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Résumé. L’article propose une procédure d’estimation rapide et asymptotiquement ef-
ficace des paramètres des modèles linéaires généralisés à variables catégorielles. Des estima-
teurs explicites existent [2] pour ces modèles mais ils ne sont pas toujours asympotiquement
efficaces, notamment pour les modèles à effets simples. La procédure proposée dans cet ar-
ticle est basée sur une approche one-step où une unique étape de la descente de gradient est
effectuée sur la fonction de log-vraisemblance initialisée à partir des estimateurs explicites.
Ce travail présente de manière succincte les résultats théoriques obtenus, les simulations
effectuées et une application à la tarification en assurance automobile.

Mots-clés. modèles linéaires généralisés, procédure one-step, assurance.

Abstract. The article proposes a quick and asymptotically efficient estimation proce-
dure for the parameters of generalized linear models with categorical variables. The article
proposes a procedure for rapid and asymptotically efficient estimation of the parameters of
generalized linear models with categorical variables. Explicit estimators exist for these mod-
els [2] but they are not always asymptotically efficient, especially for models with simple
effects. The procedure proposed in this article is based on a one-step approach where a sin-
gle gradient descent step is performed on the initial log-likelihood function initialized with
the explicit estimators. This work succinctly presents the theoretical results obtained, the
simulations performed, and an application to automobile insurance pricing.

Keywords. generalized linear models, one-step procedure, insurance.

1 Notations for GLMs with categorical variables

The observation sample Y = (Y1, . . . , Yn) is composed of independent random variables
valued in Y ⊂ R where for i ∈ I, Yi belongs to the one-parameter exponential family of
probability measures valued in Λ ⊂ R. In this setting, the log-likelihood logL of the sample
is

logL(ϑ, ϕ |Y ) =
n∑

i=1

λi(ϑ)Yi − b (λi(ϑ))

a(ϕ)
+

n∑
i=1

c(Yi, ϕ), (1)
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where a : R → R, b : Λ → R and c : Y × R → R are fixed real-valued measurable functions
and ϕ is the dispersion parameter. Here, λ1, λ2, . . . , λn are related to exogenous explanatory
variables xi, i = 1, . . . , n by the relations

g(EϑYi) = xT
i ϑ =: ηi, for all ϑ ∈ Θ, i = 1, . . . , n, (2)

or, equivalently,
b′(λi) = g−1(ηi), i = 1, . . . , n.

The parameter ϑ ∈ Θ ⊂ Rp and ϕ in (1) are to be estimated. The function g is called the
link function in the regression framework.

Let us consider m categorical explanatory variables (z
(j)
i )i=1,...,n, j = 2, . . . ,m + 1, that

take values in a finite set {vj,1, . . . , vj,dj}. Assuming values are unordered, we encode our
explanatory variables using binary dummies as

x
(j),k
i = 1{z(j)i =vj,k}

, k ∈ {1, . . . , dj}.

These binary dummies can be used both in single-effect models or in cross-effect models. The
equation (2) can be generally reconstructed in the following way:

g (EϑYi) =ϑ1 +
m+1∑
j=2

dj∑
k=1

x
(j),k
i ϑ

(j)
k Intercept and single effect

+
∑
j2<j3

∑
k2,k3

x
(j2),k2
i x

(j3),k3
i ϑ

(j2,j3)
k2,k3

Double effect

+
∑

j2<j3<j4

∑
k2,k3,k4

x
(j2),k2
i x

(j3),k3
i x

(j4),k4
i ϑ

(j2,j3,j4)
k2,k3,k4

Triple effect

+ . . .

+
∑

k2,...,km+1

x
(2),k2
i . . . x

(m+1),km+1

i ϑ
(2,...,m+1)
k2,...,km+1

, All crossed effect

(3)

where indexes ji are in {2, . . . ,m+ 1} and kj are in {1, . . . , dj} for j = 2, . . . ,m+ 1.

In the setting of categorical explanatory variables, the model (3) is not identifiable and
linear constraints have to be imposed. For this reason, we consider a restricted parameter ϑ̃
which is new from our previous studies [1, 2].

The MLE (̂̃ϑn, ϕ̂n) for (ϑ̃, ϕ) satisfies

(̂̃ϑn, ϕ̂n) = arg max
(ϑ̃,ϕ)∈Θ̃×R+

∗

logL(ϑ̃, ϕ |Y ). (4)

It is worth mentioning that the MLE is asymptotically efficient generally but not in
a closed form and its computation can be time-consuming for large samples or numerous
explanatory variables.
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2 One-step closed-form estimator

2.1 Closed-form Estimator

The closed-form estimator (CFE) of the restricted parameter is defined in [1, 2] by

ϑ̃CFE
n = (Q̃T Q̃)−1Q̃Tg(Y n).

where

g(Y n) =


g(Y

1

n)
...

g(Y
k

n)
...

g(Y
d

n)

 , Y
k

n =

n∑
i=1;ηi=hk

Yi

mk

, mk = #{i ∈ {1, . . . , n}; ηi = hk} (5)

where hk are the different possible values of the linear predictors defined in (2). Here, the

matrix Q̃ is related to the identifiability condition and to the structure of the model (3).

It is known that the CFE is asymptotically normal, namely

√
n(ϑ̃CFE

n − ϑ̃)
L−→

n→+∞
Np⋆

(
0p⋆ , a (ϕ) (Q̃

T Q̃)−1Q̃TΣ−1(ϑ̃)Q̃(Q̃T Q̃)−1
)

(6)

where Σ−1(ϑ) is defined in [2].

In general, for instance in single effect models, the CFE is not the MLE and is not
asymptotically efficient. Hence, we consider a one-step version of ϑ̃CFE

n in the next subsection.

2.2 One-Step Closed-form Estimator

The One-Step Closed-form Estimator (OS-CFE) of ϑ̃ is defined as

ϑ̃OS−CFE
n = ϑ̃CFE

n + Ĩn(ϑ̃
CFE
n )−1S̃(ϑ̃CFE

n )

where S̃ stands for the score S̃(ϑ̃) = ∇ϑ̃L((ϑ̃, ϕ) |Y ) and Ĩn stands for the Fisher Information

matrix Ĩn(ϑ̃) = −E
(
∇2

ϑ̃
L(ϑ̃, ϕ |Y )

)
which can be described in terms of the matrix Q̃.

It is worth emphasizing that the OS-CFE of ϑ̃ does not depend on the dispersion param-
eter ϕ by simplification. The main result is that the OS-CFE of the restricted parameter ϑ̃
is asymptotically equivalent to the MLE.

Theorem 1. Under the regularity conditions, as soon as for all j = 1, . . . , d the frequencies
mj

n
→ pj as n → ∞,

√
n(ϑ̃OS−CFE

n − ˆ̃ϑn)
P−→

n→+∞
0.

It also means that the OS-CFE is asymptotically normal with an optimal asymptotic
variance.
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3 Monte Carlo illustrations

The performances on finite size samples of the aforementioned estimators (MLE, CFE, OS-
CFE), in terms of computation times and asymptotic variances, are assessed with numerical
examples. Monte Carlo simulations of samples for Poisson and Gamma GLMs are done.

In this numerical example the canonical setting is used (ℓ is the identity function) leading
to a log link function for the Poisson distribution (g(x) = log(x)) and the inverse link function
for the Gamma distribution (g(x) = 1/x).

The sequence of OS-CFE naturally overcomes the performance of CFE in terms of asymp-
totic variance (see Figures 1 and 2). According to the other comparison in terms of compu-
tation time which is highlighted in Table 1, OS-CFE is almost 50 times faster than MLE to
be computed for the dataset with the size of n = 104.

Computation time MLE CFE OS-CFE

Poisson 848.07 9.05 17.73
Gamma 1601.44 10.65 31.61

Table 1: Total computation time (s) for Poisson and Gamma distributions

Figure 1: Histograms for the B = 104 simulations of the renormalized statistical errors of
MLE, CFE, OS-CFE for the Poisson distribution with 2 categorical variables with d2 = 2,
d3 = 3 for ϑ1 and ϑ

(2)
2 . Red and blue lines are the theoretical Gaussian asymptotic densities

respectively of the MLE (in red) and CFE (in blue).
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Figure 2: Histograms for the B = 104 Monte Carlo simulations of the renormalized statistical
errors of MLE, CFE, OS-CFE for the Gamma distribution (canonical link) with 2 categorical

variables with d2 = 2, d3 = 3 for ϑ1 and ϑ
(2)
2 and fixed ϕ = 8. Red and blue lines are the

theoretical Gaussian asymptotic densities respectively of the MLE (in red) and CFE (in
blue).

4 Application to claim amounts in car insurance

The Covea Affinity dataset under study is composed of 76,446 claim amounts ranging from
4 to 33,531 EUR. Three covariates have been selected from the 124 available for the pricing
of the guarantee

• vehicle brand with d2 = 2 modalities,

• pricing segment with d3 = 6 modalities,

• age class with d4 = 8 modalities.

For confidentiality reasons, the modality values are not revealed.

The single effect models

g (EϑYi) = ϑ1 +
m+1∑
j=2

dj∑
k=1

x
(j),k
i ϑ

(j)
k ,

is generally used by the insurers to model the claim amounts with (non-canonical) Gamma
GLMs with a log link function (g(x) = log(x)). The “reference category” linear contrast has
been used. It is worth recalling that in this setting the MLE has no closed form and the
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closed-form estimator is not efficient. In order to compute the log-likelihood, we use Equation
(4) to fit the dispersion parameter.

The one-step estimator has been applied to the Covea dataset. It is almost 30 times faster
than the MLE with similar estimation.

CFE OSCFE MLE
ϑ1 6.23 6.04 6.03

ϑ
(2)
2 0.24 0.08 0.03

ϑ
(3)
2 0.18 0.22 0.22

ϑ
(3)
3 -0.48 0.04 -0.01

ϑ
(3)
4 -0.07 0.08 0.09

ϑ
(3)
5 0.06 0.18 0.19

ϑ
(3)
6 0.20 0.21 0.22

ϑ
(4)
2 -0.07 0.00 0.01

ϑ
(4)
3 0.06 0.16 0.16

ϑ
(4)
4 0.17 0.18 0.18

ϑ
(4)
5 0.34 0.41 0.40

ϑ
(4)
6 0.11 0.44 0.42

ϑ
(4)
7 0.16 0.25 0.26

ϑ
(4)
8 -0.01 0.34 0.33

logL -554,868 -553,708 -553,685
Time (s) 0.01 0.01 0.30

Table 2: Values of ϑ̂n, log-likelihood and total computation time (s) for CFE, OSCFE and
MLE

5 Conclusion

Generalized linear models with single effects and single categorical explanatory variables are
widely used in different applications (insurance, agriculture, biology). The classical iterative
re-weighted least square calibration method is asymptotically efficient, but can be time con-
suming for large datasets. On the other hand, closed-form estimators proposed in [2] are
faster to compute, but they are not asymptotically efficient.

In this paper we proposed fast and asymptotically efficient method for the calibration
of GLMs with categorical explanatory variables based on the one-step procedure that can
also be applied to single effect models. It is 30 times faster on the simulated and the Covea
Affinity datasets compared with the classical methods.
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