the k-th change-point length.

Intuitively, one cannot expect to properly localize a change-point if it cannot at least be reliably
detected. From the previous section (see in particular Propositions 1 and 2), one knows that only
change-points whose energy is high enough are to be detected. This is why we introduce the
following definition. Given κ > 1 and q > 0, we say that τ∗k is a (κ, q)-high-energy change-point if

Ek(θ) > κ

√√√√2 log

(
n(τ∗k+1 − τ∗k−1)

(τ∗k+1 − τ∗k )(τ
∗
k − τ∗k−1)

)
+ q . (22)

In other words, the energy Ek(θ) is said to be high if ∆2
kℓk is large compared to log(n/ℓk)+q. Note

that if the change-point length ℓk is smaller than nζ with ζ in [0, 1), the logarithmic term is of the
order of log(n), whereas if this length is proportional to n, the logarithmic term is of the order of
a constant.

3.2 Impossibility results

As in Section 2.1, we assume throughout this section that the noise in the model (1) is Gaussian,
that is assumption (AG) is fulfilled. Besides, we sometimes use the θ(τ ∗,µ) instead of θ to stress
the dependency of θ on the parameters τ ∗ and µ.
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3.2.1 Low-energy change-points cannot be detected

The targeted property for detecting a specific change-point among multiple change-points is for-
malized in Section 3.3 below. In this subsection, we explain why this strong detection property
is not achievable when the change-point has not a high-energy. More specifically, we consider the
weaked possible notion of change-point detection, that is we test whether (H0) {θ ∈ Θ0} versus
(H1) {θ /∈ Θ0} and we establish that, for some alternatives, only vectors θ with at least a high-
energy change-point can be reliably detected. In particular, we justify the two different quantities
q and log

(
n(τ∗k+1 − τ∗k−1)/((τ

∗
k+1 − τ∗k )(τ

∗
k − τ∗k−1))

)
in the definition (22) of high-energy change-

points. Part of the results belong to the statistical folklore and asymptotic versions have already
appeared for instance in [16]. Still, we state and prove here non-asymptotic counterparts to unify
our presentation and for the sake of completeness.

We showed in Section 2.1.1 that, when testing {θ ∈ Θ0} versus {θ ∈ Θ1}, even in the most
simple situation where the position of the tentative change-point is known, it can only be reliably
detected if its energy is large enough. More precisely, we established that any level-α test is only
able to reject the null hypothesis with probability higher than 1−β, when the energy of the change-
point is at least of the order

√
log(1/min(α, β)). Coming back to the definition (22) of high-energy

change-points, we deduce that a single change-point τ∗1 whose length ℓ1 is proportional to n, can
only be detected with probability higher than 1−ce−c′q (for some q > 0) if it has (1, q)-high energy.

Now, we turn to the logarithmic term in the definition (22) of high-energy change-points. This
quantity only arises when there are at least two change-points. Following a long line of literature [1,
2, 16], we consider the problem of segment detection. Given a positive integer r (less than ⌊n/4⌋)
and δ > 0, we consider the collection Θ[r, δ] ⊂ Θ2 defined by

Θ[r, δ] =
{
θ ∈ R

n : ∃τ ∈ {⌊n/4⌋+ 1, . . . , ⌊3n/4⌋ − r}, such that θi = δ1i∈{τ,...,τ+r−1}
}
. (23)

A vector θ in Θ[r, δ] equals δ on the segment [τ, τ + r − 1] and is null outside this segment. Note
that this segment belongs to [n/4; 3n/4] and is therefore away from the endpoints. The problem
of (single) segment detection is that of testing {θ = 0} versus {θ ∈ Θ[r, δ]}. Typical asymptotic
results2 (see e.g. Proposition 1 in [1]) consider sequences rn and δn and state that, for rn/n → 0,
then the sum of the type I and type II error probabilities of any test converges to one when
δn
√
rn −

√
2 log(n/rn) goes to −∞. This entails that no test performs asymptotically better than

pure random guess. For the sake of completeness, we provide a non-asymptotic counterpart.

Proposition 5. Assume that ǫ in (1) satisfies (AG). There exist positive numerical constants c,
c′ and n0 such that for all n > n0, any 1 ≤ r ≤ ⌊n/4⌋, and any ξ in (0, 1), the following holds. If
δ
√
r ≤

√
2(1 − ξ) log(n/(2r)), then any test T of {θ = 0} versus {θ ∈ Θ[δ, r]} satisfies

P0[T = 1] + sup
θ∈Θ[δ,r]

Pθ[T = 0] > 1− c
( r
n

)c′ξ2
. (24)

We recover that δ
√
r needs to be at least of the order of

√
2 log(n/r) so that the segment is

reliably detected. Let us now interpret this impossibility result in terms of energy and high-energy
change-points. Any θ in Θ[r, δ] contains two change-points such that, for k = 1, 2, (τ∗k+1− τ∗k )(τ∗k −
τ∗k−1)/(τ

∗
k+1− τ∗k−1) belongs to [r(1− r/(⌊n/4⌋+ r)), r]. As a consequence, their respective energies

E1(θ) and E2(θ) belong to [δ
√
r(1− r/(⌊n/4⌋ + r), δ

√
r]. Rephrasing Proposition (24) we deduce

2In the literature, the segments are usually not restricted to be away from the endpoints, but one can readily

adapt the minimax lower bounds to our setting.
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that when, for some ξ′ in (0, 1) and some r < cξn, the energy of both change-points is not (ξ′, 1)-high
then it is impossible to reliably test whether {θ ∈ Θ0} versus {θ ∈ Θ2}.

Consider some q > 1. In summary, even in very simple settings such as θ in Θ1 or θ in Θ2, the
energy a change-point has to be at least (1, q)-high, so that a test of {θ ∈ Θ0} versus {θ ∈ Θ1∪Θ2}
of level ce−c

′q detects a change-point with probability at least 1− ce−c
′q.

3.2.2 Localization error

We now provide lower bounds for the problem of localizing a high-energy change-point τ∗k . To
derive the optimal rate, we consider, as in Section 2.1.2, a favorable situation where almost all
parameters are known. Fix µ = (µ1, . . . , µK+1) with ∆k = µk+1 − µk 6= 0 for all k in {1, . . . ,K}.
Given a vector t = (t1, . . . , tK+1) of integers such that 1 = t1 < t2 < . . . < tk+1 = n, consider the
partition It = (Ik)k∈{1,...,K} of {2, . . . , n}, where, for all k, Ik = {tk + 1, . . . , tk+1}. Denote by

ΘK [It,µ] = {θ ∈ ΘK , θi = µk ∀i ∈ {τ∗k−1, . . . , τ
∗
k − 1}, with τ∗k ∈ Ik ∀k ∈ {1, . . . ,K}} .

Suppose that the statistician knows that θ is in ΘK [It, µ], that is, she knows the vector µ and she
knows moreover that, for each k in {1, . . . ,K}, τ∗k belongs to Ik. Then, Yk = (Yi)i∈Ik is a sufficient
statistic for estimating τ∗k . Since the Yk’s are independent, all K estimation problems of τ∗k can be
considered independently. Arguing as in Section 2.1.2, we derive the following result.

Proposition 6. Assume that n ≥ 3 and ǫ in (1) satisfies (AG). There exist universal constants
c1– c5 such that the following holds. Fix K in {2, . . . , n− 1}, a vector µ = (µ1, . . . , µK+1) in R

K+1

with ∆k = µk+1 − µk 6= 0 for all k in {1, . . . ,K}, and a partition It = (Ik)k∈{1,...,K} of {2, . . . , n}
as described above and such that |Ik| > 4∆−2

k + 2 for any k = 1, . . . ,K.
For any k in {1, . . . ,K}, for any estimator τ̂k of τ∗k and any x in [1/2, |Ik |/2− 1− 2∆−2

k ), one has

sup
θ∈ΘK [I,µ]

Pθ

(
|τ̂k − τ∗k | > 2∆−2

k + x
)
> c1e

−c2x∆2
k . (25)

The L1-Wasserstein minimax risk over ΘK [I, µ] is bounded from below as follows

inf
τ̂∈NK

sup
θ∈ΘK [I,µ]

Eθ [dW (τ̂ , τ ∗)] ≥ c3

K∑

k=1

[
e−∆2

k/8

|∆k|
1|∆k|≥2 +∆−2

k 1|∆k|≤2

]
. (26)

Assume that all ∆k are equal to some common value ∆ > 0. If the partition It further satisfies
mink∈{1,...,K} |Ik| ≥ c4∆

−2 logK, then the Hausdorff minimax risk over ΘK [I, µ] satisfies

inf
τ̂∈NK

sup
θ∈ΘK [I,µ]

Eθ [dH(τ̂ , τ
∗)] ≥ c5

[
Ke−∆2/8

|∆| 1|∆|≥2
√

2 log(K)
+

log(K)

∆2
1|∆|<2

√
2 log(K)

]
. (27)

The bottom line of this proposition is that at best, for any estimator τ̂ ∈ N
K , the errors |τ̂k−τ∗k |

behave independently and have an exponential tail of the form (25). The first lower bound (25) for
estimating a single change-point τ∗k is a straightforward consequence of Lemma 1 and analogous
results may be found e.g. in [60]. However, the lower bounds (26) and (27) for the Wasserstein and
Hausdorff risk are, up to our knowledge, new.
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3.3 Which requirements for a good change-point detection and localization pro-
cedure?

The obtained lower bounds lead us to reflect upon the properties a good change-point detection and
localization estimator τ̃ should satisfy, and to specify them. First, it should not overestimate the
number of true change-points. Besides, one cannot hope that τ̃ detects all true change-points τ∗k . In
view of Proposition 5, it is more reasonable to require that τ̃ detects all high-energy change-points.
Finally, those high-energy change-points should be localized at the parametric rate ∆k as explained
above. More precisely, our target estimator τ̃ will satisfy, over a large probability event A the three
following properties. In the sequel, the notation {τ̃} is short for the set {τ̃l, l ∈ {1, . . . , |τ̃ |}}.

(NoSp). No spurious change-point is detected:





∣∣∣
{
τ̃
}
∩
(
τ∗k−1+τ

∗
k

2 ,
τ∗k+τ

∗
k+1

2

] ∣∣∣ ≤ 1 , for all k in {2, . . . ,K − 1} ;∣∣∣
{
τ̃
}
∩
[
2,

τ∗1+τ
∗
2

2

] ∣∣∣ ≤ 1 ;
∣∣∣
{
τ̃
}
∩
(
τ∗K−1+τ

∗
K

2 , n
] ∣∣∣ ≤ 1 .

(28)

(Detec[κ, q, c]). High-energy change-points are detected: for all k in {1, . . . ,K}, if τ∗k is a
(κ, q)-high-energy change-point then

dH,1(τ̃ , τ
∗
k ) ≤ min

{
τ∗k+1 − τ∗k

2
,
τ∗k − τ∗k−1

2
, c
log
(
1 ∨ n∆2

k

)
+ q

∆2
k

}
. (29)

(Loc[κ, q, c, c′]). High-energy change-points are localized at the optimal rate: any (κ, q)-
high-energy change-point τ∗k satisfies

P
(
dH,1(τ̃ , τ

∗
k )1A ≥ cx∆−2

k

)
≤ c′e−x, ∀x ≥ 1 . (30)

Property (NoSp) is slightly stronger than requiring that |τ̃ | ≤ K, since it requires that, in
each segment

(
(τ∗k−1 + τ∗k )/2, (τ

∗
k + τ∗k+1)/2], the number of change-points is not overestimated.

Property (Detec[κ, q, c]) specifies that, for any high-energy change-point τ∗k , there exists at least
one predicted change-point τ̃l which is closer to τ∗k than any other true change-point. The last term
dk = c∆−2

k [log
(
1 ∨ n∆2

k

)
+q] in the upper bound (29) provides a quantitative bound for dH,1(τ̃ , τ

∗
k ).

Hence, (Detec[κ, q, c]) provides an uniform control on the localization error of each high-energy
change-point. In fact, it suffices to prove (Detec[κ, q,+∞]) to ensure (Detec[κ, q, c]) for some c
large enough. Indeed, inserting in τ ∗ two change-points τ− = τ∗k −⌈2dk⌉ and τ+ = τ∗k +⌈2dk⌉ with a
null change-point height does not change the distribution. If c is chosen large enough in (29), then
the energy of τ∗k relative to the new change-point vector remains (κ, q)-high. As a consequence,
(Detec[κ, q,+∞]) entails that, under the event A, dH,1(τ̃ , τ

∗
k ) ≤ dk.

As for Property (Loc[κ, q, c, c′]), it enforces that any (κ, q)-high-energy jump τ∗k is estimated
at the optimal rate (as given by Proposition 6) in the event A. Since dH,1(τ̃ , τ

∗
k ) is a non-negative

integer, this property implies that, for ∆k large enough, one has dH,1(τ̃ , τ
∗
k ) = 0 with probability

higher than 1 − c′e−∆2
k/c − P(Ac). Let us emphasize that, in (30), the subscript k is fixed inside

the probability, whereas (Detec[κ, q, c]) provides an uniform bound with respect to all high-energy
jumps.

In the next two sections, we introduce and analyze change-point detection procedures bearing
in mind these three specifications.
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4 Penalized least-squares

4.1 Definition

Given a change-point vector τ , let Πτ denote the projector onto the space of piece-wise constant
vectors on {τi, . . . , τi+1 − 1} for i = 0, . . . , |τ |. Then, we consider the penalized least-squares
criterion defined by

Cr0(Y, τ ) := ‖Y −ΠτY‖2 + Lpen0(τ , q) , (31)

where

pen0(τ , q) = q|τ |+ 2

|τ |+1∑

i=1

log

(
n

τi − τi−1

)
, (32)

and L > 1, q > 0 are tuning parameters. In the above definition, recall that we take the convention
τ0 = 1 and τ|τ |+1 = n+1. Then, the penalized least-squares estimator τ̂ is defined as any minimizer
of Cr0(Y, τ ). The dependency of τ̂ on the tuning parameters L and q is left implicit. If the noise
ǫ in the model (1) satisfies the Gaussian assumption (AG), τ̂ is simply a penalized maximum log-
likelihood estimator. In the sequel, pen0(τ ; q) is referred to as a multiscale penalty because its
value depends on the scales of τi − τi−1.

Computational complexity. The multiscale penalty (32) is additive. The cost of a segmentation
in (31) is the sum of the cost of its segments and one can apply Bellman’s dynamic programming
algorithm [10] to compute τ̂ with at most O(n2) operations. Furthermore, one may adapt pruning
methods such as PELT [42] or [53] to reduce the complexity to linear in best-case scenarios.

Penalty choice. The multiscale penalty (32) may be contrasted with complexity based penalties
in the literature. Among these complexity based penalties, one can essentially distinguish the
ℓ0−penalties which are linear in the ℓ0−norm of Dθ = (θi+1 − θi)i∈{1,...,n−1} simply equal to |τ |,
leading to estimators that are sometimes also referred to as Ising or Potts estimators, and which
of course include the BIC penalty penBIC(τ ) = 2|τ | log(n) used in [12, 31, 45, 59, 61, 62], and
the penalties penMS(τ ) = |τ |(1 + c log(n/|τ |)) of [11, 46] designed for model selection and signal
estimation. The first term in our penalty (32) exactly corresponds to a ℓ0−penalty. The second
term gives most weight to change-points τl that are the closest to one of their neighbours τl−1 or
τl+1 at least, with a largest possible contribution of order log(n), and less weight to change-points
τl such that (τl− τl−1)∧ (τl+1− τl) is proportional to n, which occurs for instance if there is a fixed
number of equi-spaced change-points. Consequently, our penalty pen0(τ , q) is, up to multiplicative
constants, always smaller than the BIC penalty, and favours equi-spaced change-point vectors. The
general form of pen0(τ , q) is related to the definition (22) of high-energy change-points and to the
target property (Detec[κ, q, c]). It is justified below, where we also explain why the previous BIC
and model selection penalties lead to suboptimal performances (see Section 4.2).

Connection with CUSUM statistics. There are deep connections between penalized least-
squares criteria such as Cr0(Y, τ ) and CUSUM statistics as pointed out for instance in Wang
et al. [59]. Recall that, given t = (t1, t2, t3) in T3, the CUSUM statistic at t is defined in (3)
as the empirical counterpart of the weighted difference in means on [t1, t2) and on [t2, t3). First
recall that maximizing the CUSUM statistic C(Y, t) over all t of the form (1, τ, n + 1), with τ
in {1, . . . , n} is equivalent to computing the least-squares estimator argminτ∈{1,...,n} ‖Y −ΠτY‖2.
More generally, local differences of the criterion Cr0(Y, τ ) have a natural expression in terms of the
CUSUM statistic. For any integer 1 ≤ l ≤ |τ |, let τ (−l) denote the vector (τ1, . . . , τl−1, τl+1, . . . , τ|τ |)
where τl has been removed. From Pythagorean equality, writing δl−1 = τl − τl−1, δl = τl+1 − τl,
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Sl−1 =
∑τl−1

i=τl−1
Yi, and Sl =

∑τl+1−1
i=τl

Yi, we obtain

‖Y −ΠτY‖2 − ‖Y −Πτ (−l)Y‖2 = ‖Πτ (−l)Y‖2 − ‖ΠτY‖2

= (δl−1 + δl)

(
Sl−1 + Sl
δl−1 + δl

)2

− δl−1

(
Sl−1

δl−1

)2

− δl

(
Sl
δl

)2

= − δl−1δl
δl−1 + δl

(
Sl−1

δl−1
− Sl
δl

)2

= −C2(Y, (τl−1, τl, τl+1)) .

From the definition (31), we therefore deduce the following lemma.

Lemma 2. For any τ and any l = 1, . . . , |τ |, we have

Cr0(Y, τ )− Cr0(Y, τ
(−l)) = −C2

(
Y, (τl−1, τl, τl+1)

)
+ L

[
2 log

(
n(τl+1 − τl−1)

(τl+1 − τl)(τl − τl−1)

)
+ q

]
.

(33)

Heuristically, the above decomposition justifies the choice (32) for the penalty pen0(τ , q). In-
deed, if we assume that the noise vector ǫ in (1) is equal to zero, thenC2

(
Y, (τl−1, τl, τl+1)

)
simplifies

as E2
(
θ, (τl−1, τl, τl+1)

)
) and (33) suggests that, if τl is a (

√
L, q)-high-energy change-point, it has

to be included in τ̂ .

When θ is constant on [t1, t3), then the CUSUM statistic C(Y, t) does not depend on θ and
simplifies as the pure noise statistic:

N(t) :=

[∑t3−1
i=t2

ǫi

t3 − t2
−
∑t2−1

i=t1
ǫi

t2 − t1

]√
(t2 − t1)(t3 − t2)

t3 − t1
. (34)

An uniform control control of N(t) over t in T3 is at the heart of the analysis of τ̂ , as explained in
the next subsection.

4.2 Large penalty parameter L

In this subsection, we investigate the properties of the penalized least-squares estimator τ̂ when
the tuning parameter L is chosen large enough. Define the event Aq by

Aq =

{
|N(t)| ≤ 2

√
2 log

(
n(t3 − t1)

(t3 − t2)(t2 − t1)

)
+ q, ∀t = (t1, t2, t3) ∈ T3

}
. (35)

Lemma 9 below states that Aq occurs with high probability. In fact, Lemma 9 holds even if
the multiplicative factor 2 in (35) is replaced by any constant larger than one. Let us discuss
the order of magnitude of this bound. For a fixed t in T3, N(t) has a sub-Gaussian distribution
with constant 1. Since there are at most n3/6 elements in T3, an union bound easily leads to

P

(
supt∈T3 |N(t)| ≥

√
6 log(n) + 2x

)
≤ 2e−x for any x > 0. Such control are for instance used

in [26] or [59]. In the event Aq, we rely on a control of N(t) that depends on the specific scale of
t. For a small (t3 − t2) ∧ (t2 − t1), the upper bound is still of the order of

√
log(n), whereas for

(t3 − t2) ∧ (t2 − t1) proportional to n, the upper bound in Aq behaves like a constant. Intuitively,
this improved bound is related to the fact that the random variables N(t) at a large scale are
highly correlated so that a peeling argument reduces from

√
log(n) to a constant. Such behaviour

is reminiscent of other multiscale statistics considered in [25].
If the noise vector ǫ has a standard Gaussian distribution then, for some α in (0, 1), one can

compute by Monte-Carlo the minimal q1−α such that P(Aq1−α) ≥ 1− α.

19



4.2.1 First step analysis: global optimality

One may easily deduce from the event Aq that τ̂ (with L > 4) does not overestimate too much
the true number of change-points: in each segment [τ∗k , τ

∗
k+1], the penalized least-squares estimator

τ̂ contains at most two change-points. Indeed, consider any change-point vector τ that contains
three such change-points τl−1, τl, τl+1 in [τ∗k , τ

∗
k+1] then it follows from (33) that on the event Aq,

Cr0(Y, τ )− Cr0(Y, τ
(−l)) = −C2

(
Y, (τl−1, τl, τl+1)

)
+ L

[
2 log

(
n(τl+1 − τl−1)

(τl+1 − τl)(τl − τl−1)

)
+ q

]
> 0

which implies that τ 6= τ̂ . This simple observation implies that, on Aq, |τ̂ | ≤ 2K. Refining these
arguments, we are able to establish in the proof of the next proposition that any τ with |τ | > K can
be locally modified, by adding and/or removing some change-points, so that the criterion strictly
decreases under Aq. Such arguments based on local modifications were previously used in [59], but
we need to sharpen it to recover the tight logarithms.

Given any change-point vector τ and some integer k such that 1 ≤ k ≤ |τ ∗| = K, we write τ (k)

for the (reordered) concatenation of τ and τ∗k . For 1 ≤ l ≤ |τ |, we say that τl is a (κ, q, τ )-high-
energy change-point if

E(θ, (τl−1, τl, τl+1)) > κ

√
2 log

(
n(τl+1 − τl−1)

(τl+1 − τl)(τl − τl−1)

)
+ q .

Proposition 7. There exist universal constants c, c′, L0, q0 and n0 such that the following holds
for any L ≥ L0, any q > q0 and any n > n0. For any integer K > 0 and θ in ΘK , there exists
κL > 0 (only depending on L) and an event Aq (defined in (35)) of probability higher than 1−ce−c′q
on which the penalized least-squares estimator τ̂ satisfies:

(a) (NoSp) No spurious change-point is detected: for all k = 1, . . . ,K,





∣∣∣
{
τ̂
}
∩
(
τ∗k−1+τ

∗
k

2 ,
τ∗k+τ

∗
k+1

2

] ∣∣∣ ≤ 1 , for all k in {2, . . . ,K − 1} ;∣∣∣
{
τ̂
}
∩
[
2,

τ∗1+τ
∗
2

2

] ∣∣∣ ≤ 1 ;
∣∣∣
{
τ̃
}
∩
(
τ∗K−1+τ

∗
K

2 , n
] ∣∣∣ ≤ 1 ;

(b) (Detec[κL, q, κL]) High-energy change-points are detected: for all k in {1, . . . ,K} such that
τ∗k is a (κL, q)-high-energy change-point, we have

dH,1(τ̂ , τ
∗
k ) ≤ min

{
τ∗k+1 − τ∗k

2
,
τ∗k − τ∗k−1

2
, κL

log
(
n∆2

k

)
+ q

∆2
k

}
; (36)

(c) For all k in {1, . . . ,K}, either τ∗k belongs to τ̂ or it is not a ((
√
L + 2), q, τ̂ (k))-high-energy

change-point.

Increasing the value of q in the penalty function pen0(τ , q) leads to a more conservative pro-
cedure which achieves (NoSp) with a higher probability guarantee, but τ̃ provably detects jumps
with a higher energy requirement. For a fixed but small probability α in (0, 1), one can take q of
order log(1/α) so that (NoSp) and (Detec[κL, q, κL]) hold with probability higher than 1 − α.
In view of the impossibility results in Section 3.2.1, the properties (NoSp) and (Detec[κL, q, κL])
cannot be fulfilled with probability higher than 1 − ce−c

′q. The penalized least-squares estimator
τ̂ simultaneously achieves (NoSp) and (Detec[κL, q, κL]) with probability at least 1− ce−c

′q. Up
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to the constants c and c′, we have established in Section 3.2.1 that no change-point detection pro-
cedure is able to simultaneously achieve (NoSp) and (Detec[κL, q, κL]) with a probability higher
than that.

This result contrasts with the previous work of [25]. In [25], the SMUCE estimator is proved to
achieve an uniform bound slightly different from (36). Assuming thatE2

min(θ) = mink∈{1,...,K}(τ
∗
k+1−

τ∗k )mink∆
2
k (c.f. (8)) is large compared to log(n/mink(τ

∗
k − τ∗k−1)), the authors establish (see their

Theorem 2.8), that SMUCE detects all change-points with high probability. If all change-points
have similar heights (that is all |∆k| are of the same order) and if all segments are of similar lengths
(that is all (τ∗k+1− τ∗k ) are of the same order), then their hypothesis boils down to assuming that all
change-points have a high-energy. Hence, the main novelties of our result in Proposition 7 in com-
parison with [25] are that: (i) it better handles non evenly spaced jumps and (ii) more importantly,
it does not require that all jumps have a high energy.

Other results for Wild Binary Segmentation estimators in [7, 26, 59]) or ℓ0-penalized least-
squares estimators in [59] assume that E2

min(θ) is higher than log(n) which, for well-spaced change-
points (and a constant K), is suboptimal by a log(n) factor. Besides, all those works also require
that all jumps have a high-energy.

4.2.2 Second step analysis: local optimality

Proposition 8. Let L0, q0 and Aq be defined as in Proposition 7. If we fix L ≥ L0 and q > q0,
there exist κL > 0 and c, c′ > 0 such that the following holds. For any θ in R

n and any (κL, q)-
high-energy change-point τ∗k , the penalized least-squares estimator τ̂ satisfies

P
(
dH,1(τ̂ , τ

∗
k )1Aq ≥ cx∆−2

k

)
≤ c′e−x ∀x ≥ 1 .

As explained above, Proposition 8 improves the results of [25] and [45] in the sense that it
designs nonasymptotic guarantees for a specific change-point to be localized in an optimal way.
More precisely, it shows the considered penalized least-squares estimator τ̂ allows each change-point
to be estimated at the optimal parametric rate ∆−2

k , as soon as it is has high-energy. Moreover,
it implies in particular that, when |∆k| is larger than one, we have τ̂l = τ∗k , for some l, on the

intersection of Aq and an event of probability higher than 1 − c′e−∆2
k/c. Up to our knowledge,

this result, combined with Proposition 6, provides the first matching upper and lower bounds for
high-energy change-points localization.

From a global to a local problem. In view of Properties (NoSp) and (Detec[κL, q, κL]) of
τ̂ and the corresponding minimax lower bounds, it is worth emphasizing how and whether the
detection and localization of a change-point τ∗k depend on its height ∆k and the segment lengths
(τ∗k − τ∗k−1) and (τ∗k+1 − τ∗k )). First, its energy E2

k(θ), which depends on both its height ∆k and
the segment lengths (τ∗k − τ∗k−1) and (τ∗k+1 − τ∗k ), must be high enough so that the change-point
is detected. Then, when the change-point energy is high enough, that is once it can be detected,
estimating τ∗k becomes a local problem and the localization error dH,1(τ̂ , τ

∗
k ) only depends on the

change-point height, and not on the segment lengths.

Hausdorff and Wasserstein bounds. Taking an union bound over all high-energy change-points
yields

max
k, τ∗k has high energy

dH,1(τ̂ , τ
∗
k )1Aq = OP (1) max

k, τ∗k has high energy

(
Ke−c

′′∆2
k ∧ logK

∆2
k

)
.
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Now, assuming that all change-points have high-energy, we deduce that, on the event Aq of Propo-

sition 7 and Proposition 8, K̂ = K and

E
[
dW (τ̂ , τ ∗)1Aq

]
.

K∑

k=1

(
e−c

′′∆2
k ∧ 1

∆2
k

)
, (37)

E
[
dH (τ̂ , τ ∗)1Aq

]
. max

k∈{1,...,K}

(
Ke−c

′′∆2
k ∧ logK

∆2
k

)
. (38)

When all change-points τ ∗
k have a common height value ∆k = ∆, these two bounds turn out to be

in view of the impossibility result (26) and (27) in Section 3. Note that the Hausdorff bound (38)
can be slightly improved when the change-points heights ∆k are heterogeneous, by using an union
bound that puts more weights to small ∆k’s.

Up to our knowledge, the Wasserstein risk has only been investigated for a Wild Binary Seg-
mentation estimator in [60] in a high dimensional framework, but the derived upper bound (see
their Corollary 6) is of the order of Kn4/[(mink∈{1,...,K}∆k)

2(mink∈{0,...,K}(τ
∗
k+1 − τ∗k )

4], which is
is larger than K5/[(mink∈{1,...,K}∆k)

2] and is therefore suboptimal.
The Hausdorff loss of the WBS estimator [26, 59], SMUCE [25], and the BIC-penalized least-

square estimators [59], or other state-of-the art procedures [7, 44] are provably upper bounded
by log(n)/(mink∈{1,...,K}∆k)

2 under a more restrictive assumption than the present high-energy
requirement. Up to our knowledge, the only comparable Hausdorff bound has been recently and
independently established by Cho and Kirch [17] under the stronger assumptions that mink Ek(θ) &√

log(n).

4.2.3 Comparison with complexity-based penalized estimators

Let us investigate the behaviour of the penalized least-square estimator if one had chosen a ℓ0-type
penalty of the form L|τ | log(n), equal to the BIC penalty penBIC up to the tuning parameter L,
as studied in [59], instead of our multiscale penalty pen0(τ , q)). It is first worth emphasizing that
the corresponding estimator τ̂BIC does not satisfy the property (Detec). Arguing as in (33), we
derive from the definition of τ̂BIC that for any l ≤ |τ̂BIC |,

C2
(
Y, ((τ̂BIC)l−1, (τ̂BIC)l, (τ̂BIC)l+1)

)
> L log(n) .

Unless L is too small, this implies that τ̂BIC is only able to detect change-points whose energy
is higher than

√
log(n). By constrast, when all the segment sizes τ∗k+1 − τ∗k for k in {0, . . . ,K}

are proportional to n, our penalized least-squares estimator τ̂ is able to detect change-points with
constant energy (see Proposition 7). Then, inspecting the proof of Proposition 8, one can see that,
when suitably tuned, the estimator τ̂BIC is able to localize change-points whose energy is large
compared to

√
log(n) (that is, change-points that are detected) at the parametric rate ∆−2

k .
Since it also satisfies (NoSp), we can conclude that τ̂BIC : (i) satisfies (NoSp), (ii) does not

satisfy (Detec) but is able to detect change-point whose energy is large compared to
√

log(n),
(iii) is able to localize such (very) high-energy change-point at the parametric rate ∆−2

k as in
Proposition 8.

Turning now to the model selection penalty penMS(τ ) = |τ |(1 + c log(n/|τ |)) of [11, 46], we
observe that the corresponding estimator τ̂MS partly shares the same weakness as τ̂BIC : when
|τ̂MS| is small, the penalty is close to L|τ | log(n) and the estimator is overconservative. This is for
instance the case when there are K equi-spaced change-points with a small K. In other settings,
τ̂MS detects many spurious change-points. As an example, consider the situation where, in the first
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half of the sample, there is a high change-point (with a height much larger than
√

log(n)) every
five points and the signal is constant in the second half of the sample. Then, τ̂MS will detect all
those change-points in the first half so that |τ̂MS| ≥ n/10. As a consequence, τ̂MS nearly behaves
as the penalized least-squares estimator with a penalty of the order c′|τ | and one can then show
that the number of spurious change-points in the second half is proportional to n.

4.3 Near-Minimal Penalty

In the previous subsection, we considered large values L > L0 of the tuning parameter in (31). In
practice, such large choice of L may lead to too conservative procedures. One may then wonder
how small one can take L while still ensuring that τ̂ does not overestimate too much the number
of true change-points. Following the same approach as in the above subsection, one observes that
τ̂ does not contain more than two change-points on the segment [τ∗k , τ

∗
k+1] as long as the following

event holds: {
|N(t)| < L1/2

√
2 log

(
n(t3 − t1)

(t3 − t2)(t2 − t1)

)
+ q, ∀t ∈ T3

}
.

It turns out that such an event occurs with high probability (at least for q not too small) for all
L > 1. Conversely, it occurs with negligible probability when L < 1 (see Lemma 9 in the proofs
Section for more details). As a consequence, for L < 1, the penalized least-squares estimator selects
spurious change-points as illustrated by the next proposition.

Proposition 9. Let τ̂ denote the penalized least-squares estimator of τ ∗ defined above, and assume
that ǫ in (1) satisfies (AG). We have, for any fixed L < 1, any q > 0, any n large enough, and any
θ in Θ0, that

Pθ(|τ̂ | ≥ 1) ≥ 1− n−1 .

This leads us to more carefully consider the penalized least-squares estimator (31) when L > 1.

Proposition 10 (First step analysis). For any L > 1, there exist positive constants q′0, c1– c3, κL
and ηL in (0, 1) such that the following holds. Fix any q > q′0 + c1 log[((L∧ 2)− 1)−1]. There exists
an event AL,q (defined in the proof) occurring with probability higher than 1− c1e−c2q on which the
least-squares estimator τ̂ satisfies:

(a) No interval [τ∗k , τ
∗
k+1) contains more than two change-points, that is

∣∣{τ̂
}
∩
[
τ∗k , τ

∗
k+1

)∣∣ ≤ 2 ;

Besides, the beginning and the end of the intervals do not contain more than one change-point:

∣∣{τ̂
}
∩
[
τ∗k , τ

∗
k + ηL(τ

∗
k+1 − τ∗k )

]∣∣ ≤ 1,
∣∣{τ̂
}
∩
[
τ∗k+1 − ηL(τ

∗
k+1 − τ∗k ), τ

∗
k+1

]∣∣ ≤ 1 .

(b) (Detec[κK , q, κL]). High-energy change-points are detected. For all k in {1, . . . ,K} such
that τ∗k is a (κL, q)-high-energy change-point, we have

dH,1 (τ̂ , τ
∗
k ) ≤ min

{
τ∗k+1 − τ∗k

2
,
τ∗k − τ∗k−1

2
, κL

log
(
n∆2

k

)
+ q

∆2
k

}
; (39)

(c) For all k in {1, . . . ,K}, either τ∗k belongs to τ̂ or it is not a ((1.1
√
L+0.9), τ̂ (k), q)-high-energy

change-point.
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Here, we may have K̂ > K and some post-processing procedure is needed to clean the estimator
so that it may satisfy (NoSp).

Similarly to the analysis for large tuning parameter L, the localization rate of a specific high-
energy change-point τ∗k is of the order of ∆−2

k as stated in the next proposition.

Proposition 11 (Second step analysis). Consider any L > 1 and fix any q > q′0+ c1 log[((L∧ 2)−
1)−1] and AL,q as in Proposition 10. Then, there exists κL > 0 such that for any (κL, q)-high-energy
change-point τ∗k , the least-squares estimator τ̂ satisfies

P
(
dH,1 (τ̂ , τ

∗
k )1AL,q

≥ cx∆−2
k

)
≤ c′e−x ∀x ≥ 1 + log(L− 1)+ .

In summary, it turns out that properties (Detec) and (Loc) are valid all the way down to the
minimal penalty tuning parameter L > 1.

5 Post-processing procedure

Given any vector τ of estimated change-points, we describe here a post-processing procedure for
local improvements of τ . As e.g. in [26], this post-processing procedure is a two steps procedure: the
first step consists in cleaning spurious change-points of τ ; the second one ensures improvement of
the localization of well-separated change-points. We underline that, in this section, the preliminary
estimator τ possibly depends on the data Y.

5.1 Pruning step

In the pruning step, we rely on the CUSUM statistic (3) to build confidence intervals around each
τl for l = 1, . . . , |τ |. Given α in (0, 1), let ζ1−α be the smallest number satisfying

P

[
sup
t∈T3

(
|N(t)| −

√
2 log

(
n(t3 − t1)

(t3 − t2)(t2 − t1)

))
> ζ1−α

]
≤ α . (40)

From Lemma 9, we know that ζ1−α ≤ c1 + c2
√

log(1/α) for two numerical constants c1 and c2. If
the distribution of the noise vector ǫ in (1) is a Gaussian distribution or another known distribution
that can be simulated, then ζ1−α can be approximated by a Monte-Carlo method. In the sequel,

we denote by B1−α the event such that |N(t)| ≤
√

2 log( n(t3−t1)
(t3−t2)(t2−t1))) + ζ1−α for all t in T3.

Given τ in {2, . . . , n} and a positive integer r, define t(τ,r) = ((τ − r)∨ 1, τ, (τ + r)∧ (n+1)). In
the simple case where r < τ ∧ (n− τ), then t(τ,r) is simply the triplet (τ − r, τ, τ + r) centered at τ
with radius r. Then, we define r̂τ , the smallest radius r such that the CUSUM statistic C(Y, t(τ,r))
centered at τ is significantly large:

r̂τ = min



r, |C(Y, t(τ,r))| >

√√√√2 log

(
n(t

(τ,r)
3 − t

(τ,r)
1 )

(t
(τ,r)
3 − t

(τ,r)
2 )(t

(τ,r)
2 − t

(τ,r)
1 )

)
+ ζ1−α



 , (41)

with the convention min{∅} = +∞. This leads us to the following confidence interval Iτ around τ .

Iτ = [t
(τ,r̂τ )
1 + 1, t

(τ,r̂τ )
3 − 1] , (42)
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Recall from the definitions (3) and (34) of C(Y, t) and N(t) that, if no change-point occurs in

[t
(τ,r)
1 + 1, t

(τ,r)
3 − 1], then C(Y, t(τ,r)) = N(t(τ,r)). Hence, if no change-point occurs in [t

(τ,r̂τ )
1 +

1, t
(τ,r̂τ )
3 − 1], then r̂τ is the smallest radius such that |N(t(τ,r))| is larger than

√√√√2 log

(
n(t

(τ,r)
3 − t

(τ,r)
1 )

(t
(τ,r)
3 − t

(τ,r)
2 )(t

(τ,r)
2 − t

(τ,r)
1 )

)
+ ζ1−α ,

which contradicts the event B1−α defined in (40). We conclude that, under B1−α, all intervals Iτ
contain at least one true change-point.

As a consequence, if two intervals Iτ and Iτ ′ are disjoint, then the closest true change-point
from τ differs from the closest true change-point from τ ′. In a nutshell, the pruning step amounts to
removing change-points in τ in such a way that the confidence intervals around the coordinates of
the pruned change-point vector do not intersect. The procedure (described in Algorithm 1 below)
first and foremost prunes wide confidence intervals, since the corresponding estimated change-points
are more prone to lie farther from a true change-point than narrow confidence intervals.

Given a vector τ and the corresponding confidence intervals Iτ1 , . . . , Iτ|τ |
, we reorder the change-

points by decreasing sizes of the corresponding confidence intervals, that is τ(1), τ(2), . . . , τ(|τ |) are
such that r̂τ(1) ≥ r̂τ(2) ≥ . . . ≥ r̂τ(|τ |)

.)

Algorithm 1 Pruning Step

1: P(τ ) = τ {Initialization with all change-points}
2: for l = 1, . . . , |τ | − 1, do
3: if (r̂τ(l) = ∞) or (Iτ(l) intersects

⋃
j>l Iτ(j)) then

4: Remove τ(l) from P(τ ).
5: end if
6: end for

Output: P(τ )

In the next proposition, we say that a true change-point τ∗k is reasonably well localized by τ if

dH,1(τ , τ
∗
k ) <

(τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k )

8
. (43)

Proposition 12. There exist universal constants κ and c such that the following holds for any α
in (0, 1). On the event B1−α of probability higher than 1− α and for any sequence τ , we have

(a) (NoSp) P(τ ) does not detect any spurious change-point:





∣∣∣
{
P(τ )

}
∩
(
τ∗k−1+τ

∗
k

2 ,
τ∗k+τ

∗
k+1

2

] ∣∣∣ ≤ 1 , for all k in {2, . . . ,K − 1} ;∣∣∣
{
P(τ )

}
∩
[
2,

τ∗1+τ
∗
2

2

] ∣∣∣ ≤ 1 ;
∣∣∣
{
P(τ )

}
∩
(
τ∗K−1+τ

∗
K

2 , n
] ∣∣∣ ≤ 1 .

(b) (Detec[κ, ζ21−α, c]) Any (κ, ζ21−α)-high-energy change-point τ∗k that is reasonably well localized
by τ (in the sense of (43)) also satisfies

dH,1 (P(τ ), τ∗k ) ≤
(
2dH,1(τ , τ

∗
k )
)
∨
(
c
log
(
n∆2

k

)
+ ζ21−α

∆2
k

)
. (44)
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Note that any high-energy change-point τ∗k detected by τ is also detected by P(τ ). Unfortu-
nately, Proposition 12 does not ensure that P(τ ) has kept the closest change-point to τ∗k in P(τ )
(it is only known to satisfy (44)). For this reason, we introduce a second post-processing step that
aim at improving the localization rate for τ∗k .

5.2 Local Improvements

Consider any τ in {2, . . . , n} and the associated confidence interval Iτ defined in (42). We suggest to
re-estimate τ by minimizing a restricted least-squares type criterion over Iτ . Consider the restricted
vector Y(τ,2r̂τ−1) = (Y

tτ,2r̂τ−1
1

, . . . , Y
tτ,2r̂τ−1
3 −1

). For a small r̂τ , this means that we only keep the

observations in [τ − 2r̂τ + 1, τ + 2r̂τ − 2]. Let L(τ) be the change-point estimator minimizing over
Iτ the restricted least-squares criterion:

L(τ) ∈ argmin
τ ′∈Iτ

‖Πτ ′Y
(τ,2r̂τ−1)‖2 .

Equivalently, L(τ) is any maximizer of the CUSUM statisticC[Y, (tτ,2r̂τ−1
1 , τ ′, tτ,2r̂τ−1

3 )] over τ ′ ∈ Iτ .
For short, we write L(τ ) for the vector (L(τl))l=1,...,|τ | and we write LP(τ ) = L(P(τ )) for the
change-point vector obtained after Pruning and Local improvement of τ .

Re-estimating the change-point positions by a restricted least-squares criterion minimization
was already proposed in the literature (see e.g; [26, Section 3.2]). Nevertheless, our fitting method
differs in two ways: first, we restrict the new position to belong to Iτ and second, we only consider
data at distance less than 2r̂τ from τ whereas [26] considers data that are closer to τ than any
of the other estimated change-points. These two differences allow us to better handle cases where
some of the true change-points have a small energy.

Proposition 13 (Loc[κ, ζ21−α, c, c
′]). There exist κ and c such that, on the event B1−α defined

below (40), the following holds for any θ in R
n, any (κ, ζ21−α)-high energy change-point τ∗k and any

τ in {2, . . . , n}. If

|τ − τ∗k | <
(τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k )

4
,

Then, for any x > 0, we have

Pθ

(
|L(τ)− τ∗k |1B1−α ≥ c

x ∨ 1

∆2
k

)
≤ e−x .

Fix any L > 1 and consider the post-processed penalized least-squares estimator LP(τ̂ ) with
L > 1 and some q ≥ q′0 + log[(L ∧ 2− 1)−1]. Then, it follows from the above propositions that, on
the event Aq ∩ B1−α of probability higher than 1− ce−c

′q − α, one has

(a) (NoSp). LP(τ̂ ) does not detect any spurious change-point.

(b) (Detec[κL, q ∨ ζ21−α, c]) Any (κL, q ∨ ζ21−α)-high-energy change-point τ∗k is reasonably well
localized by LP(τ̂ )

dH,1(LP(τ̂ ), τ∗k ) ≤
(τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k )

2
∧
(
c
log
(
n∆2

k

)
+ q

∆2
k

)
.
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(c) (Loc[κL, q ∨ ζ21−α, c, c′]) For all such (κL, q ∨ ζ21−α)-high-energy change-points τ∗k we have

Pθ

(
dH,1(LP(τ̂ ), τ∗k )1Aq∩B1−α ≥ c

x ∨ 1

∆2
k

)
≤ c′e−x , ∀x > 1 .

The post-processed least-squares estimator with L > 1 therefore achieves the three aforemen-
tioned properties (NoSp), (Detec), and (Loc).

5.3 Post-processing the complete change-point vector as self-standing proce-
dure

The post-processing method can also be used as a self-standing change-point detection procedure
by simply applying it to the full vector τ f = {2, 3, . . . , n} of the n−1 possible change-points. From
Propositions 12 and 13, we deduce the following.

Corollary 1 (Analysis of LP(τ f )). Consider any α in (0, 1). There exist numerical constants κ,
c, c′ and an event B1−α (defined below (40)) of probability higher than 1 − α, such that on B1−α,
LP(τ f ) satisfies (NoSp), (Detec[κ, ζ21−α, c]), and (Loc[κ, ζ21−α, c, c

′]).

In summary, LP(τ f ) achieves all the optimality performances specified in Section 3.3. In
particular, its performances with respect to Hausdorff and Wasserstein risks are similar to that of
the penalized least-squares estimators (see (37) and (38)).

Computational complexity. In worst case, computing LP(τ f ) requires O(n2) operations. If

we slightly modify the definition of r̂τ by considering r̂
(d)
τ taking values in the dyadic set D :=

{1, 2, 4, . . . , 2⌊log2 n⌋} and if we take a confidence interval I
(d)
τ based on r̂

(d)
τ , Proposition 12 and

Corollary 1 still remain valid for the corresponding Pruned and Locally improved τ f denoted by
P(d)(τ f ) and LP(d)(τ f ) respectively, to the price of slightly worse numerical constants c and κ.
Besides, LP(d)(τ f ) can be computed in O(n log n) operations with a O(n) space complexity. Indeed,
for τ in (r, n−r), C(Y, t(τ+1),r)−C(Y, tτ,r) only depends on Yτ , Yτ+r and Yτ−r. As a consequence,

if all the C(Y, tτ,r) are stored, then r̂
(d)
τ+1 can be computed in O(log n) operations which results in

O(n log n) operations to compute all the confidence intervals I
(d)
τ . Then, checking whether each I

(d)
τ(l)

intersects
⋃
j>l I

(d)
τ(j) can be done in O(log n) operations using a binary search algorithm. Finally,

the local improvement step computational complexity is at worst linear. In summary, the total
complexity is O(n log(n)) and as low as the one of some Binary Segmentation algorithms (see
[27, 44]) or multiscale MOSUM [17], while it enjoys the targeted optimality properties (NoSp),
(Detec), and (Loc).

5.4 A simple global confidence region

Given a change-point vector τ , we define the global confidence interval Ĩ
(g)
τ as the union of the

confidence intervals Iτl introduced in (42).

Ĩ
(g)
τ = ∪l∈{1,...,|τ |}Iτl . (45)

It follows from the definition (42) of Iτ that, with probability higher than 1 − α, each segment of

Ĩ
(g)
τ contains at least one true change-point. For suitable estimators τ we have the following.

Corollary 2. Let τ be one of the three following estimators:
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(i) the penalized least-squares estimator τ̂ with large tuning parameter L (as in Proposition 7),

(ii) the post-processed least-squares estimator LP(τ̂ ) with L ≥ 1,

(iii) the post-processed complete vector LP(τ f ).

Then with probability higher than 1− α, Ĩ
(g)
τ satisfies:

(a) Each segment of Ĩ
(g)
τ contains at least one true change-point ;

(b) Each (κ, ζ21−α)-high energy change-point τ∗k belongs to Ĩ
(g)
τ . Besides, the width of the corre-

sponding segment in Ĩ
(g)
τ is less or equal to

c
log
(
n∆2

k

)
+ ζ21−α

∆2
k

.

The proof is straightforward and is therefore omitted. In the above corollary, all the change-

points do not necessarily have a high energy but we allow such change-points not to belong to Ĩ
(g)
τ .

This contrasts with the results of Frick et al. [25] which require that all the change-points have a
high-energy: E2

min(θ) ≥ log[n/(mink∈{0,...,K}(τ
∗
k+1 − τ∗k ))].

If we had assumed that all the energies of the change-points were high, we could improve the

tuning confidence region Ĩ
(g)
τ to segments of size logK/∆2

k by plugging an estimator of ∆k in
Hausdorff bounds such as (38). Similarly, one could also obtain a confidence interval of width
cα/∆

2
k for a specific change-point τ∗k by plugging an estimator of ∆k in Propositions 8 or 13.

6 Discussion

6.1 Adaptation to K ≤ 1 and K > 1

In the later parts of the manuscript, we allowed the number K to lie between 0 and n − 1. Still,
when K = 1, our multiple change-point procedures only detect τ∗1 when its energy E2

1(θ) is large
compared to log(n/((τ∗1 − 1) ∧ (n+ 1− τ∗1 ))). In Section 2, we established that it is possible to
detect and localize change-points τ∗1 for energies that are logarithmically smaller. It is possible
to combine the results to achieve simultaneous optimality for both K ≤ 1 and K > 1 with the
following scheme. First, one computes an estimator τ̂ using either the penalized criterion (31) or
the two-step methods LP(τ f ). If |τ̂ | > 0, then τ̂ is left unchanged. If |τ̂ | = 0 (no change-point
detected), the null hypothesis of non-existence of a change-point is tested (Section 2.2.1). If the
test accepts the null, τ̂ is left unchanged again (no-change point detected). If the test rejects the
null, one uses for τ̂ the one-change point least-squares estimator of Section 2.2. One can then easily
prove that the resulting τ̂ is simultaneously optimal for both settings.

6.2 Extensions: unknown variance, heavy tail distributions and dependences

Considering the model (1), where the noise ǫ has a Gaussian distribution, but with an unknown
variance, the unknown variance has to be estimated: the resulting estimator can then be plugged-in
to rescale the data Y. Suppose that we are given an estimator σ̂ (possibly depending on Y) such
that the ratio σ̂/σ belongs to [1, 2] on an event E of high probability. Then, all the properties of
our multiscale least-squares and post-processing procedures remain valid on the event E . Some
practical recommendations for estimating σ are given in [28]. As an alternative to estimating σ,
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one could calibrate the multiplicative constant L of the penalized least-squares estimator τ̂ using
the slope heuristic [4]. Indeed, the slope heuristic is partly validated by Propositions 9 and 10.

The only stochastic ingredient in the first step analysis of the multiscale penalized estimator
(Propositions 7 and 10) and in the analysis of the pruning step of the post-processing procedure
(Proposition 12) is an uniform control (34) of the noise variables N(t). In the presence of de-
pendences between the noise variables (as e.g. in [17]), these stochastic controls become more
challenging and the constants need to be adapted. Upon establishing such controls, the remainder
of the proofs and the conclusion of the propositions remain unchanged (up to other constants).
If the noise tails are heavier than sub-Gaussians, then uniform controls of the form (40) do not
hold anymore. Relying on chaining arguments as in the proof of Lemma 9, we would obtain larger
uniform bounds for |N(t)| (in the spirit of [17]). Hence, the form (32) of the penalty pen0(τ , q) and
thresholds for confidence intervals (41) have to be accommodated in a similar fashion to [17]. As for
the local analyses (Propositions 8, 11, and 13), it seems of reach to accommodate the presence of
mild dependences or heavier tails and still derive a local error of order ∆−2

k , but the tail distribution
of the error will not be exponential anymore. We leave this as an open problem.

6.3 Exact constant for multiple change-point detection

In the single change-point problem, we establish that the exact leading constant for detection
equals

√
2, whereas all of our detection results in the multiple change-point setting are stated up

to numerical constants.

Let us shortly discuss the setting of segment detection. Segment detection is a specific instance
of the change-point problem where K is even, µ1 = µ3 = . . . = µK+1 = 0 and, for ℓ = 1, . . . ,K/2,
τ∗2ℓ − τ∗2ℓ−1 is much smaller than τ∗2ℓ−1 − τ∗2ℓ−2. In other words, the signal θ is null except at K/2
segments that are well-spaced. It has been established in [16, 43] that a segment (and the two
corresponding change-points τ∗2ℓ−1 and τ∗2ℓ) can be confidently detected as long as τ∗2ℓ−1 is a (κ, q)-
high energy change point with κ = 1, as defined in (22). We conjecture that the constant κ = 1 is
not sufficient in the more general change-points detection problem so that the segment detection
problem is intrinsically easier than change-point detection. Still, we leave this as an open question.

6.4 Do other classical procedures satisfy the optimality requirements (NoSp),
(Detec) and (Loc)?

While we have introduced two change-point procedures meeting the specific requirements, this does
not imply that they outperform other procedures. As discussed in Section 4, the BIC-penalized,
when tuned suitably, achieves (NoSp) and variants (Deteclog(n)) and (Loclog(n)) of (Detec) and

(Loc) where only change-points whose energy is high compared to
√

log(n) are detected and
localized at the parametric rate.

At the very least, achieving (Detec) (instead of (Deteclog(n))) is possible only if the procedure
uses scale-adaptive threshold as in Frick et al. [25] or Cho and Kirch [17]. Still, some work is
required to check whether their methods accommodate well low-energy change-points. Investigating
the proofs of Baranowski et al. [7] and Kovács et al. [44], we believe that both NOT and Seeded
Binary Segmentation achieve (NoSp) and (Deteclog(n)), but it is not straightforward to check
whether (Loc) holds or not.

Our desired properties of the form (NoSp), (Detec) and (Loc) are more restrictive than
typical recent results in the literature by (i) tightening the logarithms (ii) requiring a parametric
localization rate of the detection threshold and (iii) allowing for possibly many small jumps that are
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undetectable and possibly act as nuisance parameters. This last requirement is more in line with the
literature on related statistical fields such as multiple testing or high-dimensional variable selection.
Such desiderata can be extended to many other change-points settings beside the univariate case
including change-points analysis in the multivariate [60] or kernel [5] frameworks. We hope that it
will stimulate a research agenda towards optimal procedures in these settings.

7 Proofs for a single change-point

For any two integers t1, t2 such that 1 ≤ t1 < t2 ≤ n+ 1, we denote

Zt1:t2 :=

t2−1∑

i=t1

ǫi , (46)

the partial sum. Besides, we shall often write Ek for Ek(θ) to alleviate the notation.

7.1 Proof of Proposition 1

Consider the dyadic collection T = {2l; l = 1, . . . , ⌊log2(n)/2⌋} where log2(n) = log(n)/ log(2). In

the sequel, we denote a = κ2/[4(1−κ)], and for τ in T , we define θ(τ) in Θ1 by θ
(τ)
i = 0 for i ≥ τ and

θ
(τ)
i =

√
2(1 − κ) log log(n)/(τ − 1) for any i < τ . As a consequence, ‖θ(τ)‖ =

√
2(1 − κ) log log(n)

and the energy E1(θ(τ)) satisfies E2
1(θ(τ))/[2(1 − κ) log log(n)] ∈ [1 − n−1/2; 1]. To alleviate the

notation, we write Pτ for the distribution Pθ(τ), while P0 still stands for the distribution of Y when
θ = 0.

We claim that testing whether Θ = 0 versus Θ ∈ {Θ(τ), τ ∈ T } with small type I and Type II
error probabilities is impossible. More precisely we shall prove that there exists a constant c > 0
such that, for any test T ,

P0[T = 1] + max
τ∈T

Pτ [T = 0] ≥ 1− c log−a/2(n) . (47)

Note that (47) implies the result of the proposition. Following Le Cam’s approach [8], we define
the mixture probability P = |T |−1

∑
τ∈T Pτ . Since

P0[T = 1] + max
τ∈T

Pτ [T = 0] ≥ P0[T = 1] +P[T = 0]

≥ 1− |P0[T = 1]−P[T = 1]| ,

inequality (47) is satisfied for all test T if the total variation distance between ‖P0 −P‖TV is less
or equal to c log−a/2(n). Writing Lτ the likelihood ratio of Pτ over P0 and L = |T |−1

∑
τ∈T Lτ the

likelihood ratio of P over P0, this is in turn equivalent to

‖P0 −P‖TV =
1

2
E0[|L− 1|] ≤ c log−a/2(n) . (48)

To upper bound the first moment of |L − 1| it is usual to apply Cauchy-Schwarz inequality and
to control the second moment of the likelihood ratio. Unfortunately, the corresponding second
moment is small only for κ > 1/2. Here, we rely on a slight variation of this approach originally
introduced by Ingster [40] and strengthened in [3]. We introduce a thresholded likelihood L̃ ≤ L
such that E0[|L− L̃|] is small enough and E0[L̃

2] is close to one.
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For any τ ∈ T , define the event Γτ =
{
〈Y,θ(τ)〉 ≤ ‖θ(τ)‖2 + ‖θ(τ)‖

√
2a log log(n)

}
. Under

Pτ , 〈Y,θ(τ)〉 is distributed as a normal random variable with mean ‖θ(τ)‖2 and variance ‖θ(τ)‖2.
As a consequence, we have Pτ [Γ

c
τ ] = Φ(

√
2a log log(n)) ≤ log−a(n).

Define the thresholded likelihood L̃τ = Lτ1Γτ and L̃ = |T |−1
∑

τ∈T L̃τ . We have L̃ ≤ L and

E0[L− L̃] =
1

|T |
∑

τ∈T
E0[Lτ1Γc

τ
] =

1

|T |
∑

τ∈T
Pτ [Γ

c
τ ] ≤ log−a(n) .

Let us now upper bound the total variation distance between P0 and P by introducing the
thresholded likelihood.

E0[|L− 1|] ≤ E0[|L− L̃|] + E0[|L̃− 1|] ≤ E0[L− L̃] + E
1/2
0 [|L̃− 1|2]

≤ E0[L− L̃] +
[
E0[L̃

2]− 1 + 2E0[L− L̃]
]1/2

≤ 3

loga/2(n)
+
[
E0[L̃

2]− 1
]1/2

, (49)

where we used that L ≥ L̃ and Cauchy-Schwarz inequality. Let us work out the second thresholded
moment.

E0

[
L̃2
]

=
1

|T |2
∑

τ, τ ′∈T
E0

[
L̃τ L̃τ ′

]

≤ 1

|T |2
∑

τ, τ ′∈T

[
1|(τ−1)/(τ ′−1)|∈[ 116 ;16]

E0

[
L̃2
τ + L̃2

τ ′

2

]
+ 1|(τ−1)/(τ ′−1)|/∈[ 116 ;16]

E0 [LτLτ ′ ]

]

≤ 1

|T |
∑

τ∈T


9E

[
L̃2
τ

]
+

1

|T |
∑

|(τ−1)/(τ ′−1)|/∈[ 116 ;16]

E0 [LτLτ ′ ]


 , (50)

where we used Young’s inequality and Lτ ≤ Lτ ′ in the second inequality. Let us first work out the
right-hand side term in (50). For τ ′ > τ , standard computations lead to

E0 [LτLτ ′ ] = exp
[
〈θ(τ),θ(τ ′)〉

]
= e

2(1−κ) log log(n)
√

τ−1
τ ′−1 ≤ e

2 log log(n)
√

τ−1
τ ′−1 .

If (τ ′ − 1)/(τ − 1) ≥ log2(n), then we get

E0 [LτLτ ′ ] ≤ e2 log log(n)/ log(n) ≤ 1 +
4 log log(n)

log(n)
,

for n large enough. When (τ ′ − 1)/(τ − 1) > 16, then E0 [LτLτ ′ ] ≤
√
log(n). As a consequence,

1

|T |
∑

|τ/τ ′|/∈[ 116 ;16]

E0 [LτLτ ′ ] ≤ 1 +
4

log log(n)
+

√
log(n)

|T |
∣∣{τ ′ , max(

τ ′ − 1

τ − 1
;
τ − 1

τ ′ − 1
) ∈ [16; log2(n)]

}∣∣

≤ 1 +
4 log log(n)

log(n)
+ c

log log(n)√
log(n)

≤ 1 + c′
log log(n)√

log(n)
. (51)

The second thresholded moment is upper bounded in the following lemma
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Lemma 3. For any τ ∈ T , we have

E0

[
L2
τ1Γτ

]
≤ log(n)1−a ,

Since |T | = ⌊log2(n)⌋/2 and a ≤ 1/3, we conclude from (50), (51), and the last inequality that
E0[L̃

2] ≤ 1+ c log−a(n) which, together with (49) leads us to E0[|L− 1|] ≤ c log−a/2(n). The result
follows.

Proof of Lemma 3. Let Z denote a standard random variable. Since under the null, 〈Y,θ(τ)〉 is
distributed as Z‖θ(τ)‖, we derive that

E0

[
L2
τ1Γτ

]
= E

[
e2Z‖θ(τ)‖

2−‖θ(τ)‖21
Z≤‖θ(τ)‖+

√
2a log log(n)

]

=

∫ √
2 log log(n)[

√
1−κ+√

a]

−∞
φ
(
z − 2

√
2(1 − κ) log log(n)

)
e2(1−κ) log log(n)dz

= log2(1−κ)(n)Φ
[√

2 log log(n)[
√
1− κ−√

a]
]

≤ log(n)1−κ−a+2
√

(1−κ)a = log(n)1−a ,

where we used in the last line that a ≤ (1− κ) for κ < 2/3, that Φ(x) ≤ e−x
2/2 for any x ≥ 0 and

the definition of a

7.2 Proof of Lemma 1

For short, we write in this proof Pτ for Pθ(τ,µ). Fix τ = 2. Consider any 1/2 ≤ x ≤ n/2−1−4∆−2.
Let r denote the smallest integer larger than 4∆−2 + 2x. Consider the test of assumptions

H0 : τ∗ = τ versus H1 : τ∗ = τ + r .

The Likelihood-ratio test rejects H0 when T = r−1
∑τ+r−1

i=τ Yi is larger than a threshold t. For
symmetry reasons, the risk (sum of type I and type II error probabilities) of this test is minimal
for t = (µ2 + µ1)/2. If T > t, define τ̂ = τ + r and τ̂ = τ otherwise. It holds that

Pτ [τ̂ 6= τ ] + Pτ+r[τ̂ 6= τ + r] = 2Φ
[√
r∆/2

]
.

Let τ̂ ′ denote any estimator of τ . Let T ′ denote the test such that T ′ = 1 iff |τ̂ ′ − τ | ≥ r/2. Then

Pτ [|τ̂ ′ − τ | ≥ r/2] + Pτ+r[|τ̂ ′ − τ − r| ≥ r/2] ≥ Pτ [T
′ = 1] + Pτ+r[T

′ = 0] .

Let t′ denote the threshold such that Pτ [T > t′] = Pτ [T
′ = 1]. By Neyman-Pearson’s theorem,

Pτ+r[T
′ = 0] ≥ Pτ+r[T ≤ t′], hence,

Pτ [|τ̂ ′ − τ | ≥ r/2] + Pτ+r[|τ̂ ′ − τ − r| ≥ r/2] ≥ Pτ [T > t′] + Pτ+r[T ≤ t′]

≥ Pτ [τ̂ 6= τ ] + Pτ+r[τ̂ 6= τ + r]

= 2Φ
[√
r∆/2

]
.

In particular, this leads us to

inf
τ̂

sup
τ ′∈{τ,τ+r}

Pτ ′ [|τ̂ − τ∗| ≥ r/2] ≥ Φ
[√
r∆/2

]
.

Recall the following lower bound Φ(x) ≥ φ(x)
2x if x ≥ 4. Since

√
r∆/2 > 2 There exist absolute

constants c, c′ > 0 such that

inf
τ̂

sup
τ ′∈{τ,τ+r}

Pτ ′ [|τ̂ − τ∗| ≥ r/2] ≥ c
e−r∆

2/8

r1/2∆
> c′e−c

′r∆2
. (52)

Combing back to the definition of r, we conclude the proof of Lemma 1.
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7.3 Deviations inequality and Laws of iterated logarithms

The following results are non-asymptotic versions of the law of the iterated logarithm for sub-
Gaussian random variables. We refer to [39] for proofs of (sharper versions) of Lemma 5. For the
sake of completeness, a proof of these lemmas is also provided in Section A.1.

Lemma 4. Let ǫ1, . . . , ǫn be independent centered sub-Gaussian random variables such that E[esǫi ] ≤
es

2/2, for any i ≥ 1 and any s > 0. Then, for any integer d > 0, any α > 0 and any x > 0,

P

[
max

k∈[d,(1+α)d]

∑k
i=1 ǫi√
k

≥ x

]
≤ exp

(
− x2

2(1 + α)

)
.

Lemma 5. Let t1 ∈ {1, . . . , n} and ν > 0. For any t > 0, with probability larger than 1− e−x, for
all t2 ≥ t1 + 1/ν,

Zt1:t2 ≤ 2
√

(t2 − t1)[log log(3ν(t2 − t1)) + x+ 1] . (53)

Lemma 6. For any α ∈ (0, 1) and any x > 0, with probability larger than 1 − 6e−x, for any
τ ∈ {2, . . . , n}

N(tτ ) ≤ (1 + α)

√
2

(
log log

[
(1 + α)max

{(
τ ∧ n

τ

)
,

(
n+ 1− τ ∧ n

n+ 1− τ

)}]
+ 3x+ Cα

)
,

where tτ = (1, τ, n + 1) and N is defined in (34). Here, the constant Cα can be chosen as follows

Cα =
log(1 + α−1)

1 + α
− log log[1 + α] .

Lemma 7. Fix τ, τ∗ ∈ {2, . . . , n} and let

γτ =
n+ 1− τ∗

n+ 1− τ

τ − 1

τ∗ − 1
.

For any x > 0, with probability higher than 1− 2e−x, we have, uniformly over all τ ≤ τ∗,

N(tτ ) ≤ 4
√

log log
(
eγ−1
τ

)
+ x+ 1 . (54)

7.4 Proof of Proposition 2

For any t ∈ T3, let

B(t) :=

(∑t3−1
i=t2

θi

t3 − t2
−
∑t2−1

i=t1
θi

t2 − t1

)√
(t2 − t1)(t3 − t2)

t3 − t1
.

Hence, E(t) = |B(t)| (see the definition of E(t) in (21)). For any τ , define the triad tτ = (1, τ, n+1).
Basic algebra shows that (see (34) for a definition of N(t))

‖(Πτ −Π0)Y‖2 =
(τ − 1)(n + 1− τ)

n

(
1

τ − 1

τ−1∑

i=1

Yi −
1

n+ 1− τ

n∑

i=τ

Yi

)2

=
(
B(tτ ) +N(tτ )

)2
.

(55)
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A consequence of this elementary remark is that

ϕ1(τ) = Cr1(τ,Y)− ‖Y‖2 + ‖Π0Y‖2 = −
(
B(tτ ) +N(tτ )

)2
+ L2pen1(τ) . (56)

When θ ∈ Θ0, for any τ , B(tτ ) = 0, so ϕ1(τ) = −N2(tτ )+L
2pen1(τ). It follows from Lemma 6

that, for any α ∈ (0, 1] and any x > 0, with probability 1− 12e−x, for any τ ∈ {2, . . . , n},

|N(tτ )| ≤

(1 + α)

√
2

(
log log

[
(1 + α)max

{(
τ ∧ n

τ

)
,

(
n+ 1− τ ∧ n

n+ 1− τ

)}]
+ 3x+ Cα

)
.

Choosing α = L− 1, this yields, for any x > 0, with probability 1− 12e−x, for any τ ∈ {2, . . . , n},

|N(tτ )| ≤ L
√

pen1(τ) + 6x+ C∗
L , where C∗

L =
2

L
log

(
L

L− 1

)
− 2 log log(L) .

In particular, for all t > 0, with probability 1− 12e−x,

ϕ1 ≥ −L2
(
6x+ C∗

L

)
.

Choosing x = log(12/α) proves the first statement of Proposition 2.

Assume now that θ ∈ Θ1. From (56) and the inequality (a+ b)2 ≥ b2/(L+1)− a2/L, valid for
any a, b ∈ R and L > 0, we derive that

ϕ1 ≤ ϕ1(τ
∗) ≤ −E2

1

L
+

N2(tτ∗)

L+ 1
+ L2pen1(τ

∗) . (57)

Now for any t = (t1, t2, t3) ∈ T3, there exist αt1 , . . . , αt3 such that N(t) =
∑t3

i=t1
αiǫi and

t3−1∑

i=t1

α2
i =

(t3 − t2)(t2 − t1)

t3 − t1

(
1

t3 − t2
+

1

t2 − t1

)
= 1 .

Therefore, for any s > 0,

E[esN(t)] = E[

t3−1∏

i=t1

esαiǫi ] =

t3−1∏

i=t1

E[esαiǫi ] ≤ e
s2

∑t3−1
i=t1

α2
i /2 = es

2/2 .

It follows that, for any u > 0, taking s = u/2, P(N(t) > u) 6 e−su+s
2/2 = e−u

2/2, so

P
(
N(tτ∗) ≤

√
2x
)
> 1− e−x, P

(
N2(tτ∗) ≤ 2x

)
> 1− 2e−x . (58)

Plugging this inequality in (57) with x = log(2/β) concludes the proof of Proposition 2.

7.5 Proof of Proposition 3

The idea of the proof is that, with high probability, for all τ ∈ {2, . . . , n} such that ∆2|τ − τ∗| is
large,

Cr1(τ,Y) < Cr1(τ
∗,Y) .
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On the same event, this implies that ∆2|τ̂ − τ∗| is small. Let

γ =
(
√
L− 1)(L − 1)

2L3/2
∈ (0, 1/2) .

Assume that n is sufficiently large to ensure that 2γ
√
n ≥ e.

Case 1: τ is far from τ∗. First, consider times τ satisfying

E2(tτ ) ≤ γE2
1 . (59)

Define κ1 =
√
L− 1. κ2 = (1− L−1)/2, so

γ =
κ1κ2
1 + κ1

=
κ2

1 + κ−1
1

.

From the inequality 2|xz| ≤ κx2 + κ−1z2 valid for any x, z ∈ R and κ > 0, we derive

(x+ z)2 ≤ (1 + κ)x2 + (1 + κ−1z2), (x+ z)2 ≥ (1− κ)x2 + (1− κ−1z2) .

Hence, from (55),

Cr1(τ,Y)− Cr1(τ
∗,Y) = −‖(Πτ −Π0)Y‖2 + Lpen1(τ) + ‖(Πτ∗ −Π0)Y‖2 − Lpen1(τ

∗)

= −
(
B(tτ ) +N(tτ )

)2
+ Lpen1(τ) +

(
B(tτ∗) +N(tτ∗)

)2 − Lpen1(τ
∗)
(60)

≥ −N2(tτ )(1 + κ1) + Lpen1(τ)−E2(tτ )(1 + κ−1
1 )

+E2(tτ∗)(1− κ2) +N2(tτ∗)
(
1− κ−1

2

)
− Lpen1(τ

∗) .

From Assumption (59), it follows that

Cr1(τ,Y)− Cr1(τ
∗,Y) ≥−N2(tτ )(1 + κ1) + Lpen1(τ) +E2(tτ∗)

[
1− κ2 − γ(1 + κ−1

1 )
]

(61)

+N2(tτ∗)
(
1− κ−1

2

)
− Lpen1(τ

∗)

=−
√
LN2(tτ ) + Lpen1(τ) +

1

L
E2(tτ∗)− Lpen1(τ

∗)−N2(tτ∗)
L+ 1

L− 1
.

Let us apply Lemma 6 with α = L1/4 − 1. With probability larger than 1− 12e−x, simultaneously
for all τ ∈ {2, . . . , n},

N2(tτ )L
1/2 ≤ Lpen1(τ) + 6Lx+ C∗

L , (62)

where

C∗
L = L3/4 log

(
L1/4

L1/4 − 1

)
− L log log(L1/4) .

Moreover, by (58), N2(τ∗) ≤ 2x with probability larger than 1 − 2e−x. Plugging this bound and
(62) into (61) shows that, with probability at least 1− 14e−x, simultaneously for all τ ∈ {2, . . . , n},
such that (59) holds

Cr1(τ,Y)−Cr1(τ
∗,Y) ≥ 1

L
E2(tτ∗)− Lpen1(τ

∗)− 2x

[
3L+

L+ 1

L− 1

]
− C∗

L .

This last expression is positive as long as

E2(tτ∗) > L2pen1(τ
∗) + 2Lx

[
3L+

L+ 1

L− 1

]
+ C∗

L . (63)
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We have proved, that with probability larger than 1 − 14e−x, we have E2(tτ̂ ) > γE2
1, as long as

Condition (63) is satisfied.

Case 2. τ is neither far nor close to τ∗. Now consider times τ such that

γ <
E2(tτ )

E2(tτ∗)
≤ 1

2
. (64)

Starting from (60), we derive that Cr1(τ,Y) > Cr1(τ
∗,Y) if

[B(tτ∗) +N(tτ∗)]
2 − [B(tτ ) +N(tτ )]

2 > Lpen1(τ
∗)− Lpen1(τ) .

In particular, the above inequality is met if

|B(tτ∗) +N(tτ∗)| − |B(tτ ) +N(tτ )| >
√
L(pen1(τ

∗)− pen1(τ))+ .

By the triangular inequality, it follows that Cr1(τ,Y) > Cr1(τ
∗,Y) if

E(tτ∗)−E(tτ )− |N(tτ∗)| − |N(tτ )| −
√
L(pen1(τ

∗)− pen1(τ))+ > 0 . (65)

Assume, without loss of generality, that τ < τ∗. In this case, an important fact is that

E(tτ ) = E(tτ∗)

√
n+ 1− τ∗

n+ 1− τ

τ − 1

τ∗ − 1
.

Thus, Condition (64) is equivalent to

γ <
n+ 1− τ∗

n+ 1− τ

τ − 1

τ∗ − 1
≤ 1

2
.

In particular, as τ < τ∗, it implies that

n+ 1− τ∗ > γ(n+ 1− τ), τ − 1 > γ(τ∗ − 1) . (66)

We claim, that as long as τ satisfies (66) for some γ ∈ (0, 1/2) such that γ
√
n ≥ √

e, then

pen1(τ
∗)− pen1(τ) ≤ c log log(eγ−1) , (67)

for some constant c.

Proof of (67). Suppose that τ∗ < n/2+1 (the case τ∗ ≥ n/2+1 follows by similar arguments). In
this case, as τ < τ∗, pen1(τ

∗) = 2 log log(2(τ∗∧n/τ∗)), pen1(τ) = 2 log log(2(τ ∧n/τ)). If τ∗ > √
n,

then pen1(τ
∗) = 2 log log(2n/τ∗). For τ >

√
n, we have pen1(τ) = 2 log log(2n/τ) and

pen1(τ
∗)− pen1(τ) = 2 log log(2n/τ∗)− 2 log log(2n/τ) ≤ 0 .

If τ <
√
n, then τ > γ

√
n, so

pen1(τ
∗)−pen1(τ) = 2 log log(2n/τ∗)−2 log log(2τ) ≤ 2 log log(n)−2 log log(γ

√
n) ≤ c log log(eγ−1) .

If τ∗ ≤ √
n, then τ ≤ √

n and

pen1(τ
∗)−pen1(τ) = 2 log log(τ∗)−2 log log(τ) ≤ 2 log log(1+τ/γ)−2 log log(τ) ≤ c log log(eγ−1) .

This proves (67).
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Eq. (67) implies that Condition (65) is fulfilled if

E(tτ∗)−E(tτ )− |N(tτ∗)| − |N(tτ )| −
√
LCγ > 0 . (68)

Condition (64) implies that

E(tτ∗)−E(tτ ) ≥ (
√
2− 1)E(tτ∗) .

By (58), N2(τ∗) ≤ 2x with probability higher than 1 − 2e−x. Moreover, Lemma 4 applied with
d = γ(τ∗ − 1) and α = 1/γ − 1 shows that, with probability at least 1− 2e−x,

∀τ ∈ [γτ∗, τ∗], Z1:τ ≤
√

2(τ − 1)x

γ
.

Likewise, Lemma 4 applied with d = n+ 1− τ∗ and α = 1/γ shows that, with probability at least
1− 2e−x,

∀τ ∈ [n+ 1− τ∗, (n+ 1− τ∗)/γ], Zτ :(n+1) ≤
√

2(1 + γ−1)(n + 1− τ)x .

Hence, with probability larger than 1− 4e−x,

|N(tτ )| ≤
∣∣∣∣

√
n+ 1− τ

n(τ − 1)
Z1:τ

∣∣∣∣+
∣∣∣∣Zτ :n+1

√
τ − 1

(n + 1− τ)n

∣∣∣∣ ≤ 2
√

2(1 + γ−1)x .

It follows that Condition (68) holds with probability at least 1− 6e−x if

(
√
2− 1)E(tτ∗)−

√
2x(1 + 2

√
1 + γ−1) +

√
LCγ > 0 ,

that is if

E(tτ∗) ≥
√
2x(1 + 2

√
1 + γ−1)−

√
LCγ√

2− 1
. (69)

The conclusion of Case 2 is that, if Condition (69) is fulfilled, with probability at least 1 − 6e−x,
E2(tτ̂ ) ≥ E(tτ∗)

2/2 or E2(tτ̂ ) < γE(tτ∗)
2.

Case 3: Let τ ∈ {2, . . . , n} be such that E2(tτ ) > E2(tτ∗)/2. Assume moreover, without loss of

generality, that τ < τ∗. Since E(tτ ) = E(tτ∗)
√

τ−1
τ∗−1 · n+1−τ∗

n+1−τ , this implies that τ−1
τ∗−1 · n+1−τ∗

n+1−τ ≥ 1/2.

We now use a slightly different approach than in the previous cases. Define the orthogonal
projector Πτ,τ∗ onto the space of vectors that are constant on [1, τ − 1], [τ, τ∗− 1] and [τ∗, n]. Note
that, if 1a:b denote the vector with coordinates 1 for all i ∈ {a, . . . , b− 1} and null otherwise, then,
for any τ < τ∗ and any vector a ∈ R

n, we have

Πτa =

(
1

τ − 1

τ−1∑

i=1

ai

)
11:τ +

(
1

n+ 1− τ

n∑

i=τ

ai

)
1τ :n+1 ,

Πτ,τ∗a =

(
1

τ − 1

τ−1∑

i=1

ai

)
11:τ +

(
1

τ∗ − τ

τ∗−1∑

i=τ

ai

)
1τ :τ∗ +

(
1

n+ 1− τ∗

n∑

i=τ∗

ai

)
1τ∗:n+1 .
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Hence,

(Πτ −Πτ,τ∗)a =

(
1

n+ 1− τ

n∑

i=τ

ai −
1

τ∗ − τ

τ∗−1∑

i=τ

ai

)
1τ :τ∗

+

(
1

n+ 1− τ

n∑

i=τ

ai −
1

n+ 1− τ∗

n∑

i=τ∗

ai

)
1τ∗:n+1

=

(
1

n+ 1− τ∗

n∑

i=τ∗

ai −
1

τ∗ − τ

τ∗−1∑

i=τ

ai

)
n+ 1− τ∗

n+ 1− τ
1τ :τ∗

+

(
1

τ∗ − τ

τ∗−1∑

i=τ

ai −
1

n+ 1− τ∗

n∑

i=τ∗

ai

)
τ∗ − τ

n+ 1− τ
1τ∗:n+1 .

Therefore, by orthogonality of the vectors 1τ∗:n+1 and 1τ :τ∗ ,

‖(Πτ −Πτ,τ∗)a‖2 =

(
1

τ∗ − τ

τ∗−1∑

i=τ

ai −
1

n+ 1− τ∗

n∑

i=τ∗

ai

)2((n+ 1− τ∗)2(τ∗ − τ)

(n+ 1− τ)2
+

(τ∗ − τ)2(n+ 1− τ∗)
(n+ 1− τ)2

)

=

(
1

τ∗ − τ

τ∗−1∑

i=τ

ai −
1

n+ 1− τ∗

n∑

i=τ∗

ai

)2 (n+ 1− τ∗)(τ∗ − τ)

n+ 1− τ
. (70)

Likewise, one can show that

‖(Πτ∗ −Πτ,τ∗)a‖2 =
(

1

τ∗ − τ

τ∗−1∑

i=τ

ai −
1

τ − 1

τ∑

i=1

ai

)2 (τ − 1)(τ∗ − τ)

τ∗ − 1
. (71)

By Pythagoras relationship, we have

Cr1(τ,Y)− Cr1(τ
∗,Y) = ‖(Πτ,τ∗ −Πτ )Y‖2 − ‖(Πτ,τ∗ −Πτ∗)Y‖2 + L(pen1(τ)− pen1(τ

∗)) .

From (70) and (71), it follows that

Cr1(τ,Y)− Cr1(τ
∗,Y)

=
(τ∗ − τ)(n+ 1− τ∗)

n+ 1− τ

[ ∑n
i=τ∗ Yi

n+ 1− τ∗
−
∑τ∗−1

i=τ Yi
τ∗ − τ

]2
+

(τ∗ − τ)(τ − 1)

τ∗ − 1

[∑τ∗

i=τ Yi
τ∗ − τ

−
∑τ−1

i=1 Yi
τ − 1

]2

+L(pen1(τ)− pen1(τ
∗))

=
(τ∗ − τ)(n+ 1− τ∗)

n+ 1− τ

[
Zτ∗:n+1

n+ 1− τ∗
− Zτ :τ∗

τ∗ − τ
+∆

]2
− (τ∗ − τ)(τ − 1)

τ∗ − 1

[
Zτ :τ∗

τ∗ − τ
− Z1:τ∗ − Zτ :τ∗

τ − 1

]2

+L(pen1(τ)− pen1(τ
∗)) .

From the inequalities a2/2− b2 ≤ (a+ b)2 ≤ 2(a2 + b2), it follows

Cr1(τ,Y)− Cr1(τ
∗,Y) ≥ (τ∗ − τ)(n+ 1− τ∗)

n+ 1− τ

(
∆2

2
− 4Z2

τ :τ∗

(τ∗ − τ)2
− 4Z2

τ∗:n+1

(n+ 1− τ∗)2

)

−2(τ∗ − τ)(τ − 1)

τ∗ − 1

(
Z2
1:τ∗

(τ − 1)2
+

Z2
τ :τ∗(τ

∗ − 1)2

[(τ − 1)(τ∗ − τ)]2

)
.
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Using repeatedly τ−1
τ∗−1 · n+1−τ∗

n+1−τ ≥ 1/2 and τ < τ∗, this yields

Cr1(τ,Y)− Cr1(τ
∗,Y) ≥ ∆2(τ∗ − τ)

4
− 8

Z2
τ :τ∗

τ∗ − τ
− 4(τ∗ − τ)

Z2
τ∗:n+1

(n+ 1− τ∗)2
− 2(τ∗ − τ)

Z2
1:τ∗

(τ − 1)2

+L(pen1(τ)− pen1(τ
∗)) .

By (67), there exists an absolute constant C such that pen1(τ)− pen1(τ
∗) ≤ C. It follows that

Cr1(τ,Y)− Cr1(τ
∗,Y) ≥ ∆2(τ∗ − τ)

4
− 8

Z2
τ :τ∗

τ∗ − τ
− 4(τ∗ − τ)

(
Z2
τ∗:n+1

(n+ 1− τ∗)2
+

Z2
1:τ∗

(τ − 1)2

)
− 2C .

The proof of (58) shows that, on an event of probability at least 1 − 4e−x, both |Zτ∗:n+1| ≤√
2(n+ 1− τ∗)x and |Z1:τ∗ | ≤

√
2(τ∗ − 1)x simultaneously. By Lemma 5, with probability larger

than 1− 2e−x,

|Zτ :τ∗ |1{(τ∗−τ)∆2≥1} ≤ 2
√

2(τ∗ − τ)(log log[3∆2(τ∗ − τ)] + x+ 1)

Plugging these deviations inequalities in the above bound, we conclude that for, (τ∗ − τ)∆2 ≥ 1,

Cr1(τ,Y)− Cr1(τ
∗,Y) ≥ (τ∗ − τ)

[
∆2

4
− 16x

n

(n + 1− τ∗)(τ∗ − 1)

]

−32(log log[3∆2(τ∗ − τ)] + x+ 1)− 2C

Restricting our attention to x ≤ E2
1/128 (which is possible by taking cL large enough in the

statement of the proposition), this simplifies in

Cr1(τ,Y)− Cr1(τ
∗,Y) ≥ ∆2 (τ

∗ − τ)

8
− 32(log log[3∆2(τ∗ − τ)] + x+ 1)− 2C ,

which is positive provided that (τ∗ − τ) ≥ C 1∨x
∆2 . Hence, there exists an absolute constant C > 0

such that, for any x ≤ E2
1/32, with probability 1− 12e−x, any τ such that E2(tτ ) > E2(tτ∗)/2 and

Cr1(τ,Y) ≤ Cr1(τ
∗,Y) satisfies |τ∗ − τ | ≤ C 1∨x

∆2 .
Gathering the conclusions of Cases 1, 2 and 3, we conclude that there exist constants C > 0

(absolute) and CL such that, with probability larger than 1−32e−x, if E2
1 ≥ L2pen1(τ

∗)+CL(1+x),
then,

|τ̂ − τ∗| ≤ C
1 ∨ x
∆2

.

7.6 Proof of Proposition 4

All along the proof, the change-point energy is called small if

E2
1 ≤ L2pen1(τ

∗) + c′′L log
( e
α

)
. (72)

In this expression, the constant c′′L is chosen to ensure that, when (72) does not hold, Proposition 3
applies and |τ̂ − τ∗| ≤ C log(1/α)/∆2 with probability higher than 1− α/2.

Proposition 4 follows from the three following claims.

Claim 1: If the change-point energy is small, with probability higher than 1 − α, the test ϕIC
does not reject the null. When ϕIC does not reject the null Iτ̂ = {2, . . . , n}, so τ∗ ∈ Iτ̂ . Hence, if
the change-point energy is small, with probability higher than 1− α, τ∗ ∈ Iτ̂ .
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Claim 2: If the change-point energy is not small, the confidence interval defined by (19) contains
τ∗ with probability larger than 1− α.

Claim 3: If (20) is satisfied, with probability larger than 1−α, ϕIC rejects the null and |∆̂| ≥ |∆|/4.
To conclude the proof, it remains to prove each claim.

Proof of Claim 1. We prove that, with probability higher than 1 − α, for all τ , ϕIC(τ) ≥
−cL,κ log( eα ). As in the proof of Proposition 3, we distinguish the cases where τ is far and close
from τ∗.

Case 1: Fix γ0 = (pen1(τ
∗))−1 ∧ 1 and consider τ such that E2(tτ ) ≤ γ0E

2
1. From (55) and

Lemma 6 applied with α = L− 1, with probability larger than 1− α/2,

ϕIC(τ) ≥ −(1 + κ−1)E2(tτ )− (1 + κ)N2(tτ ) + L2(1 + κ)pen1(τ)

≥ −(1 + κ−1)γ0E
2
1 − (1 + κ)L2 [6 log(1/α) + CL]

≥ −(1 + κ−1)
[
L2 + c′′L log(

e

α
)
]
− (1 + κ)L2 [6 log(1/α) + CL] .

We used (72) in the third line. There exists a constant cL,κ such that this last lower bound is smaller
than −cL,κ log( eα ). In conclusion, we have proved that, with probability higher than 1 − α/2, one
has ϕIC(τ) ≥ −cL,κ log( eα ) simultaneously for all τ satisfying E2(tτ ) ≤ γ0E

2
1.

Case 2: Now consider τ satisfying E2(tτ ) ≥ γ0E
2
1. We assume that τ ≤ τ∗, the case τ > τ∗ is

handled similarly. Recall the basic inequality

γτ =
E2(tτ )

E2
1

=
(τ − 1)(n + 1− τ∗)
(τ∗ − 1)(n + 1− τ)

.

With this notation,

ϕIC(τ) ≥ −(1 + κ)E2(tτ )− (1 + κ−1)N2(tτ ) + (1 + κ)L2pen1(τ)

≥ −(1 + κ)γτE
2
1 − (1 + κ−1)N2(tτ ) + (1 + κ)L2pen1(τ) .

We need uniform controls of both N2(tτ ) and pen1(τ). By Lemma 7, with probability higher than
1− α/4, we have

ϕIC(τ) ≥ −(1 + κ)γτE
2
1 − (1 + κ−1)16

[
log log

(
eγ−1
τ

)
+ log

(
8

α

)
+ 1

]
+ (1 + κ)L2pen1(τ) . (73)

Assume first that γτ ≥ 1/2. In this case, by (67), there exists an absolute constant C such that

pen1(τ) ≥ pen1(τ
∗)− C .

Therefore, (73) implies that

ϕIC(τ) ≥ (1 + κ)
[
−E2

1 + L2(pen1(τ
∗)− C)

]
− (1 + κ−1)16

[
0.6 + log

(
8

α

)
+ 1

]
.

As the change-point energy is small, this implies that

ϕIC(τ) ≥ −(1 + κ)
[
c′′L log(

e

α
) + CL2

]
− (1 + κ−1)16

[
1.6 + log

(
8

α

)]
.

40



This last lower bound is larger than −cL,κ log( eα ) if we choose cL,κ large enough.
Assume now that γτ < 1/2. By (67), there exists an absolute constant C such that

pen1(τ)− pen1(τ
∗) ≥ −C log log(eγ−1

0 ) .

Therefore, (73) implies that, with probability higher than 1− α/4

ϕIC(τ) ≥ (1 + κ)

[
−1

2
E2

1 + L2(pen1(τ
∗)− C log log(eγ−1

0 ))

]

−16(1 + κ−1)

[
log log(2eγ−1

0 ) + 1 + log

(
8

α

)]

≥ (1 + κ)

[
−c′′L log(

e

α
) +

L2

2
pen1(τ

∗)

]

−CL,κ
[
log log [2e(pen1(τ

∗) ∨ 1)] + 1 + log
( e
α

)]
.

It remains to say that, for any positive a and b, there exists Ca,b such that ax−b log log(2ex) ≥ Ca,b.
This implies that ϕIC(τ) ≥ −cL,κ log( eα) if we choose cL,κ large enough.

Arguing simularly for τ ≥ τ∗ and combining this result with Case 1, we have proved that the
test ϕIC does not reject the null with probability higher than 1− α, when E1 is small (72).

Proof of Claim 2: Assume that E1 is large so (72) does not hold. We have to prove that there
exists an absolute constant C such that, with probability higher than 1 − α, τ∗ belongs to the
interval

[τ̂ − C log( eα )|∆̂|−2; τ̂ + C log( eα )|∆̂|−2] .

Since (72) does not hold, Proposition 3 implies that there exists an absolute constant C such
that, for n large enough, with probability larger than 1− α/2,

|τ̂ − τ∗| ≤ C
log(e/α)

∆2
and γτ̂ ≥ 1/2 . (74)

From Lemma 7, with probability larger than 1− α/4, we have for all τ < τ∗ such that γτ ≥ 1/2

|N(tτ )| ≤ 4
√

log(8/α) + 1.6 =: uα

By symmetry, the same bound holds for all τ > τ∗ such that γτ ≥ 1/2. In view of (74), it therefore
holds for N(tτ̂ ) with probability larger than 1− α/2. Since

∆̂ :=

∑n+1−τ̂
i=τ̂ Yi

n+ 1− τ̂
−
∑τ̂−1

i=1 Yi
τ̂ − 1

= ∆

[
τ∗ − 1

τ̂ − 1
∧ n+ 1− τ∗

n+ 1− τ̂

]
+

√
n

(τ̂ − 1)(n + 1− τ̂)
N(tτ̂ ) ,

we deduce that, with probability larger than 1− α/2,

|∆|
2

−
√

n

(τ̂ − 1)(n + 1− τ̂)
uα ≤ |∆̂| ≤ |∆|+

√
n

(τ̂ − 1)(n + 1− τ̂)
uα .

Since γτ̂ ≥ 1/2, we have
√

n
(τ̂−1)(n+1−τ̂ ) ≤

√
2 n
(τ∗−1)(n+1−τ∗) and the previous bounds imply that

[
1

2
−

√
2uα
E1

]
≤ |∆̂|

∆
≤
[
1 +

√
2uα
E1

]
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If c′′L in (72) is sufficiently large, this implies that

|∆̂|
∆

∈ [1/4, 5/4] . (75)

Together with (74), this shows that τ∗ belongs to the interval (19) with probability higher than
1− α, provided that the constant c is large enough.

Proof of Claim 3. This last claim is quite straightforward. If E1 is large enough, then ϕIC(τ
∗) is

small enough and the test is rejected with probability higher than 1 − α/2. On this event, ICτ̂ is
defined as in (19). Arguing as in Claim 2, we derive as in (75) that |∆̂| ≥ |∆|/4. The result follows.

8 Proofs for multiple change-points

8.1 Proofs of the lower bounds

Proof of Proposition 5. Let r in {1, . . . , ⌊n/4⌋}, δ ≤
√

2(1− ξ) log(n/r)/r, and

T =

{
⌊n/4⌋ + kr + 1, k ∈

{
0, . . . ,

⌊⌊3n/4⌋ − ⌊n/4⌋ − 1

r

⌋
− 1

}}
.

For τ in T , define θ(τ) in Θ2 by θi(τ) = δ1i∈[τ,τ+r−1]. We aim at proving that, for any test T ,

P0[T = 1] +max
τ∈T

Pθ(τ)[T = 0] ≥ 1− cn , (76)

with cn = c(r/n)c
′ξ for some positive numerical constants c and c′. Note that (76) implies the result

of the proposition. As in the proof of Proposition 1 and with the same notation, we use Le Cam’s
approach and therefore define the mixture probability P = |T |−1

∑
τ∈T Pτ . Then, one knows that

Inequality (76) holds for all test T if ‖P0 −P‖TV is less or equal to cn.

Let us introducing for any τ in T , the event Γτ =
{
〈Y,θ(τ)〉 ≤ ‖θ(τ)‖2 + ‖θ(τ)‖

√
2a
}
, (a > 0)

such that Pτ [Γ
c
τ ] = Φ(

√
2a) ≤ e−a.

Now, define the thresholded likelihood L̃τ = Lτ1Γτ and L̃ = |T |−1
∑

τ∈T L̃τ . We have L̃ ≤ L and

E0[L− L̃] =
1

|T |
∑

τ∈T
E0[Lτ1Γc

τ
] =

1

|T |
∑

τ∈T
Pτ [Γ

c
τ ] ≤ e−a .

We first upper bound ‖P0 −P‖TV by

‖P0 −P‖TV =
1

2
E0[|L−1|] ≤ 3

2

[
E0[L− L̃]

]1/2
+

1

2

[
E0[L̃

2]− 1
]1/2

≤ 3

2
e−a/2+

1

2

[
E0[L̃

2]− 1
]1/2

.

Now, remark that:

E0[L̃
2 − 1] =

1

|T |2
∑

τ,τ ′∈T

[
E0[LτLτ ′1Γτ1Γτ ′

]− 1
]
.

Recall that Lτ = exp
[∑τ+r−1

i=τ Yiτ − rδ2

2

]
. Hence, Lτ is independent of Lτ ′ for τ 6= τ ′. This implies

that for τ 6= τ ′,
E0[LτLτ ′1Γτ1Γτ ′

] ≤ E0[Lτ ]E0[Lτ ′ ] = 1 .
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As a consequence,

E0[L̃
2 − 1] ≤ 1

|T |2
∑

τ∈T

[
E0[L̃

2
τ ]− 1

]
≤ 1

|T |2
∑

τ∈T
E0

[
exp

[
τ+r−1∑

i=τ

2Yiδ − rδ2

]
1∑τ+r−1

i=τ Yi≤
√
2ra+rδ

]
.

Introducing Z = r−1/2
∑τ+r−1

i=τ Yi which follows a standard Gaussian distribution under P0,

E0[L̃
2 − 1] ≤ 1

|T | E0

[
e2Zr

1/2δ−rδ21Z≤
√
2a+r1/2δ

]
=

1

|T |e
rδ2
∫ √

2a+r1/2δ

−∞
φ(z − 2r1/2δ)dz

≤ 1

|T |e
rδ2Φ(r1/2δ −

√
2a)

≤ 1

|T |e
rδ2/2−a+δ

√
2ar ,

provided that a ≤ rδ2/2. Gathering everything, we have proved that

‖P0−P‖TV ≤ 3

2
e−a/2 +

1

2|T |1/2 e
rδ2/4−a/2+

√
ar/2δ .

With δ =
√

2(1 − ξ) log(n/r)/r, n ≥ 8 and r ≤ n/4, then |T | ≥ n/(8r). Taking a = b log(n/r)
with b ≤ (1− ξ), this leads us to

‖P0−P‖TV ≤ 3

2

(n
r

)−b/2
+

√
2
(n
r

)−ξ/2−b/2+√b(1−ξ)
.

Take b = [ξ2/[2(1 − ξ)]] ∧ (1 − ξ) so that
√
b(1− ξ) ≤ ξ/2 for any ξ ∈ (0, 1), which leads us to

‖P0 −P‖TV ≤ 3(nr )
−b/2. Finally, it suffices to observe that there exists c′ > 0 such that b ≥ c′ξ2

for any ξ in (0, 1).

Proof of Proposition 6. Let us first prove the lower bound (25). As τ∗k ∈ Ik, both µk−1 and µk
are known to the statistician and as all other change-points do not belong to Ik, the statistic
(Yi), i ∈ Ik is sufficient for estimating of τ∗k . As a consequence, estimating τ∗ boils downs to 6 a
one-change-point estimation problem on (Yi)i∈Ik and the results follow from Lemma 1.

For any probability distribution π on Θ[I, µ] and any estimator τ̂ of τ ∗,

sup
θ∈Θ[I,µ]

Eθ

[
K∑

k=1

|τ̂k − τ∗k |
]
>

∫
Eθ

[
K∑

k=1

|τ̂k − τ∗k |
]
π(dθ) .

To define a probability distribution π, fix first a sequence (rk)k∈{1,...,K} such that all |rk| ≤ |Ik| − 1
and, for all k ∈ {1, . . . K}, fix

zk,0 = xk + 1, zk,1 = xk + 1 + rk .

Let U denote the uniform distribution over {0, 1}K and, for any u ∈ {0, 1}K , let θu ∈ Θ[I, µ] be
the vector such that, for all k ∈ {1, . . . ,K}, τ∗k = zk,uk

. Let π denote the distribution of θU, where
U ∼ U . As all θu ∈ Θ[I, µ], the coordinates U1, . . . , UK of U are independent conditionally on Y.

First, consider the Wasserstein loss. The Bayes risk is achieved by the MAP estimator û. As a
consequence,

inf
τ̂∈NK

sup
θ∈Θ[(Il),µ]

Eθ

[
K∑

k=1

|τ̂k − τ∗k |
]

≥
K∑

k=1

rkP[ûk 6= uk]

≥
K∑

k=1

rkΦ[r
1/2
k |∆k|/2] ,
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where we argued as in (25). Taking rk = 1 if |∆k| ≥ 2 and rk = ⌊ 4
∆2

k
⌋ for |∆k| ≤ 2 leads to (26).

Turning to (27), we restrict ourselves to the case where all rk’s are equal to some 0 < r <
mink |Ik|/2. Again, one easily checks that

inf
τ̂∈NK

sup
θ∈Θ[(Il),µ]

Eθ [dH(τ̂ ; τ∗)] ≥ r

2
P[û 6= u] =

r

2

[
1− (1− Φ[r1/2|∆|/2])K

]
.

If ∆2 ≥ 4, we simply take r = 1, which, together with (1− x)K ≥ 1−Kx, leads us to

inf
τ̂∈NK

sup
θ∈Θ[(Il),µ]

Eθ [dH(τ̂ ; τ
∗)] ≥ K

2
Φ(|∆|/2) ≥ c

Ke−∆2/8

|∆| ,

since Φ(x) ≥ cx−1e−x
2/2 for x ≥ 1/2 by integration by part. If ∆2 ≤ 4, we take r = ⌊ 4

∆2 (Φ
−1

[1/(4K)])2⌋ ≥
1. We have r < mink |Ik|/2 since |Ik| ≥ c log(K)/∆2 for a suitable constant c > 0. Hence,

inf
τ̂∈NK

sup
θ∈Θ[(Il),µ]

Eθ [dH(τ̂ ; τ
∗)] ≥ r

(
1− (1− 1

4K
)K
)

≥ c′
log(K)

∆2
,

and the result follows.

8.2 Further Notation and preliminary Lemmas for Multiple Jumps

The purpose of this subsection is to introduce relevant quantities for evaluating the criteria differ-
ences Cr0(τ ,Y) − Cr0(τ

′,Y) for change-point vectors τ and τ ′ that differ at exactly one change-
point. For any k = 1, . . . ,K + 1, we write for short δ∗k = τ∗k − τ∗k−1. For any q > 0, we define the
function ψq, for any δ = (δ1, δ2) ∈ {1, . . . , n}2,

ψq[δ] :=

√
2 log

(
n(δ1 + δ2)

δ1δ2

)
+ q . (77)

Given t ∈ T3, we write define ∆t as the difference of means

∆t :=
1

τ2−τ1

τ2−1∑

i=τ1

θi − 1
τ3−τ2

τ3−1∑

i=τ2

θi , (78)

so that the energy satistfies E[t] :=
√

(τ3−τ2)(τ2−τ1)
τ3−τ1 |∆t|. For t ∈ T3, let δ(t) = (t2 − t1, t3 − t2)

denote the differences. In the following lemma, we compute the difference of penalized criteria. It
is a slight variation of the decomposition given in Lemma 2.

Lemma 8 (Comparison of the criteria for one change-point difference). Consider any change-point
vector τ = (τ1, . . . , τm) (with the convention τ0 = 1 and τm+1 = n+ 1). For any l ∈ [m],let
t = (τl−1, τl, τl+1) ∈ T3. We have the following decomposition.

Cr0(τ
(−l),Y)− Cr0(τ ,Y) =

(
(−1)sign(∆t)E(t)−N(t)

)2
− Lψ2

q (τl − τl−1, τl+1 − τl) .

The next lemma provides a probability bound on the noise random variables N(t). Its proof is
postponed to Section A.2.
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Lemma 9 (Concentration of N(t)). Fix any x ∈ (0, 1). With probability higher than 1 − x, one
has

N2(t) ≤ 2 log

(
n(δ1(t) + δ2(t)

δ1(t)δ2(t)

)
+ c1 log log

(
n(δ1(t) + δ2(t)

δ1(t)δ2(t)x

)
+ c2 log

(
1

x

)
+ c3. (79)

simultaneously over all triads t = (t1, t2, t3) in T3.
In the proof of Propositions 7 and 10, we fix ℓ = [(

√
L + 9)/10] ∧ 2 <

√
L. When, L > 1, we

also have ℓ > 1. For any L > 1 and q > 2, define the event

AL,q := {|N(t)| ≤ ℓψq[δ(t)] ,∀t ∈ T3} , (80)

where ψq is defined in (77). Note that, for L large enough, AL,q is simply the even Aq defined in
(35). The next result is a consequence of the previous lemma.

Lemma 10. There exist universal constants q0, c and c′ such that the following holds. For any
ℓ > 1 and any q ≥ q0 + c log[(ℓ− 1)−1]+, we have

P [AL,q] ≥ 1− e−c
′q .

Finally, we shall often use the following identity for the ψq function (77). For δ 6= δ′, one has

ψq[δ]− ψq[δ
′] =

2

ψq(δ) + ψq(δ′)
log

(
(δ1 + δ2)δ

′
1δ

′
2

δ1δ2(δ
′
1 + δ′2)

)
. (81)

Its proof is straightforward.

8.3 Proof of Proposition 9

Let τ = argmaxi∈[n/4;3n/4] ǫi and define the change-point vector τ = (τ, τ + 1). We shall prove
that, with overwhelming probability, Cr0(∅) > Cr0(τ ). As a consequence, the empty vector will
not be the global minimal minimum and the penalized least-squares estimator τ̂ selects at least
one change-point.

Define xL = (
√
L+ 1)/2 ∈ (1/2, 1). Note that

P[Yτ − θτ ≤ xL
√

2 log(n)] = [1− Φ(xL
√

2 log(n))]⌊n/2⌋ ≤ e−⌊n/2⌋ log(Φ(xL
√

2 log(n))) .

Since Φ(x) ≥ ce−x
2/2/x for any x ≥ 1, it follows that, for a constant βL ∈ (0, 1) and n large enough,

P[Yτ − θτ ≤ xL
√

2 log(n)] ≤ e−βLn .

Applying an union bound to all Z1:i with i = n/4, . . . , 3n/4, we obtain that, with probability higher
than 1− 1/(2n), |Z1:τ | ≤ c

√
n log(n). From the definition (34) of N(t), we deduce that

|N(1, τ, τ + 1)| ≥
[√

L+ 1

2

√
2 log(n)− c′

√
log(n)

n

][
1− 1

τ + 1

]1/2
≥

√
L+ 2

3

√
2 log(n) ,

for n large enough. Applying two times the decomposition (33), we deduce that

Cr0(∅) −Cr0(τ ) ≥ −N2(τ, τ + 1, n + 1)−N2(0, τ, n + 1) + 2Lq + 4L log(4) + 2L log(n)

≥ −2 log(n)



(√

L+ 2

3

)2

− L


+ 2q + 8 log(2) ,

which is negative for n large enough. The result follows.
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8.4 Proof of Propositions 7 and 10

The proofs of these two propositions is decomposed in a few lemmas.

Lemma 11. Fix any L > 1 and any q > 2. Under the event AL,q, the following holds

• For any k ∈ {0, . . . ,K}, τ̂ contains at most two change-points in [τ∗k ; τ
∗
k+1].

• Either τ∗k does not belong to τ̂ or it is a (ℓ+
√
L, τ̂ (k), q)-high energy change-point.

Lemma 12. For any L > 1 and q > 2, there exists a constant κL > 1 such that the following holds
under the event AL,q. If τ∗k is a (κL, q)-high energy change-point, then

dH,1(τ̂ , τ
∗
k ) ≤ min

[
τ∗k+1 − τ∗k

2
,
τ∗k − τ∗k−1

2

]
.

Define δ0 = κL∆
−2
k [log

(
n∆2

k

)
+ q]. If 2δ0 ≤ min(τ∗k+1− τ∗k , τ∗k − τ∗k−1), then we may build a new

vector τ̃ ∗ = (τ∗1 , . . . , τ
∗
k−1, τ

∗
k − ⌈2δ0⌉, τ∗k , τ∗k + ⌈2δ0⌉, τ∗k+1, . . .). Obviously, θ is piece-wise constant

with respect to τ ∗. The energy of τ∗k for this new change-point vector is lower bounded as follows

⌈2δ0⌉
2

∆2
k ≥ κL

[
log
(
n∆2

k

)
+ q
]
> κL

[
log

(
n

δ0

)
+ q

]
≥ κLψ

2
q [δ(τ

∗
k − ⌈2δ0⌉, τ∗k , τ∗k + ⌈2δ0⌉)] .

As a consequence, τ∗k is a (κL, q)-high energy change-point for τ̃ ∗. From Lemma 12, we deduce that

dH,1(τ̂ , τ
∗
k ) ≤ δ0

Hence, we arrive the following proposition. It ensures that, under AL,q, τ̂ satisfies Property
(Detec[κL, q, κL]).

Proposition 14. For any L > 1 and q > 2, there exists a constant κL > 1 such that the following
holds under the event AL,q. If τ∗k is a (κL, q)-high energy change-point, then

dH,1(τ̂ , τ
∗
k ) ≤ min

[
τ∗k+1 − τ∗k

2
,
τ∗k − τ∗k−1

2
, κL

log
(
n∆2

k

)
+ q

∆2
k

]

To ensure that no spurious change-points is estimated, we need to strengthen Lemma 11. The
next two lemmas ensure, that in the vicinity of a true change-point τ∗k , τ̂ does not contain two
many change-points.

Lemma 13. For any L > 1 and q ≥ 2, there exists ηL ∈ (0, 1/2] such that the following holds
under AL,q. For any k = 1, . . . ,K, τ̂ contains at most one change-point in [τ∗k ; ηL(τ

∗
k+1 + τ∗k )] and

in [ηL(τ
∗
k + τ∗k−1); τ

∗
k ]. Besides for L large enough, we have ηL = 1/2.

Lemma 14. There exists L0 > 1 and q0 such that, for all L ≥ L0 and q ≥ q0, τ̂ satisfies (NoSp)
under the event AL,q.

Each of these four lemmas is proved using local improvements of τ̂ . More precisely, if τ̂ does not
satisfy any of the properties of Lemmas 11–14, than a local modification of τ̂ (insertion/deletion of
a change-point) decreases the criterion Cr0 contradicting the optimality of τ̂ . This approach was
already followed by Wang et al. [59] but here the arguments are slightly more delicate.

Proof of Proposition 7. For L large enough, we have ℓ = 2 and Lemma 10 ensures that P [AL,q] ≥
1− e−c

′q. Since ℓ = 2, we simply have AL,q = Aq where Aq is defined in (35). Since both L and q
are large enough, we may apply Lemmas 11 and 14 and Proposition 14. The result follows.

Proof of Proposition 10. It follows from Lemma 10 that P [AL,q] ≥ 1−e−c′q. We then apply Lemmas
11 and 13 and Proposition 14 to conclude.
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8.4.1 Proof of Lemma 11

Consider a sequence τ such that, for some integers l and k, we have [τl−1, τl+1] ⊂ [τ∗k−1, τ
∗
k ]. As

the signal is constant over [τl−1, τl+1), we have ∆t = 0 (defined in (78)) for t = (τl−1, τl, τl+1). We
claim that, under AL,q, Cr0(τ ,Y) > Cr0(τ

(−l),Y) which implies that τ̂ 6= τ . Indeed, Lemma 8
together with the definition of AL,q ensure

Cr0(τ
(−l),Y)− Cr0(τ ,Y) = N2[t]− Lψ2

q (δ(t)) ≤ ψ2
q (δ(t))[−L + ℓ] ,

which is negative since L > ℓ.

Turning to the second result, we consider a true change-point τ∗k and a sequence τ such that
τ∗k is a (ℓ +

√
L, q, τ )-high energy change-point and τ∗k does not belong to τ . Let l such that

τl < τ∗k < τl+1. Write t = (τl, τ
∗
k , τl+1). By Lemma 8 and the definition of AL,q,

Cr0(τ
(k),Y)− Cr0(τ ,Y) ≤ −[E(t)− ℓψq(δ(t))]

2
+ + Lψ2

q (δ(t)) ,

which is negative as long as E(t) > ψq(δ(t))(ℓ +
√
L). The latter inequality holds since τ∗k is a

(ℓ+
√
L, q, τ )-high energy change-point. This implies that τ̂ 6= τ .

8.4.2 Proof of Lemma 12

Consider any sequence τ that does not detect a high-energy change-point, say τ∗k . We shall prove
that τ 6= τ̂ . Write r = [(τ∗k+1− τ∗k )∧ (τ∗k − τ∗k−1)]/2. As a consequence, there exists an indice l such
that

τl < τ∗k − r < τ∗k + r < τl+1 . (82)

Define the vector t = (τl, τ
∗
k , τl+1).

E(t) =
∣∣θτ∗k :τl+1

− θτl:τ∗k

∣∣
√

(τ∗k − τl)(τl+1 − τ∗k )

τl+1 − τl

≥
[
|∆k| − 1τl<τ∗k−1

|µk−1 − θτl:τ∗k | − 1τl+1>τ
∗
k+1

|µk − θτ∗k :τl+1
|
]√(τ∗k − τl)(τl+1 − τ∗k )

τl+1 − τl
(83)

Denote Aτ = 1τl<τ∗k−1
|µk−1 − θτl:τ∗k | and Bτ = 1τl+1>τ

∗
k+1

|µk − θτ∗k+1:τl+1
|. We consider four

subcases depending on the values of Aτ and Bτ . Throughout this proof we shall often use that
Ek ≤ |∆k|

√
2r, which holds by definition of Ek.

Case 1: Aτ ∨Bτ ≤ |∆k|/3. It then follows from (83) and that (τ∗k − τl) ∧ (τl+1 − τ∗k ) ≥ r that

E(t) ≥ |∆k|
3

√
(τ∗k − τl)(τl+1 − τ∗k )

τl+1 − τl
≥ |∆k|

√
r

3
√
2

≥ Ek

6
,

where we used (82) and Ek ≤ |∆k|
√
2r. Then, we consider the sequence τ (k) such that τ∗k has been

inserted into τ . We shall prove that Cr0(τ
(k),Y) < Cr0(τ ,Y). Indeed, we deduce from Lemma 8

and the definition of AL,q that

Cr0(τ
(k),Y)− Cr0(τ ,Y) ≤ − [E(t)− ℓψq(δ(t))]

2
+ + L

[
pen0(τ

(k))− pen0(τ )
]

≤ − [Ek/6− ℓψq(δ(t))]
2 + Lψ2

q(δ(t)) .
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Since (τl+1 − τ∗k ) ∧ (τ∗k − τl) ≥ [(τ∗k+1 − τ∗k ) ∧ (τ∗k − τ∗k−1)]/2, we derive from (81) that ψq(δ(t)) ≤√
ψ2
q (δ

∗
k, δ

∗
k+1) + log(4) < 1.5ψq(δ

∗
k, δ

∗
k+1) since ψq(δ

∗
k, δ

∗
k+1) ≥ q ≥ 2. As τ∗k is a high-energy

change-point, Ek > κLψq(δ
∗
k, δ

∗
k+1) is large compared to Lψq(δ

∗
k, δ

∗
k+1). As a consequence, we

have Cr0(τ
(k)Y) < Cr0(τ ,Y), providing that κL ≥ 9(ℓ+

√
L).

Case 2: Aτ ≥ |∆k|/3 and Bτ ≤ |∆k|/3. We then consider the sequence τ (k−1,k) such that both
τ∗k−1 and τ∗k have been inserted into τ . We consider two subcases

1. (τ∗k−1 − τl) ≥ (τ∗k − τ∗k−1) ∧ (τl+1 − τ∗k ). Let t′ = (τ∗k−1, τ
∗
k , τl). Observing that we can move

from τ to τ (k−1,k) by first adding τ∗k−1 and then adding τ∗k , we get

Cr0(τ
(k−1,k),Y)− Cr0(τ ,Y) ≤ −

(
(−1)sign(∆t′ )E[t′] +N[t′]

)2
+ L

[
pen0(τ

(k−1,k))− pen0(τ )
]

≤ −
(
E[t′]− ℓψq(δ(t

′))
)2
+
+ L

[
pen0(τ

(k−1,k))− pen0(τ )
]
. (84)

As τ∗k−1−τl ≥ (τ∗k −τ∗k−1)∧ (τl+1−τ∗k ), the penalty difference is at most 2Lψ2
q (δ(t

′)). Arguing
as in (83), we have

E[t′] ≥
[
|∆k| − 1τl+1>τ

∗
k+1

|µk − θτ∗k :τl+1
|
]√(τ∗k − τ∗k−1)(τl+1 − τ∗k )

τl+1 − τ∗k−1

≥ 2|∆k|
√
r

3
√
2

≥ Ek

3
.

Finally, we observe that, as for t in Case 1, ψq(δ(t
′)) ≤ 1.5ψq(δ

∗
k, δ

∗
k+1). Since τ∗k is a high-

energy change-point, it then follows from (84) that Cr0(τ
(k−1,k),Y) < Cr0(τ ,Y), providing

that κL ≥ 4.5(ℓ +
√
2L).

2. (τ∗k−1 − τl) < (τ∗k − τ∗k−1) ∧ (τl+1 − τ∗k ). Let t− = (τl, τ
∗
k−1, τ

∗
k ). Observing that we may go

from τ to τ (k−1,k) by first adding τ∗k and then adding τ∗k−1, we get

Cr0(τ
(k−1,k),Y)− Cr0(τ ,Y) ≤ −

(
(−1)

sign(∆t−
)
E[t−] +N[t−]

)2
+ L

[
pen0(τ

(k−1,k))− pen0(τ )
]

≤ − [E[t−]− ℓψq(δ(t−))]
2 + L

[
pen0(τ

(k−1,k))− pen0(τ )
]
. (85)

Since (τ∗k−1 − τl) is small, the penalty difference is at most 2Lψ2
q [δ(t−)]. As a consequence,

the expression (85) is negative as long as

E[t−] > (
√
2L+ ℓ)ψq(δ(t−)) . (86)

Working out µk−1 − θτl:τ∗k and relying on the inequality Aτ ≥ |∆k|/3, we get

E[t−] = |µk−1 − θτl:τ∗k−1
|
√

(τ∗k−1 − τl)(τ
∗
k − τ∗k−1)

τ∗k − τl
= |µk−1 − θτl:τ∗k |

√
(τ∗k − τl)(τ

∗
k − τ∗k−1)

τ∗k−1 − τl

≥ Ek

3

√
(τ∗k − τl)(τ

∗
k+1 − τ∗k−1)

(τ∗k−1 − τl)(τ
∗
k+1 − τ∗k )

>
Ek

3

√
τ∗k − τl
τ∗k−1 − τl

≥ κL
3
ψq[δ

∗
k, δ

∗
k+1]

√
τ∗k − τl
τ∗k−1 − τl

,
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Since τ∗k is a high-energy change-point. By (81), the penalty term in (86) satisfies

ψq(δ(t−)) ≤

√√√√ψ2
q [δ

∗
k, δ

∗
k+1] + 2 log

(
τ∗k − τl
τ∗k−1 − τl

)
≤ ψq(δ

∗
k, δ

∗
k+1)

[
1 +

1

q
log

(
τ∗k − τl
τ∗k−1 − τl

)]

≤ ψq[δ
∗
k, δ

∗
k+1]

√
τ∗k − τl
τ∗k−1 − τl

,

where we used q ≥ 2 and x − 1 − log(x) > 0. Combining the two last bounds, we conclude
that (86) holds providing that κL ≥ 3(

√
2L+ ℓ).

Case 3: Aτ < |∆k|/3 and Bτ ≥ |∆k|/3. We consider the sequence τ (k,k+1) and argue as in Case 2.

Case 4: Aτ ≥ |∆k|/3 and Bτ ≥ |∆k|/3. We consider the sequence τ (k−1,k,k+1) by inserting all three
true change-points into τ . Define t+ = (τ∗k , τ

∗
k+1, τl+1). Depending in which order we add the three

change-points, we have the following bounds

Cr0(τ
(k−1,k,k+1),Y)−Cr0(τ ,Y) ≤ − max

t=t−,t∗k,t+

(
(−1)sign(∆t)E(t) +N(t)

)2
+L

[
pen0(τ

(k−1,k,k))− pen0(τ )
]

(87)
Then, we focus on t−, t∗k, t+, depending on the relative values of (τ∗k−1−τl), (τ∗k−τ∗k−1)∧(τ∗k+1−τ∗k ),
and (τl+1 − τk∗). If (τ

∗
k − τ∗k−1)∧ (τ∗k+1 − τ∗k ) is the smallest quantity of those three, it follows from

(87) that

Cr0(τ
(k−1,k,k+1),Y)− Cr0(τ ,Y) ≤ −(Ek − ℓψq(δ

∗
k, δ

∗
k+1))

2 + 3Lψ2
q (δ

∗
k, δ

∗
k+1) ,

which is negative since τ∗k is a high-energy change-point. If (τ∗k−1 − τl) is smallest difference, then
we focus on t−. The corresponding penalty is the largest one and we have

Cr0(τ
(k−1,k,k+1),Y)− Cr0(τ ,Y) ≤ (E[t−]− ℓψq(δ(t−)))

2 + 3Lψ2
q (t−) .

Arguing as in the second part of Case 2, we derive that E[t−] ≥ 1
3Ek

√
τ∗k−τl
τ∗k−1−τl

which is large

compared to (
√
3L+ ℓ)ψq(δ(t−)). The case where (τl+1− τ∗k+1) is the smallest difference is handled

similarly by focusing on t+.

8.4.3 Proof of Lemma 13

Consider some ηL ∈ (0, 1/2] whose value will be fixed later. Take any τ such that, for some k and
some l, τ∗k ≤ τl−1 < τl ≤ ηL(τ

∗
k+1 + τ∗k ) < τ∗k+1. We shall prove that τ 6= τ̂ . If τl+1 ≤ τ∗k+1, then

Lemma 11 already enforces that τ 6= τ̂ . We assume henceforth that τl+1 > τ∗k . Consider the vector
τ (−l) and define t = (τl−1, τl, τl+1). By Lemma 8 and the definition of AL,q, we have

Cr0(τ
(−l),Y)−Cr0(τ ,Y) ≤

[
(−1)sign(∆t)E(t) +N(t)

]2
− Lψ2

q [δ(t)]

≤ [E(t) + ℓψq(δ(t))]
2 − Lψ2

q [δ(t)] .

If E(t) is small enough so that the right-hand side is negative, we have τ̂ 6= τ . As a consequence,
we only need to deal with the case where E(t) is large. Henceforth, we assume that

E(t) ≥ [
√
L− ℓ]ψq[δ(t)] .
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In view of the definition of E(t), this is equivalent to

(θτ∗k+1:τl+1
− µk+1)

2 ≥ (τl+1 − τl)(τl+1 − τl−1)

(τl+1 − τ∗k+1)
2(τl − τl−1)

[
√
L− ℓ]2ψ2

q [δ(t)] .

Introduce the vector τ (−l,k+1) := (τ1, . . . , τl−1, τ
∗
k+1, τl+1, . . .). Define u = (τl−1, τl, τ

∗
k+1), v =

(τl, τ
∗
k+1, τl+1), and

z :=
(τl+1 − τl−1)(τ

∗
k+1 − τl)

(τl+1 − τ∗k+1)(τl − τl−1)
≥ (τ∗k+1 − τl)

(τl − τl−1)
≥ 1

ηL
− 1 ,

since τ∗k ≤ τl−1 < τl ≤ ηL(τ
∗
k+1+τ

∗
k ). From the definition of E(v) together with the previous bound,

we derive that
E2(v) ≥ z(

√
L− ℓ)2ψ2

q [δ(t)] . (88)

Since τl+1 − τl ≥ τ∗k+1 − τl ≥ τl − τl−1, we deduce that ψ2
q (δ(u)) ≤ ψ2(δ(t)) + log(4). Applying

Lemma 8 and relying on the event AL,q, we obtain

Cr0(τ
(−l,k+1),Y)− Cr0(τ ,Y)

= Cr0(τ
(−l,k+1),Y)− Cr0(τ

(k+1),Y) + Cr0(τ
(k+1),Y)− Cr0(τ ,Y)

≤ N2(u)−
(
(−1)sign(∆v)E(v) +N(v)

)2
+ L

[
pen0(τ

(−l,k+1))− pen0(τ )
]
,

≤ ℓ2ψ2
q [δ(u)] − (E(v)− ℓψq[δ(v)])

2
+ + L

[
pen0(τ

(−l,k+1))− pen0(τ )
]

< ℓ2[ψ2
q [δ(t)] + log(4)]−

(√
z(
√
L− ℓ)ψq[δ(t)] − ℓψq[δ(v)]

)2
+
+ L

[
pen0(τ

(−l,k+1))− pen0(τ )
]
.

Let us compute the penalty difference.

pen0(τ
(−l,k+1))− pen0(τ ) = ψ2

q [δ(v)] − ψ2
q [δ(u)]

= 2 log

(
(τl+1 − τl)(τl − τl−1)

(τl+1 − τ∗k+1)(τ
∗
k+1 − τl−1)

)
.

Since τ∗k ≤ τl−1 < τl ≤ (τ∗k + τ∗k+1)/2 < τ∗k+1 ≤ τl+1, one easily checks that the above expression
is less or equal to 2 log(z). Hence, we also have ψ2

q [δ(v)] ≤ ψ2
q [δ(t)] + 2 log(z). We derive from the

previous inequalities that

Cr0(τ
(−l,k+1),Y)− Cr0(τ ,Y)

ψ2
q [δ(t)]

≤ −
[
z1/2(

√
L− ℓ)− ℓ

√
1 +

2 log(2z)

ψ2
q (δ(t))

]2

+

+ ℓ2 +
2L log(z) + 2ℓ2(log(2))

ψ2
q [δ(t)]

≤ −
[
z1/2(

√
L− ℓ)− ℓ

√
1 + log(2z)

]2
+
+ ℓ2 + L log(2z) ,

since ψ2
q [δ(t)] ≥ q ≥ 2 and ℓ2 ≤ L. Coming back to the definition of ℓ (Section 8.2), we observe

that the last expression is negative as soon as

0.9
√
z(
√
L− 1) > 2

√
L
√

1 + log(2z) , if
√
L ≤ 11 , (89)√

z(
√
L− 2) >

√
4 + L log(2z) + 2

√
1 + log(2z) , if

√
L > 11. (90)

Recall that z ≥ η−1
L − 1. In summary we only have to prove, that for all L > 1, there exists

ηL ∈ (0, 1/2] such that (89) or (90) holds for all z ≥ η−1
L − 1 and that, for

√
L > 11 large enough,

(90) holds for all z ≥ 1 (which corresponds to taking ηL = 1/2).
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The function h : z 7→ z
1+log(2z) is increasing for z ≥ 1. If ηL ∈ (0, 1/2) is chosen in such a way

h(1/ηL − 1) > 4L[0.9(
√
L− 1)]−2, then (89) is satisfied.

Now consider the large L regime (
√
L > 11). Since 1+ log(2z) ≤ 2z, (90) is satisfied as soon as

z[
√
L− 2− 2

√
2]2 − 4− L log(2z) > 0 (91)

For a fixed
√
L > 11, the above expression is positive for z large enough. Hence, there exists

ηL ∈ (0, 1/2) such that (91) holds for all z ≥ ηL−1. Beside, using a derivation argument, we derive
that Inequality (91) holds for all z ≥ 1 as long as

L(1− log(2)) − 4 + 2L log

(
1− 2 + 2

√
2√

L

)
> 0 ,

which holds for L large enough. This concludes the proof.

8.4.4 Proof of Lemma 14

We consider the specific cases k = 1 and k = K at the end of this proof. Consider any vector τ

such that, for some k and l, τl−1 and τl both belong to [(τ∗k−1 + τ∗k )/2; (τ
∗
k + τ∗k+1)/2]. Since L is

chosen large enough, we may assume that ηL in Lemma 13 is equal to 1/2. Applying this lemma,
we have τ 6= τ̂ unless

τ∗k−1 + τ∗k
2

≤ τl−1 < τ∗k < τl ≤
τ∗k + τ∗k+1

2
By symmetry, we may assume that τl − τ∗k ≥ τ∗k − τl−1. As a warm-up, we consider the simpler
situation where τl+1 ≤ τ∗k+1. We shall prove that either τ (−l) or τ (−l,k) achieves a smaller criterion
value than τ which as usual implies that τ 6= τ̂ . Write t = (τl−1, τl, τl+1), u = (τ∗k , τl, τl+1), and
v = (τl−1, τ

∗
k , τl). We have

Cr0[τ
(−l)]− Cr0[τ ] ≤ (E(t) + ℓψq[δ(t)])

2 − Lψ2
q [δ(t)] .

If E(t) < ψq[δ(t)](
√
L − ℓ), then Cr0[τ

(−l)] < Cr0[τ ] and τ 6= τ̂ . Now assume that E(t) is large.
Considering the local modification τ (−l,k), we obtain

Cr0[τ
(−l,k)]− Cr0[τ ] ≤ −[E(v)− ℓψq[δ(v)]]

2
+ + ℓ2ψ2

q [δ(u)] + L
[
pen0(τ

(−l,k))− pen0(τ )
]
. (92)

We shall prove that the rhs in (92) is negative. From the definition of energies, we derive

E2(t) = ∆2
k

(τl+1 − τl)(τ
∗
k − τl−1)

2

(τl+1 − τl−1)(τl − τl−1)
= E2(v)

(τ∗k − τl−1)(τl+1 − τl)

(τl − τ∗k )(τl+1 − τl−1)
.

Define z =
(τl−τ∗k )(τl+1−τl−1)
(τ∗k−τl−1)(τl+1−τl) > 1. So that E(v) =

√
zE(t) >

√
zψq[δ(t)](

√
L− ℓ). Also

ψ2
q [δ(u)] − ψ2

q [δ(t)] = 2 log

(
(τl+1 − τ∗k )(τl − τl−1)

(τl+1 − τl−1)(τl − τ∗k )

)
≤ 2 log(2) ,

since τl − τl−1 ≤ 2(τl − τ∗k ). By definition of the penalty function we have

pen0(τ
(−l,k))− pen0(τ ) = ψ2

q [δ(v)] − ψ2
q [δ(u)] = 2 log

(
(τl+1 − τl)(τl − τl−1)

(τl+1 − τ∗k )(τ
∗
k − τl−1)

)

= 2 log

(
(τl − τ∗k )(τl+1 − τl−1)

(τl+1 − τl)(τ
∗
k − τl−1)

)
+ 2 log

(
(τl+1 − τl)

2(τl − τl−1)

(τl+1 − τ∗k )(τl+1 − τl−1)(τl − τ∗k )

)

≤ 2 log(z) + 2 log(2) ,
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since τl− τl−1 ≤ 2(τl− τk)∗. Hence, ψ2
q [δ(v)] ≤ ψ2

q [δ(t)]+2 log(4z). Coming back to (92), this leads
us to

Cr0[τ
(−l,k)]− Cr0[τ ]

ψ2
q [δ(t)]

≤ −
[
√
z(
√
L− ℓ)− ℓ

(
1 +

2 log(4z)

ψ2
q (δ(t))

)1/2
]2

+

+ ℓ2
(
1 +

2 log(2)

ψ2
q [δ(t)]

)
+

2L log (2z)

ψ2
q [δ(t)]

≤ −
[√

z(
√
L− ℓ)− ℓ

(
1 +

2 log(4z)

q

)]2

+

+ ℓ2(1 +
2

q
log(2)) +

2L log(2z)

q
,

≤ −
[√

z(
√
L− 2)− 2

√
1 + log(4z)

]2
+
+ 4(1 + log(2)) + L log(2z) , (93)

since q ≥ 2 and ℓ = 2 for L ≥
√
11. Hence, it only remains to prove that, for all L large enough,

all z ≥ 1, √
z(
√
L− 2) > 2

√
1 + log(4z) + 2

√
1 + log(2) +

√
L log(2z) .

Consider any ζ ∈ (0, 1). There exists Lζ such that, for all L > Lζ and all z ≥ 1,

ζ
√
zL > 2

√
z + 2

√
1 + log(4z) + 2

√
1 + log(2) .

Hence, it suffices to prove that there exists ζ0 ∈ (0, 1) such that for all z ≥ 1, we have (1− ζ0)
2z ≥

log(2z). Deriving this expression with respect to z, we conclude that the latter inequality holds as
long as 2 log(1− ζ0)

−1) ≤ log(e/2). Taking ζ0 = 1−
√

2/e concludes this part.

Now, we consider the more challenging (and painful) situation where τl+1 > τ∗k+1. We shall
prove, by deleting τl and possibly inserting τ∗k or τ∗k+1, the penalized criterion will decrease. In

other words, at least one the sequences τ (−l) τ (−l,k) and τ (−l,k+1) achieves a smaller criterion than
τ . It suffices to show that Cr0[τ ] > Cr0[τ

(−l)] as long as Cr0[τ ] ≤ Cr0[τ
(−l,k)] ∧ Cr0[τ

(−l,k+1)].
We assume in the remainder of this proof that the latter inequality holds. Under the event AL,q,
Lemma 8 enforces that

Cr0[τ
(−l,k)]− Cr0[τ ]

≤ − (E[(τl−1, τ
∗
k , τl)]− ℓψq[δ(τl−1, τ

∗
k , τl)])

2
+ + (E(τ∗k , τl, τl+1) + ℓψq[δ(τ

∗
k , τl, τl+1)])

2

+L
(
ψ2
q [δ(τl−1, τ

∗
k , τl)]− ψ2

q [δ(τ
∗
k , τl, τl+1)]

)
;

Cr0[τ
(−l,k+1)]− Cr0[τ ]

≤ −
(
E(τl, τ

∗
k+1, τl+1)− ℓψq[δ(τl, τ

∗
k+1, τl+1)]

)2
+
+
(
E(τl−1, τl, τ

∗
k+1) + ℓψq[δ(τl−1, τl, τ

∗
k+1)]

)2

+L
(
ψ2
q [δ(τl, τ

∗
k+1, τl+1)]− ψ2

q [δ(τl−1, τl, τ
∗
k+1)]

)
.

From (81) and the respective positions of the change-points, we derive that

ψ2
q [δ(τl−1, τ

∗
k , τl)]− ψ2

q [δ(τ
∗
k , τl, τl+1)] = 2 log

(
(τl+1 − τl)(τl − τl−1)

(τl+1 − τ∗k )(τ
∗
k − τl−1)

)
≤ 2 log

(
τl − τl−1

τ∗k − τl−1

)
.

Similarly, we get

ψ2
q [δ(τl, τ

∗
k+1, τl+1)]−ψ2

q [δ(τl−1, τl, τ
∗
k+1)] = 2 log

(
(τl − τl−1)(τl+1 − τl)

(τl+1 − τ∗k+1)(τ
∗
k+1 − τl−1)

)
≤ 2 log

(
τl+1 − τl
τl+1 − τ∗k+1

)
.
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Since Cr0[τ ] ≤ Cr0[τ
(−l,k)] ∧ Cr0[τ

(−l,k+1)], since ℓ ≤
√
L, the above inequalities lead us to

E(τl−1, τ
∗
k , τl) ≤ E(τ∗k , τl, τl+1) + ω1 ; (94)

E(τl, τ
∗
k+1, τl+1) ≤ E(τl−1, τl, τ

∗
k+1) + ω2 ; (95)

ω1 := 2ℓψq[δ(τ
∗
k , τl, τl+1)] + 2

√
2L log

(
τl − τl−1

τ∗k − τl−1

)
;

ω2 := 2ℓψq[δ(τl−1, τl, τ
∗
k+1)] + 2

√√√√2L log

(
τl+1 − τl
τl+1 − τ∗k+1

)
.

We aim at proving that Cr0(τ
(−l)) < Cr0(τ ). Define t = (τl−1, τl, τl+1). In view of Lemma 8, it

suffices to establish the following inequality

E(t) < ψq[δ(t)]
(√

L− ℓ
)
, (96)

We start with the following lemma that relates the change-point energies.

Lemma 15. It holds that

E(τ∗k , τl, τl+1)E(τl−1, τl, τ
∗
k+1)

E(τl, τ
∗
k+1, τl+1)E(τl−1, τ

∗
k , τl)

=

√
(τl+1 − τ∗k+1)(τ

∗
k − τl−1)

(τl+1 − τ∗k )(τ
∗
k+1 − τl−1)

≤
√

1

3
; (97)

E(τ∗k , τl, τl+1)

E(τl, τ
∗
k+1, τl+1)

≤
√
τl+1 − τ∗k+1

τl+1 − τ∗k
;

E(τl−1, τl, τ
∗
k+1)

E(τl−1, τ
∗
k , τl)

≤
√
τ∗k − τl−1

τl − τ∗k
; (98)

E(t) ≤ E(τl−1, τ
∗
k , τl)

√
τ∗k − τl−1

τl − τ∗k
+E(τl, τ

∗
k+1, τl+1)

√
2
τl+1 − τ∗k+1

τl+1 − τl−1
. (99)

It follows from (97–98) together with (94) and (95) that E(τl−1, τ
∗
k , τl) is small. Indeed, we have

E(τl−1, τ
∗
k , τl) ≤ E(τ∗k , τl, τl+1) + ω1

≤ E(τl, τ
∗
k+1, τl+1)

E(τ∗k , τl, τl+1)

E(τl, τ
∗
k+1, τl+1)

+ ω1

≤
(
E(τl−1, τl, τ

∗
k+1) + ω2

) E(τ∗k , τl, τl+1)

E(τl, τ
∗
k+1, τl+1)

+ ω1

≤ E(τl−1, τ
∗
k , τl)√

3
+ ω1 +

√
τl+1 − τ∗k+1

τl+1 − τ∗k
ω2 ,

which implies

E(τl−1, τ
∗
k , τl) ≤

3 +
√
3

2

(
ω1 +

√
τl+1 − τ∗k+1

τl+1 − τ∗k
ω2

)
.

Similarly, we obtain

E(τl, τ
∗
k+1, τl+1) ≤

3 +
√
3

2

(
ω2 +

√
τ∗k − τl−1

τl − τ∗k
ω1

)
.

53



Thanks to (99), and since τl − τ∗k ≤ τ∗k − τl−1, we arrive at

E(t) ≤ 6

[
ω1

√
τ∗k − τl−1

τl − τ∗k
+ ω2

√
τl+1 − τ∗k+1

τl+1 − τ∗k

]
.

Write z1 =
τl−τ∗k
τ∗k−τl−1

≥ 1 and z2 =
τl+1−τ∗k
τl+1−τ∗k+1

≥ 1. We then come back to the definition of ω1 and ω2

E(t) ≤ 12ℓ
[
ψq[δ(τ

∗
k , τl, τl+1)] + ψq[δ(τl−1, τl, τ

∗
k+1)]

]
+ 4

√
2L



√

log(1 + z1)

z1
+

√
log(1 + z2)

z2




≤ 12ℓ
[
ψq[δ(τ

∗
k , τl, τl+1)] + ψq[δ(τl−1, τl, τ

∗
k+1)]

]
+ 12

√
L .

Then, we use the definition (77) of ψq.

ψ2
q [δ(τ

∗
k , τl, τl+1)] ≤ 2 log

(
n(τl+1 − τ∗k )

(τl+1 − τl)(τl − τ∗k )

)
+ q ≤ 2 log(2) + ψ2[δ(t)] ,

since τl − τ∗k ≥ (τl − τl−1)/2. Besides,

ψ2
q [δ(τl−1, τl, τ

∗
k+1)] ≤ 2 log

(
3n

τl − τl−1

)
+ q ≤ 2 log(2) + ψ2[δ(t)] ,

since τ∗k+1 − τl ≥ (τl − τl−1)/2. We conclude that

E(t) ≤ 24ℓψq[δ(t)] + 24ℓ
√

2 log(3) + 12
√
L ,

which is smaller than ψq[δ(t)][
√
L − ℓ] provided that we have chosen q large enough. This shows

(96) and concludes the main part of the proof for general k.

It remains to consider the cases k = 1 and k = K. By symmetry, we focus on the case k = 1.
Suppose that [2; (τ∗1 + τ∗2 )/2] contains two change-points τ1 and τ2. The case τ2 ≤ τ∗1 has already
been handled in Lemma 11. The case τ1 ≥ (1 + τ∗1 )/2 has already been considered in the general
case case. Finally, the case τ1 ≤ (τ∗1 + τ∗2 )/2 has already been handled in Lemma 13.

Proof of Lemma 15. In order to prove the first bound, we simply come back to the definition of
the energy. To alleviate notation, we write µ′l+1 = θτ∗k+1:τl+1

and µ′l = θτl−1:τ
∗
k
.

E2[τ∗k , τl, τl+1] =

(
µ′l+1

τl+1 − τ∗k+1

τl+1 − τl
+ µk+1

τ∗k+1 − τl

τl+1 − τl
− µk+1

)2 (τl+1 − τl)(τl − τ∗k )

(τl+1 − τ∗k )

=
(
µ′l+1 − µk+1

)2 (τl+1 − τ∗k+1)
2(τl − τ∗k )

(τl+1 − τ∗k )(τl+1 − τl)

= E2[τl, τ
∗
k+1, τl+1]

(τl+1 − τ∗k+1)(τl − τ∗k )

(τl+1 − τ∗k )(τ
∗
k+1 − τl)

(100)

≤ E2[τl, τ
∗
k+1, τl+1]

(τl+1 − τ∗k+1)

(τl+1 − τ∗k )
,

where we used in the last line that τl is closer to τ
∗
k than to τ∗k+1. This proves the first part of (98).

Analogously, we obtain

E2[τl−1, τl, τ
∗
k+1] = E2[τl−1, τ

∗
k , τl]

(τ∗k − τl−1)(τ
∗
k+1 − τl)

(τl − τ∗k )(τ
∗
k+1 − τl−1)

≤ (τ∗k − τl−1)

(τl − τ∗k )
. (101)
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This proves the second of (98). Multiplying (100) and (101), we obtain the identity in (97). Besides,
τ∗k ≤ τ∗k+1 ≤ τl+1 and τ∗k+1 − τl−1 ≥ 3(τ∗k − τl−1) since τ

∗
k − τl−1 ≤ τl − τ∗k ≤ τ∗k+1 − τl. This allows

us to recover the upper bound in (97).

Turning to the last bound (99), we also come back to the definition of the energy

E2(t)
(τl+1 − τl−1)

(τl+1 − τl)(τl − τl−1)

=

[(
µ′l+1

τl+1 − τ∗k+1

τl+1 − τl
+ µk+1

τ∗k+1 − τl

τl+1 − τl

)
−
(
µ′l
τ∗k − τl−1

τl − τl−1
+ µk+1

τl − τ∗k
τl − τl−1

)]2

=

[
(µ′l+1 − µk+1)

τl+1 − τ∗k+1

τl+1 − τl
− (µ′l − µk+1)

τ∗k − τl−1

τl − τl−1

]2

≤
[
E(τl, τ

∗
k+1, τl+1)

√
τl+1 − τ∗k+1

(τl+1 − τl)(τ
∗
k+1 − τl)

+E(τl−1, τ
∗
k , τl)

√
τ∗k − τl−1

(τl − τl−1)(τl − τ∗k )

]2
.

This leads us to

E(t) ≤ E(τl, τ
∗
k+1, τl+1)

√
(τl+1 − τ∗k+1)(τl − τl−1)

(τl+1 − τl−1)(τ
∗
k+1 − τl)

+E(τl−1, τ
∗
k , τl)

√
(τ∗k − τl−1)(τl+1 − τl)

(τl − τ∗k )(τl+1 − τl−1)

≤ E(τl, τ
∗
k+1, τl+1)

√
2
τl+1 − τ∗k+1

τl+1 − τl−1
+E(τl−1, τ

∗
k , τl)

√
τ∗k − τl−1

τl − τ∗k
,

where we used again τ∗k − τl−1 ≤ τl − τ∗k ≤ (τ∗k+1 − τ∗k )/2.

8.5 Localized analysis (Proof of Propositions 8 and 11)

We still work conditionally to the event AL,q so that the result of Proposition 7 is valid for large L
and the result of Proposition 10 is true for L > 1. Consider any high-energy change-point τ∗k . The

closest estimated change-point τ̂l to τ
∗
k belongs to the interval [

τ∗k−1+τ
∗
k

2 ,
τ∗k+τ

∗
k+1

2 ]. By symmetry, we
may assume that τ̂l > τ∗k , also if the energy Ek is high enough, Propositions 7 and 10 enforce that
τ̂l − τ∗k ≤ (τ∗k+1 − τ∗k )/4. To alleviate the notation, we write τ for τ̂ in this subsection. We deduce
from Lemma 8 that, for t1 = (τl−1, τ

∗
k , τl) and t2 = (τ∗k , τl, τl+1),

Cr0(τ
(−l,k),Y)− Cr0(τ ,Y) = −((−1)sign(∆t1

)E(t1)−N(t1))
2 + ((−1)sign(∆t2

)E(t2)−N(t2))
2

+Lψ2
q (δ(t1))− Lψ2

q (δ(t2))

This difference is non-negative since τ minimizes the criterion Cr0. This implies that

[E(t1)− |N(t1)|]2+ ≤ [E(t2) + |N(t2)|]2 + L(ψ2
q (δ(t1))− ψ2

q (δ(t2))) . (102)

First, we control the energies E(t1) and E(t2).

Lemma 16. The energy E(t1) satisfies

E2(t1) ≥ [τl − τ∗k ]

[
E2
k

16(τ∗k+1 − τl)

∨ ∆2
k

8

]
.

55



Turning to E(t2), we have E(t2) = 0 if τl+1 ≤ τ∗k+1. If τl+1 > τ∗k+1, then, since τ
∗
k+1 is not a

(
√
L+

√
ℓ, q, τ (k+1))-high energy change-point, we get

E2(t2) = [τl − τ∗k ](θτ∗k+1:τl+1
− µk+1)

2 (τl+1 − τ∗k+1)
2

(τl+1 − τl)(τl+1 − τ∗k )

≤ (τl − τ∗k )(τl+1 − τ∗k+1)

(τ∗k+1 − τl)(τl+1 − τ∗k )
(
√
L+

√
ℓ)2ψ2

q (δ(τl, τ
∗
k+1, τl+1))

(a)

≤ τl − τ∗k
τ∗k+1 − τl

(
√
L+

√
ℓ)2

[
2 log

(
n(τl+1 − τl)

(τl+1 − τ∗k )(τ
∗
k+1 − τl)

)
+ q

]

(b)

≤ τl − τ∗k
τ∗k+1 − τl

(
√
L+

√
ℓ)2
[
2 log

(
n

τl+1 − τ∗k

)
+ q

]

≤ τl − τ∗k
τ∗k+1 − τl

(
√
L+

√
ℓ)2

[
2 log

(
n

τ∗k+1 − τ∗k

)
+ q

]

(c)

≤ τl − τ∗k
τ∗k+1 − τl

(
√
L+

√
ℓ)2ψ2

q

[
δ(τ∗k−1, τ

∗
k , τ

∗
k+1)

]
,

where we used in (a) that x(log(t/x)+1) ≤ log(t)+1 for t ≥ 1 and x ≤ 1, in (b) that τ∗k+1 ≤ τl and
in (c) that τl is closer to τ

∗
k than to τ∗k+1. Together with Lemma 16, we obtain that E2(t1) ≥ 2E2(t2)

provided τ∗k is a (
√
32(

√
L+

√
ℓ), q) high-energy change-point. Since (x − y)2+ ≥ 3x2/4 − 3y2 and

(x+ y)2 ≤ 5/4x2 + 5y2, we deduce from (102) that

E2(t1)

8
≤ 3N2(t1) + 5N2(t2) + L(ψ2

q (δ(t1))− ψ2
q (δ(t2))) .

Then, we use Lemma 16 to deduce that

[τl − τ∗k ]∆
2
k ≤ c

[
N2(t1) + 5N2(t2) + L[ψ2

q (δ(t1))− ψ2
q (δ(t2))]

]
. (103)

Next, we control the random variables |N(t1)| and |N(t2)| relying on a non-asymptotic law of
iterated logarithms.

Case 1: τl+1 − τl ≥ τl − τ∗k . In that situation, the penalty difference satisfies

ψ2
q (δ(t1))−ψ2

q (δ(t2)) = 2 log

[
(τl − τl−1)(τl+1 − τl)

(τ∗k − τl−1)(τl+1 − τ∗k )

]
≤ 2 log

(
τl − τl−1

τ∗k − τl−1

)
≤ 2 log

(
1 +

τl − τ∗k
τ∗k − τl−1

)
,

(104)
since τl is closer to τ

∗
k than τl−1.

To control |N(t1)| and |N(t2)|, we apply Lemma 5 to the variables (Zτ∗k :τ ′ , τ
′ > τ∗k ) and to

the variables (Zτ ′:τ∗k , τ
′ < τ∗k ). Since |τl − τ∗k | ≤ |τ∗k − τl−1|, we have, with probability higher than

1− ce−s,

|N(t1)|1∆2
k |τl−τ∗k |≥1 ≤ c

[√
τ∗k − τl−1

τl − τl−1
+

√
τl − τ∗k
τl − τl−1

][√
s+

√
log log(∆2

k|τl − τ∗k |)
]

≤ c

[√
s+

√
log log(∆2

k|τl − τ∗k |)
]
. (105)
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Note that Zτl:τl+1
= −Zτ∗k :τl+Zτ∗k :τl+1

. Applying again Lemma 5, we derive that, with probability
higher than 1− ce−x,

|Zτl:τl+1
|1∆2

k |τl−τ∗k |≥1 ≤ c
√
τl+1 − τ∗k

[√
log log(∆2

k(τl+1 − τ∗k )) +
√
x

]

≤ c′
√
τl+1 − τl

[√
log log(∆2

k(τl+1 − τl)) +
√
x

]
,

since τl+1 − τl ≥ τl − τ∗k . We have bounded Zτ∗k :τl above. Combining these bounds, we get

|N(t2)|1∆2
k |τl−τ∗k |≥1 ≤ c

√
τl+1 − τl
τl+1 − τ∗k

[√
x+

√
log log(∆2

k|τl − τ∗k |)
]

+c′
√

τl − τk∗

τl+1 − τ∗k

[√
x+

√
log log(∆2

k(τl+1 − τl)|)
]

≤ c

[√
x+

√
log log(∆2

k|τl − τ∗k |)
]
.

Gathering (102) and (104), we deduce from (103) that

|τl − τ∗k |∆2
k1∆2

k |τl−τ∗k |≥1 ≤ c

[
x+ log log(∆2

k|τl − τ∗k |) + L log

(
1 +

τl − τ∗k
τ∗k − τl−1

)]
. (106)

The expression inside the last logarithm is smaller or equal to 2, which implies that |τl − τ∗k |∆2
k ≤

c′(x ∨ L) with probability higher than 1 − c′′e−x. If we restrict ourselves to L ≤ L0 (where L0 is
the absolute constant introduced in Proposition 7), the above inequality yields

|τl − τ∗k |∆2
k ≤ c(x ∨ 1) .

When L is larger than L0 (as in Proposition 7), we know from that proposition that τ∗k − τl−1 ≥
(τ∗k − τ∗k−1)/2. Since (τ∗k+1 − τ∗k )∆

2
k ≥ E2

k ≥ κLψ
2
q [δ(τ

∗
k , τ

∗
k , τ

∗
k+1)] ≥ 2κL since q ≥ 2. Then, we

deduce from (106) that

|τl − τ∗k |∆2
k1∆2

k |τl−τ∗k |≥1 ≤ c

[
x+ L log

(
1 +

∆2(τl − τ∗k )

2κL

)]
≤ c

[
x+

L

2κL
∆2(τl − τ∗k )

]

Provided that we fix κL in such a way that κL ≥ cL (where c is the same constant as in the above
inequality), we conclude that

|τl − τ∗k |∆2
k1∆2

k|τl−τ∗k |≥1 ≤ c′ [x ∨ 1] ,

with probability higher than 1− c′′e−x.

Case 2: τl+1 − τl ≤ τl − τ∗k . This situation does not arise for large L ≥ L0 setting as justified in
Proposition 7. We still use the same deviation bound (105) for |N(t1)|, but we need to rely on a
different approach for N(t2).

Fix any q ≥ 1 and τ ′q = τ∗k2
q⌈1/∆2

k⌉. Applying Lemma 9 with n replaced by τ ′q − τ∗k , we derive
that, with probability higher than 1− x, we have simultaneously over all τ ∈ [τ ′q/2; τ

′
q]

N2(τ∗k , τ, τ
′
q) ≤ 2 log

(
(τ − τ∗k )(τ

′
q − τ∗k )

(τ ′q − τ)(τ − τ∗k )

)
+ c1 log log

(
(τ − τ∗k )(τ

′
q − τ∗k )

(τ ′q − τ)(τ − τ∗k )x

)
+ c2 log

(
1

x

)
+ c3 .
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Applying an union bound over all q, we deduce that, with probability higher than 1− x,

N2(t2)1(τl−τ∗k )∆2∗
k ≥1 ≤ 2 log

(
τl+1 − τ∗k
τl+1 − τl

)
+ c1 log log

(
τl+1 − τ∗k
τl+1 − τl

)

+c2 log log
(
(τl − τ∗k )∆

2
k

)
+ c3 log(

1

x
) + c4 (107)

As for the penalty difference, we have

ψ2
q (δ(t1))− ψ2

q (δ(t2)) = 2 log

[
(τl − τl−1)(τl+1 − τl)

(τ∗k − τl−1)(τl+1 − τ∗k )

]
≤ 2 log(2)− 2 log

(
τl+1 − τ∗k
τl+1 − τl

)
.

Since E(t2) = 0 in that case, it follows from (102) and Lemma 16, we conclude that

|τl − τ∗k |∆2
k1∆2

k |τl−τ∗k |≥1 ≤ c
[
1 + x+ L+ log log(∆2

k|τl − τ∗k |)
]

+c1 log log

(
τl+1 − τ∗k
τl+1 − τl

)
− 2(L− 1) log

(
τl+1 − τ∗k
τl+1 − τl

)
.

Since a log(x) − bx ≤ a log(a/(eb)) for any positive numbers a, b, x, the expression in the second
line is a most c[1 + log((L− 1)−1)+. Hence, we conclude that

|τl − τ∗k |∆2
k ≤ c(x ∨ 1 + log((L− 1)−1)+) ,

with probability higher than 1− ce−x.

Proof of Lemma 16. If τl−1 ≥ τ∗k−1, then the energy expression is simply

E2(t1) = [τl − τ∗k ]∆
2
k

(τ∗k − τl−1)

(τl − τl−1)
≥ [τl − τ∗k ]

∆2
k

2
,

since τ∗k is closer to τl than τl+1. We claim that, even in the more involved situation where
τl−1 < τ∗k−1, one has

E2(t1) ≥ [τl − τ∗k ]
∆2
k

8
. (108)

Coming back to the definition of Ek, we have

E2(t1)

[τl − τ∗k ]E
2
k

≥ (τ∗k+1 − τ∗k−1)

8(τ∗k+1 − τ∗k )(τ
∗
k − τ∗k−1)

≥ 1

8(τ∗k+1 − τ∗k )
≥ 1

16(τ∗k+1 − τl)
,

where we used in the last inequality that 2(τl − τ∗k ) ≤ (τ∗k+1 − τ∗k ).

To finish this proof, it remains to prove (108) when τl−1 < τ∗k−1. In that case, we have

(τl − τl−1)E
2(t1)

[τl − τ∗k ](τ
∗
k − τl−1)

=

(
µk+1 − µk

τ∗k − τ∗k−1

τ∗k − τl−1
− θτl−1:τ

∗
k−1

τ∗k−1 − τl−1

τ∗k − τl−1

)2

=

(
µk+1 − µk + (µk − θτl−1:τ

∗
k−1

)
τ∗k−1 − τl−1

τ∗k − τl−1

)2

.

Since τl − τl−1 ≤ 2(τl − τ∗k ) (τl is closer to τ
∗
k than any other point), it suffices to prove that

|µk − θτl−1:τ
∗
k−1

|τ
∗
k−1 − τl−1

τ∗k − τl−1
≤ 1

2
|µk+1 − µk| . (109)
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Since τ∗k−1 is not a (
√
L+

√
ℓ, q, τ (k−1))-high energy change-point, we have

∣∣θτl−1:τ
∗
k−1

−µk
τ∗k − τ∗k−1

τl − τ∗k−1

−µk+1
τl − τ∗k
τl − τ∗k−1

∣∣ ≤ ψq[δ(τl−1, τ
∗
k−1, τl)][

√
L+

√
ℓ]

τl − τl−1

(τl − τ∗k−1)(τ
∗
k−1 − τl−1)

,

which in turn implies

∣∣θτl−1:τ
∗
k−1

− µk
∣∣τ

∗
k−1 − τl−1

τ∗k − τl−1
≤ |µk+1 − µk|

(τl − τ∗k )(τ
∗
k−1 − τl−1)

(τl − τ∗k−1)(τ
∗
k − τl−1)

+ψq[δ(τl−1, τ
∗
k−1, τl)][

√
L+

√
ℓ]

√
(τl − τl−1)(τ

∗
k−1 − τl−1)

(τl − τ∗k−1)(τ
∗
k − τl−1)2

.

The first expression in the rhs is smaller than |µk+1 − µk|/3 because (τl − τ∗k ) ≤ (τ∗k − τ∗k−1)/2 and
τ∗k−1 ≤ τ∗k . Since x log(t) ≤ log(tx) for t ≥ 1 and x ≤ 1, it follows that

ψq[δ(τl−1, τ
∗
k−1, τl)]

√
τ∗k−1 − τl−1

τl − τl−1
≤

√√√√2 log

(
n

τl − τ∗k−1

)
+ q ≤

√√√√2 log

(
n

τ∗k − τ∗k−1

)
+ q

≤ ψq[δ(τ
∗
k−1, τ

∗
k , τ

∗
k+1)]

≤ Ek

κL
≤ |µk+1 − µk|

κL
(τ∗k − τ∗k−1)

1/2 ,

since we assume that Ek is a κL-high energy change-point. Coming back to θτl−1:τ
∗
k−1

− µk|, this
yields

∣∣θτl−1:τ
∗
k−1

− µk
∣∣τ

∗
k−1 − τl−1

τ∗k − τl−1
≤ |µk+1 − µk|

3
+

√
L+

√
ℓ

κL
|µk+1 − µk|

(τl − τl−1)
√
τ∗k − τ∗k−1

(τ∗k − τl−1)
√
τl − τ∗k−1

≤ |µk+1 − µk|
[
1

3
+ 2

√
L+

√
ℓ

κL

]

≤ |µk+1 − µk|
2

,

where we used that τl is closer to τ
∗
k than τl−1 and that κL is large enough.

8.6 Proofs for the post-processing steps

Proof of Proposition 12. We recall the definition of that the event B1−α of probability higher than
1− α is such that

|N(t)| ≤
√

2 log

(
n(t3 − t1)

(t2 − t1)(t3 − t2)

)
+ ζ1−α , ∀t ∈ T3 . (110)

Under this event, for any τ such that r̂τ < ∞, the interval [t
(τ,r̂τ )
1 + 1; t

(τ,r̂τ )
3 − 1] contains a least

one true change-point, say τ∗k . By definition of the pruning step, the confidence intervals associated
to the pruned change-points P(τ ) do not intersect. Suppose that two change-points, say P(τ )l

and P(τ )l+1, in the segment
( τ∗k−1+τ

∗
k

2 ,
τ∗k+τ

∗
k+1

2

]
. Since both confidence intervals of P(τ )l and

P(τ )l+1 contain at least one change-point, this implies that τ∗k belongs to these two intervals which
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contradicts the non intersection property.For k = 1 and k = K, the same argument applies with

[2;
τ∗1+τ

∗
2

2 ] and [
τ∗K−1+τ

∗
K

2 ;n] respectively.

Let us turn to the second result. Consider a (κ, ζ21−α)-high-energy change-point τ∗k and assume
that there exists τl such that

|τl − τ∗k | <
(τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k )

8
.

Consider any r ≥ |τl− τ∗k |∧ τl∧ (n+1− τl). Writing down the energy of t(τl,r) and relying on (110),
we derive that

E(t(τl,r)) = |∆k|
(
1− |τl − τ∗k |

r

)

+

√
r

2
, |N(t(τl,r))| ≤

√
2 log

(
2
n

r

)
+ ζ1−α .

Let rl be the smallest r > 0 such that E(t(τl,r)) ≥ 2
√

2 log
(
2nr
)
+ 2ζ1−α. Since |C(t(τl,r))| ≥

E(t(τl,r))− |N(t(τl,r))|, we have rl ≥ r̂τl . This implies that

r̂τl ≤ 2|τl − τ∗k | ∨




64
[√

log
(
n∆2

k

)
+ ζ1−α/

√
2
]2

∆2
k



< 1 +

(τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k )

4
, (111)

since τ∗k is a (κ, ζ21−α)-high-energy change-point and since the constant κ is large enough. In turn,
this also implies that

Iτl ⊂
[
τ∗k − (τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k )

4
, τ∗k +

(τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k )

4

]
. (112)

We prove below that, in P(τ ), there exists a least one change-point, say P(τ )j satisfying
|P(τ )j − τ∗k | ≤ r̂τl . If τl belongs to P(τ ), this is obviously true. Now assume that τl is pruned.
Consequently, there exists τm such that r̂τm ≤ r̂τl and Iτm ∩ Iτl 6= ∅. Since r̂τm ≤ r̂τl an by (112),
this implies that

|τm − τ∗k | ≤
(τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k )

2
.

Recall that Iτm contains at least one true change-point. Hence, τ∗k ∈ Iτm . Therefore,

|τm − τ∗k | ≤ r̂τm − 1 ≤ r̂τl − 1

If τm itself is also pruned, then we show similarly that there exists a change-point τm′ satisfying
|τm′ − τ∗k | ≤ r̂τm − 1 ≤ r̂τl − 1. By recursion, this implies that, there exists one change-point P(τ )j
in P(τ ) such that |P(τ )j − τ∗k | ≤ r̂τl − 1. The result follows.

Proof of Proposition 13. On the event B1−α, we have

|τ − τ∗k | ≤ r̂τ − 1 <
(τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k )

4
. (113)

The first inequality holds since at least one true change-point belongs to Iτ . The second inequality
is proved as (111) in the proof of Proposition 12. As a consequence,

|τ − τk∗ |+ 2r̂τ − 1 < 1 +
3

4
(τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k ) .
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Since the lhs is an integer, this implies that

|τ − τk∗ |+ 2r̂τ − 1 ≤
⌈
3

4
(τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k )

⌉
≤ (τ∗k − τ∗k−1) ∧ (τ∗k+1 − τ∗k ) .

Hence, the interval [τ − 2r̂τ + 1, τ + 2r̂τ − 1) is included in [τ∗k−1; τ
∗
k+1) and only contain the true

change-point τ∗k .

Then, we argue as in the proof of Proposition 11. Fix any x > 0. From Lemma 5 (with
ν = ∆−2

k ), we deduce that, with probability higher than 1− 2e−x, we have

|Zτ∗k−s:τ∗k | ≤ 2
√
2s
√

2 log(log(3∆−2
k s)) + x+ 2 ; (114)

|Zτ∗k :τ∗k+s| ≤ 2
√
2s
√
2 log(log(3∆−2

k s)) + x+ 2 ,

simultaneously over all integers s ≥ ∆−2
k .

Consider any τ ′ ∈ Iτ such that |τ ′ − τ | ≥ ∆−2
k . By symmetry we can assume that τ ′ ≤ τ∗k .

Define t1 = (τ ′, τ∗k , τ + 2r̂τ − 1) and t2 = (τ − 2r̂τ + 1, τ ′, τ∗k ).

‖Πτ ′Y
(τ ;2r̂τ−1)‖2 − ‖Πτ∗k

Y(τ ;2r̂τ−1)‖2 = −C2[t1] +C2[t2]

= −((−1)sign(∆k)E[t1]−N(t1))
2 +N2(t2)

≥ 1

2
E2(t1)−N2(t1)−N2(t2) . (115)

First, we work out the energy.

E2(t1) = |τ∗k − τ ′| |τ + 2r̂τ − 1− τ∗k |
|τ + 2r̂τ − 1− τ ′|∆

2
k ≥ |τ∗k − τ ′|∆

2
k

3
.

Since τ∗k ≤ τ + r̂τ − 1 and τ ′ ≥ τ − r̂τ + 1. Then, we rely on (114) to control the stochastic terms
N(t1) and N(t2).

|N(t1)|
2
√
2

≤
√
τ + 2r̂τ − 1− τ∗k
τ + 2r̂τ − 1− τ ′

√
log(log(e∆−2

k |τ∗k − τ ′|)) + x+ 2

+

√
|τ∗k − τ ′|

τ + 2r̂τ − 1− τ ′

√
log(log(e∆−2

k |τ + 2r̂τ − 1− τ∗k |)) + x+ 2

≤
√

log(log(e∆−2
k |τ∗k − τ ′|)) + x+ 2

+

√
|τ∗k − τ ′|

τ + 2r̂τ − 1− τ ′

√
log(log(e∆−2

k |τ + 2r̂τ − 1− τ ′|)) + x+ 2

≤ 2
√

log(log(e∆−2
k |τ∗k − τ ′|)) + x+ 2 ,

where we used in the last line that the function x 7→ x[log log(a/x) + b] is increasing on (0, 1] for
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any a ≥ e. As for N(t2), we decompose Zτ−2r̂τ+1:τ ′ into Zτ−2r̂τ+1:τ∗k
− Zτ ′:τ∗k to rely on (114)

|N(t2)| ≤
|Zτ ′:τ∗k |√
|τ∗k − τ ′|

+
(|Zτ−2r̂τ+1:τ∗k

| − |Zτ ′:τ∗k |)√
τ ′ − τ + 2r̂τ − 1

√
|τ∗k − τ |

τ∗k − τ + 2r̂τ − 1

≤ 2
√
2
√

log(log(e∆−2
k |τ∗k − τ ′|)) + x+ 2

+4
√
2
√
log(log(e∆−2

k |τ∗k − τ + 2r̂τ − 1|)) + x+ 2

√
|τ∗k − τ ′|

τ∗k − τ + 2r̂τ − 1

≤ 6
√
2
√

log(log(e∆−2
k |τ∗k − τ ′|)) + x+ 2 .

Coming back to (115) we conclude that L(τ) 6= τ ′ if |τ ′ − τ∗k | ≥ ∆−2
k and

|τ∗k − τ ′| ≥ c
log log(e∆−2

k |τ∗k − τ ′|) + x

∆2
k

.

This concludes the proof.

A Proof of the deviation inequalities

A.1 Proof of the law of iterated logarithms lemmas

Proof of Lemma 4. Define, for any integer n > 1, the random walk Sn =
∑n

i=1 ǫi. Let k < n denote
two positive integers. For any s > 0,

E[es(Sn−Sk)] =
n∏

i=k+1

E[esǫi ] ≤
n∏

i=k+1

E[es
2/2] = e(n−k)s

2/2 .

Let Fk denote the sigma-algebra induced by (ǫ1, . . . , ǫk). As Sk is independent of Sn − Sk, this
entails that

E[esSn− s2n
2 |Fk] = esSk− s2k

2 E[es(Sn−Sk)− s2(n−k)
2 ] 6 esSk− s2k

2 .

Hence, esSn− s2n
2 is a super-martingale. Fix x > 0 and let A be the stopping time defined by

A = inf{n ≥ d, Sn ≥ √
nx} .

By definition, SA ≥
√
Ax ≥

√
dx. Hence,

E
[
es

√
dx− s2A

2
]
≤ E

[
esSA− s2A

2
]
≤ E

[
esS1− s2

2
]
≤ 1 .

Now, by definition,

P

[
max

k∈[d,(1+α)d]

∑k
i=1 Yi√
k

≥ x

]
= P[A ≤ (1 + α)d] .

As the function u 7→ e
√
dx− s2u

2 is non-increasing, it follows that

P

[
max

k∈[d,(1+α)d]

∑k
i=1 Yi√
k

≥ x

]
= P

[
es

√
dx− s2A

2 ≥ es
√
dx−s2(1+α)d/2

]
.
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By Markov inequality, we obtain that

P

[
max

k∈[d,(1+α)d]

∑k
i=1 Yi√
k

≥ x

]
≤ e−s

√
dx+s2(1+α)d/2 .

Choosing s = x/[(1 + α)
√
d] concludes the proof of Lemma 4.

Proof of Lemma 5. Let ν > 0, and t1, t2, two integers such that t1 − 1/ν < t2. Without loss of
generality, assume that 1/ν ≥ 1 and that t1 + 1/ν ≤ t2. Up to a renumbering of the indices, the
sum Zt1:t2 can be written

Zt1:t2 =

t2−t1∑

i=1

ǫi .

Consider any non-negative integer s. By Lemma 4, we have

∀x > 0, P

(
sup

t2−t1∈[2s/ν,2s+1/ν]

Zt1:t2√
t2 − t1

> 2x

)
≤ e−

x2

4 .

Let Ts = [t1 + 2s/ν, t1 + 2s+1/ν]. By a union bound, this yields, for any x > 0,

P

(
∃s ≥ 0 : sup

t2∈Ts

Zt1:t2√
t2 − t1

> 2
√

log[(s+ 1)(s + 2)] + x

)
≤

+∞∑

s=0

e−x

(s+ 1)(s + 2)
= e−x . (116)

For any t1, t2 such that t2 − t1 ≥ 2s/ν, s ≤ log[(t2 − t1)ν]/ log 2, hence

(s+ 1)(s + 2) ≤ log[2(t2 − t1)ν] log[4(t2 − t1)ν]

(log 2)2
≤
(
log[

√
8(t2 − t1)ν]

log 2

)2

.

Thus,

log[(s + 1)(s + 2)] ≤ 2 log

(
log[3(t2 − t1)ν]

log 2

)
≤ 2 log log[3(t2 − t1)ν] + 1 .

Plugging this inequality into (116) shows that, with probability larger than 1 − e−x, for any t2 ≥
t1 + 1/ν,

Zt1:t2 ≤ 2
√
t2 − t1(

√
2 log log[3(t2 − t1)ν] + 1 + x) .

Proof of Lemma 6. By definition,

N(tτ ) =

√
n+ 1− τ

n(τ − 1)
Z1:τ − Zτ :n+1

√
τ − 1

(n+ 1− τ)n
.

We control the deviations of N(tτ ) simultaneously for all τ ≤ n/2+ 1 with probability higher than
1 − 6e−x. By symmetry between τ and n + 1 − τ , the desired result follows. Applying Lemma 4
with α = 1 and d = n/2, we show that, with probability at least 1− e−x, for all τ ≤ n/2 + 1,

− Zτ :n+1

√
τ − 1

(n+ 1− τ)n
≤ 2

√
τ − 1

n
x . (117)
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Fix now α > 0 and s ≥ 0. By Lemma 4 applied with d = (1 + α)s, we derive that, for any x ≥ 0,

P

[
∀τ ∈ [(1 + α)s, (1 + α)s+1],

Z1:τ√
τ − 1

≤
√

2(1 + α)x

]
≥ 1− e−x .

A union bound shows then that, for any x > 0,

∀s ≥ 0, ∀τ ∈ [(1 + α)s, (1 + α)s+1],
Z1:τ√
τ − 1

≤
√

2(1 + α)(x + log[(1 + α−1)(s+ 1)1+α]) ,

with probability at least

1−
∑

s≥0

e−(x+log[(1+α−1)(s+1)1+α ]) = 1− αe−x

1 + α

∑

s≥0

1

s1+α
≥ 1− e−x .

Now, for any τ ∈ [(1 +α)s, (1 + α)s+1], we have s ≤ log(τ)/ log(1 + α). As a consequence, we have

s+ 1 ≤ log[(1 + α)τ ]

log(1 + α)
.

It follows that, with probability at least 1− e−x, for any τ ≥ 1,

Z1:τ√
τ − 1

≤
√

2(1 + α)

(
x+ log

[
(1 + α−1)

(
log[(1 + α)τ ]

log(1 + α)

)1+α])

≤
√

2(1 + α)

(
x+ log(1 + α−1) + (1 + α) log

[
log[(1 + α)τ ]

log(1 + α)

])

≤ (1 + α)
√

2(log log[(1 + α)τ ] + x+ Cα) .

Here

Cα =
log(1 + α−1)

1 + α
− log log[1 + α] .

Combined with (117), with probability 1− 2e−x, we proved that, for any τ ≤ n/2 + 1,

N(tτ ) ≤ (1 + α)
√

2(log log[(1 + α)τ ] + x+ Cα)

√
n+ 1− τ

n
+ 2

√
τ − 1

n
x

≤ (1 + α)
√

2(log log[(1 + α)τ ] + 3x+ Cα) .

Here, we used the inequality

(
√
1− ua+

√
ub)2 = (1− u)a2 + 2

√
u(1− u)ab+ ub2 ≤ a2 + b2,

which holds for any u ∈ [0, 1], a, b > 0 with

a = (1 + α)
√

2(log log[(1 + α)τ ] + x+Cα), b = 2
√
x, u =

τ − 1

n
.

The term log log(en/τ) is obtained similarly by applying Lemma 4 to bound the deviations of Z1:τ

on the intervals [n/(1 + α)s+1;n/(1 + α)s]. Combining both results shows that, with probability
larger than 1− 3e−x, for all τ ≤ n/2 + 1

N(tτ ) ≤ (1 + α)

√
2

(
log log

[
(1 + α)

(
τ ∧ n

τ

)]
+ 3x+ Cα

)
.

The result follows.
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Proof of Lemma 7. Recall that

N(tτ ) =

√
(τ − 1)(n + 1− τ)

n

(
Z1:τ

τ − 1
+

Zτ :n+1

n+ 1− τ

)
. (118)

Let us first apply Lemma 4. For any s ≥ 0, with probability 1− e−x/(s + 1)(s + 2), we have

Z1:τ

(τ − 1)1/2
≤ 2
√

log[(s + 1)(s + 2)] + x , (119)

uniformly over all τ ∈ [τ∗/2s+1, τ∗/2s]. For any τ ≤ τ∗/2s, s ≤ log(τ∗/τ)/ log 2, hence,

(s+ 1)(s + 2) ≤ log(eτ∗/τ) log(e2τ∗/τ)
(log 2)2

≤
(
log(e3/2τ∗/τ)

log 2

)2

.

Hence, by the inequality log(a+ x) ≤ log a+ log(1 + x) valid for any x ≥ 0 and a ≥ 1,

log[(s + 1)(s + 2)] ≤ 2 log
(
3/2 + log[τ∗/τ ]

)
− 2 log log 2

≤ 2 log[3/(2 log 2)] + 2 log log(eτ∗/τ)

≤ 1.6 + 2 log log

(
e
τ∗ − 1

τ − 1

)
. (120)

Moreover, for any τ ≤ τ∗, we have n+ 1− τ∗ ≤ n+ 1− τ and

τ∗ − 1

τ − 1
= γ−1

τ

n+ 1− τ∗

n+ 1− τ
≤ γ−1

τ .

Applying a union bound over all non-negative integers s, we derive that, with probability higher
than 1− e−x, simultaneously over all τ ≤ τ∗,

Z1:τ

(τ − 1)1/2
≤ 2

√
2 log log

(
eγ−1
τ

)
+ x+ 1.6 . (121)

We proceed similarly for Zτ :n+1/(n+1− τ). It follows from Lemma 4 that, for any s ≥ 0, with
probability 1− e−x/(s+ 1)(s + 2), uniformly over all τ ∈ [2s(n+ 1− τ∗), 2s+1(n+ 1− τ∗)],

Zτ :n+1

(n+ 1− τ)1/2
≤ 2
√

log[(s+ 1)(s + 2)] + x . (122)

Arguing exactly as when we deduced (121) from (119), we obtain that, simultaneously over all
τ ≤ τ∗,

Zτ :n+1

(n+ 1− τ)1/2
≤ 2

√
2 log log

(
eγ−1
τ

)
+ x+ 1.6 , (123)

with probability higher than 1− e−x. Plugging (121) and (123) into (118), we get

N(tτ ) ≤
2√
n

√
2 log log

(
eγ−1
τ

)
+ x+ 1.6(

√
τ − 1 +

√
n+ 1− τ) ≤ 4

√
log log

(
eγ−1
τ

)
+ x+ 1 .

Here, we used for the last inequality that
√
a+

√
n− a ≤

√
2n for any a ∈ [0, n].
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A.2 Proof of Lemmas 9 and 10

We first establish Lemma 9. For any t ∈ T3, define

Xt =
(t3 − t2)(t2 − t1)

(t3 − t1)

[
Zt1:t2
t2 − t1

− Zt2:t3
t3 − t2

]
,

so that Zt =
√

(t3−t2)(t2−t1)
t3−t1 Xt. In the sequel, we write δ1 and δ2 for t2− t1 and t3− t2 respectively.

Given a centered sugGaussian random variable Y , it sub-Gaussian norm ‖Y ‖ψ2 is defined the

smallest σ such that E[esY ] ≤ es
2σ2/2 for all s ∈ R. Defining σ2(t) = δ1δ2

δ1+δ2
∈ [(δ1 ∧ δ2)/2, δ1 ∧ δ2),

we observe that Zt = Xt/σ(t) and that the sub-Gaussian norm of Xt is less or equal to σ(t).
We prove Lemma 9 using an adaptive peeling argument as in Dümbgen and Spokoiny [20].

Denote T+ (resp. T−) the subset of vectors t ∈ T3 satisfying δ1 ≤ δ2 (resp. δ2 ≤ δ1). We focus on
triads t ∈ T+, triads in T− being handled analogously. Given any t 6= t′ in T+, define

ρ2(t, t′) = |t1 − t′1|+ |t2 − t′2|+ |t3 − t′3|
(
δ1
δ2

+
δ′1
δ′2

)2

. (124)

The next lemma bounds the deviations of Xt −Xt′ in terms of ρ(t, t′).

Lemma 17. For any t, t′ ∈ T+, we have

‖Xt −Xt′‖2ψ2
≤ 7

2
ρ2(t, t′) . (125)

In other words, Xt −Xt′ is small if (t1, t2) is close to (t′1, t
′
2) and either if |t3 − t′3| is small or if

δ1/δ2 and δ′1/δ
′
2 are small.

To formalize our adaptive peeling argument, we partition T+ into the collections

T (k,q)
+ := {t ∈ T+, δ1 ∈ [n2−k, n2−k+1), δ2 ∈ [n2q−kn, 2q−k+1} ,

where k = 1, . . . , ⌈log2(n)⌉ and q = 0, . . . , k − 1. Given any κ ∈ (0, 1), we denote Sk,q,κ a minimal

covering of T (k,q)
+ of radius rk,κ := κ

√
n2−k+1 with respect to the semi-metric ρ.

Lemma 18. For any κ ∈ (0, 1) and positive integer k ≤ ⌈log2(n)⌉, we have

|Sk,q,κ| ≤ c · 2
k−q

κ6
, (126)

for a numerical constant c > 0.

For t ∈ T (k,q)
+ , we write πk,q,κ(t) for any closest element of t in Sk,q,κ. Given any integer

k ≤ ⌈log2(n)⌉, define l(k) := ⌈ log(log(n))log(k) ⌉. Using a chaining argument with the collections (Sk,q,k−i),

i = 1, . . . , l(k), we arrive at the decomposition

Xt = Xπk,q,k−1(t) +

l(k)−1∑

i=1

(
Xπk,q,k−i−1(t) −Xπk,q,k−i(t)

)
+Xt −Xπ

k,q,k−l(k))(t) . (127)

Let us first control the deviation of Xt −Xπ
k,q,k−l(k))(t). Since |T+| ≤ n3/6, it then follows from an

union bound over all t, t′ ∈ T+ and from (125) that, with probability higher than 1− x,

|Xt −Xt′ | ≤ ρ(t, t′)
√

42 log(n) + 7 log(1/x) , (128)
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simultaneously over all t and t′ in T+. Next, the random variables Xs, with s ∈ Sk,q,k−1 are simply
controlled using an union bound. With probability higher than 1− x, we have

|Xπk,q,k−1(t)| ≤ σ(πk,q,k−1(t))

√
2 log

(2|Sk,q,k−1|
x

)
, (129)

simultaneously over all t ∈ T (k)
+ . Finally, we consider the differences Xπ

k,q,k−i−1 (t) −Xπ
k,q,k−i(t) for

1 ≤ i ≤ l(k). For a fixed i, there are at most |Sk,q,k−i−1||Sk,q,k−i | ≤ |Sk,q,k−i−1|2 such differences.

Taking an upper bound over all possible Xπk,q,k−i−1 (t)−Xπk,q,k−i(t) with t ∈ T (k)
+ , we conclude that,

with probability higher than 1− x

|Xπk,q,k−i−1 (t) −Xπk,q,k−i (t)| ≤ ρ(πk,q,k−i−1(t), πk,q,k−i(t))

√
7 log

(
2
|Sk,q,k−i−1 |2

x

)
, (130)

simultaneously for all t ∈ T (k)
+ . Then taking an union bound over all i ≤ l(k) − 1 with weight

18x/(π2i2) and gathering it (128) and (129), we conclude that with probability higher than 1− x,
we have

|Xt| ≤ σ(πk,q,k−1(t))

√
2 log

(6|Sk,q,k−1|
x

)
+

l(k)−1∑

i=1

ρ(πk,q,k−i−1(t), πk,q,k−i(t))

√
7 log

(36|Sk,q,k−i−1 |i2
π2x

)

+ρ(t, πk,q,k−l(t))

√
42 log(n) + 7 log

(
3

x

)
,

simultaneously over all t ∈ T (k,q)
+ . For any such t, t′ ∈ T (k,q)

+ , we have

|t1 − t′1|+ |t2 − t′2|+ 22−2q|t3 − t′3| ≤ ρ2(t, t′) ≤ |t1 − t′1|+ |t2 − t′2|+ 24−2q|t3 − t′3|

Hence, we get

ρ2(πk,q,k−i−1(t), πk,q,k−i(t)) ≤ 4
[
ρ2(πk,q,k−i−1(t), t)+ρ2(πk,q,k−i(t), t)

]
≤ 8ρ2(πk,q,k−i(t), t) ≤ 8k−2in2−k+1 ,

and σ(t) ≥
√
δ1/2 ≥

√
n2−k−1. Then, relying on Lemma 18, we conclude that

|Xt|
σ(t)

≤ σ(πk,q,k−1(t))

σ(t)

√
2 log(2k−q) + 12 log(k) + c+ 2 log(1/x)

+c′
∞∑

i=1

k−i
√
k − q + log(i) + i log(k) + 1 + log(1/x) + c′′

√
log(1/x) + 1√

log(n)

≤
√

2 log(2k−q) + c1 log(k) + c2 + c3 log(
1

x
)

+
|σ(πk,k−1(t))− σ(t)|

σ(t)

√
2k + 12 log(k) + c+ 2 log(1/x) .

Lemma 19. For κ ∈ (0, 1) and t ∈ T (k)
+ , we have

|σ(t)− σ(πk,q,κ(t))|
σ(t)

≤
2r2k,κ
σ2(t)

≤ 8κ2 .
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With this last lemma, we obtain

|Xt|
σ(t)

≤
√

2 log(2k−q) + c1 log(k) + c2 + c3 log(
1

x
) ,

simultaneously over all t ∈ T (k,q)
+ with probability higher than 1− x. Taking an union bound over

all k and q with weights 36x/[π2k2q2], we conclude that, with probability higher than 1− x,

|Xt|
σ(t)

≤
√
2 log(2k) + c′1 log(k) + c′2 + c′3 log(

1

x
) ,

simultaneously over all t ∈ T (k,q)
+ with k = 1, . . . , ⌈log2(n)⌉ and q = 1, . . . , k. Since t ∈ T (k,q)

+ , we
have 2k ≤ 2n/δ1, which implies

|Xt|
σ(t)

≤
√

2 log

(
n(δ1 + δ2)

δ1δ2

)
+ c′1 log log

(
n(δ1 + δ2)

δ1δ2

)
+ c′2 + c′3 log(

1

x
) .

Proof of Lemma 17. By symmetry, we assume that δ2 ≥ δ′2. Let us upper bound ‖Xt − Xt′‖2ψ2
.

Since Xt − X ′
t decomposes as

∑(t3∨t′3)−1

i=t1∧t′1
αiǫi for some αi’s, its squared sub-Gaussian norm is at

most
∑

i α
2
i . The value of the αi’s depends on whether i belongs to [t1, t2), [t2, t3), [t

′
1, t

′
2] or [t

′
2, t

′
3).

More precisely, we have

(a) |αi| ≤ 1 if i ∈ ([t1, t2) ∩ [t′1, t
′
3)
c) ∪ ([t′1, t

′
2) ∩ [t1, t3)

c)

(b) |αi| ≤ (δ1/δ2 + δ′1/δ
′
2) if i ∈ ([t2, t3) ∩ [t′1, t

′
3)
c) ∪ ([t′2, t

′
3) ∩ [t1, t3)

c)

(c) |αi| ≤ 3/2 if i ∈ ([t1, t2) ∩ [t′2, t
′
3)) ∪ ([t′1, t

′
2) ∩ [t2, t3))

(d) For i ∈ ([t1, t2) ∩ [t′1, t
′
2)) ∪ ([t2, t3) ∩ [t′2, t

′
3)), we have

α2
i =

[
δ′1

δ′1 + δ′2
− δ1
δ1 + δ2

]2
≤
[
(δ2 − δ′2)δ

′
1 + δ′2|δ′1 − δ1|

(δ′1 + δ′2)(δ1 + δ2)

]2
.

If δ2 = δ′2, the above expression is less or equal to |δ1 − δ′1|. Now assume that δ2 > δ′2. Using

(a+ b)2 ≤ (1 + x)a2 + (1 + x−1)b2 with x =
δ1+δ′2
δ2−δ′2

yields

α2
i ≤ |δ2 − δ′2|

δ1 + δ2

(
δ′1

δ′1 + δ′2

)2

+
|δ1 − δ′1|2δ

′2
2

(δ′1 + δ′2)
2(δ1 + δ2)(δ1 + δ′2)

≤ |δ2 − δ′2|
δ1 + δ2

(
δ′1

δ′1 + δ′2

)2

+
|δ1 − δ′1|
δ1 + δ2

.

There are at least δ1 + δ2 indices of type (d). If [t1, t3) ∩ [t1, t
′
3) 6= ∅, then there are at most

|t1 − t′1| indices of type (a), |t3 − t′3| indices of type (b) and |t2 − t′2| indices of type (c). This leads
us to 6

‖Xt −Xt′‖2ψ2
≤ |t1 − t′1|+

9

4
|t2 − t′2|+ |t3 − t′3|

(
δ1
δ2

+
δ′1
δ′2

)2

+ |δ2 − δ′2|
(

δ′1
δ′1 + δ′2

)2

+ |δ1 − δ′1|

≤ 7

2
ρ2(t, t′) .
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Now assume that [t1, t3) ∩ [t1, t
′
3) = ∅. For instance, assume that t3 ≤ t′1. Then,

‖Xt −Xt′‖2ψ2
≤ δ1 + δ′1 + (δ2 + δ′2)

(
δ1
δ2

+
δ′1
δ′2

)2

≤ [δ1 + 2δ2] +
[
δ′1 + 2δ2

]
+ (t3 − t′3)

(
δ1
δ2

+
δ′1
δ′2

)2

≤ 2ρ2(t, t′) ,

where we used that |t′1 − t1| ≥ δ1 + δ2 and |t′2 − t2| ≥ δ′1 + δ2.

Proof of Lemma 18. Let us upper bound |Sk,q,κ| by building a covering subset S ′
k,q,κ of T

(k,q)
+ . First,

we consider the case where q ≥ 3. Take a regular subgrid (containing n) of {1, . . . , n} with radius
⌈r2k,κ/6⌉. Then, given any t1 on this grid, we build a regular grid (containing t1 + ⌊n2−k+1⌋) of

[t1 + n2−k, t1 + n2−k+1] with radius ⌈r2k,κ/6⌉. Finally, given any such t1 and t2, we construct a

regular grid (containing t2 + ⌊n2q+1−k⌋ and t2 + ⌊n2q−k⌋ ) of [t2 +2q−kn, t2 +n2q+1−k] with radius
⌈r2k,κ22q−5⌉.

|S ′
k,q,κ| ≤

n

⌈r2k,κ/6⌉
· n2

−k+1

⌈r2k,κ/6⌉
· n2q−k

⌈r2k,κ22q−5⌉ ≤ c
2k−q

κ6
.

It remains to check that S ′
k,q,κ is a covering subset. Consider any t ∈ T (k,q)

+ and define t ∈ S ′
k,q,κ

in such a way that t1 − t1 > 0 is the smallest possible, then t2 − t2 > 0 is the smallest possible
and finally t3 ≥ t3 is the smallest possible. Obviously, we have |t1 − t1| ≤ r2k,κ/6, |t2 − t2| ≤ r2k,κ/3.

Since |t3 − t2| ≥ 2q−kn ≥ 2qr2k,κ/2, we have t3 ≥ t2. t3 ∈ [t2 + 2q−kn, t2 + 2q−k+1n] so that

|t3 − t3| ≤ (r2k,κ2
2q−5) ∨ (r2k,κ/3) ≤ r2k,κ2

2q−5 since q ≥ 3. We have

ρ(t, t) ≤
r2k,κ
2

+ r2k,κ2
2q−5

[
δ1
δ2

+
δ1

δ2

]2
≤
r2k,κ
2

+
r2k,κ
2

≤ r2k,κ ,

since both δ1/δ2 and δ1/δ2 are at most 2−q+1. This proves that |Sk,q,κ| ≤ c2
k−q

κ6
for any q ≥ 3.

It remains to consider the case q ≤ 2. We build the same covering subsets as S ′
k,q,κ above except

the radius of each of the subgrid is at most ⌈r2k,κ/16⌉. One easily checks that |S ′
k,q,κ| ≤ c′2kκ−6 ≤

4c′2k−qκ−6. Then, given t ∈ T (k,q)
+ , we build t as above. One easily checks that |t1 − t1| ≤ r2k,κ/16,

|t2 − t2| ≤ r2k,κ/8 and that |t2 − t2| ≤ r2k,κ/8 Since ρ(t, t) ≤ |t1 − t1|+ |t2 − t2|+4|t3 − t3| ≤ r2k,κ, we
obtain the desired result.

Proof of Lemma 19. Recall that σ2(t) = δ1δ2/(δ1 + δ2) and write for short t = πk,κ(t)) and (δ1, δ2)
the corresponding segment length.

|σ2(t)− σ2(t)| =
∣∣∣δ1

δ2
δ1 + δ2

− δ1
δ2

δ1 + δ2

∣∣∣ ≤ |δ1 − δ1|+ δ1
δ1|δ2 − δ2|+ δ2|δ1 − δ1|

(δ1 + δ2)(δ1 + δ2)

≤ 2
[
|t1 − t1|+ |t2 − t2|

]
+
δ1δ1

δ2δ2
|t3 − t3|

≤ 2ρ2(t, t) ≤ 2r2k,κ ,
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where we used in the second line that |δj − δ′j | ≤ |tj − t′j| + |tj − t′j+1| for j = 1, 2. Since σ2(t) ≥
(δ1 ∧ δ2)/2 ≥ n2−k−1, we obtain

|σ(t) − σ(πk,κ(t))|
σ(t)

≤
2r2k,κ
σ2(t)

≤ 8κ2 .

Proof of Lemma 10. Fix ℓ > 1. For any a > 0, b > 0 and any z > 0, we have b log(z) ≤ az +
b log[(b/ae) ∨ e]. Applying Lemma 9, we deduce that, uniformly over all t ∈ T , one has

N2(t) ≤ 2ℓ2 log

(
n(δ1(t) + δ2(t)

δ1(t)δ2(t)

)
+ (c1 + c2) log

(
1

x

)
+ c3 + c1 log

(
c1
ℓ− 1

∨ e
)

,

with probability higher than 1 − x. Then, taking x = exp[−q/(2(c1 + c2))] and assuming that
q ≥ 2[c3 + c1 log(

c1
ℓ−1 ∨ e], we conclude that P [AL,q] ≥ 1− e−c

′q.
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