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Abstract
Smart homes are equipped with several sensor networks to keep an eye on both residents and their environment, to interpret 
the current situation and to react immediately. Handling large scale dataset of sensory events on real time to enable efficient 
interventions is challenging and very difficult. To deal with these data flows and challenges, traditional streaming data clas-
sification approaches can be boosted by use of incremental learning. In this paper, we presented two new Incremental SVM 
methods to improve the performance of SVM classification in the context of human activity recognition tasks. Two feature 
extraction methods elaborated by refining dependency sensor extraction feature and focusing on the last sensor event only 
have been suggested. On the other hand, a clustering based approach and a similarity based approach have been suggested 
to boost learning performance of the incremental SVM algorithms capitalizing on the relationship between data chunk and 
support vectors of previous chunk. We demonstrate through several simulations on two major publicly available data sets 
(Aruba and Tulum), the feasibility and improvements in learning and classification performances in real time achieved by 
our proposed methods over the state-of-the-art. For instance, we have shown that the introduced similarity-based incremen-
tal learning is 5 to 9 times faster than other methods in terms of training performances. Similarly, the introduced Last-state 
sensor feature method induces at least 5% improvement in terms of F1-score when using baseline SVM classifier.

Keywords Smart home · Activity recognition · Incremental learning · Incremental SVM

1 Introduction

Smart home applications aim to make life easier and more 
convenient for individuals, especially those with restricted 
mobility Vischer (2007); Allameh et al. (2011). Some smart 
homes provide peace of mind to its inhabitants by trans-
mitting regular reports regarding the status of key objects 
and any suspected activities. Others provide energy sav-
ings through intelligent management of user’s location and 
activities. Smart home technologies also contributed to assist 

elderly raising the safety standards. Solaimani et al. (2013) 
and Wilson et al. (2014) reported that the majority of the 
surveyed smart home projects have an application on energy 
optimization, safety or health. Strictly speaking, activity is 
the primary type of context that characterizes the state of 
an individual within surrounding inhabitants Abowd et al. 
(1999); Cook et al. (2015). Hence, the need for activity rec-
ognition system is crucial. In the area of ubiquitous sensing, 
a flexible and transparent set of wireless sensors is embed-
ded into everyday objects (e.g. fridges, door, cupboards, 
bed, etc.) such that the inhabitant’s interactions with these 
objects provide insights for identifying the ongoing activi-
ties of daily living (such as cooking, leaving home, sleeping, 
eating, etc.).

Despite a large number of works in human activity of 
daily living recognition (HAR) Straczkiewicz et al. (2021), 
Demrozi et al. (2020), Fu et al. (2020), Liu et al. (2020), the 
recognition phase turns in a “delayed mode” (Tapia 2003; 
van Kasteren et al. 2008a; Krishnan and Cook 2012). That 
is to say, the system waits1 for a given time- lapse- to collect 
a certain number of new pieces of information to predict 
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the current activity. While in real-time recognition system, 
each new piece of information needs to be classified at the 
moment of its arrival. In smart home like sensor network, 
each event occurs within a specific daily living activity. 
Besides, in the delayed recognition mode, the system col-
lects a number of events and predicts one single activity for 
them. However, since people do their activities in a sequen-
tial, interleaved and concurrent manner, it is not excluded 
that two consecutive events belong to different activities (see 
Fig. 2). As such, the delayed recognition mode cannot iden-
tify non-sequential activities properly. One solution would 
be to classify each event alone at the moment of its arrival. 
A motivation for doing so arises when a specific applica-
tion tracks the execution of a daily living activity step-by-
step for delivering in-home interventions to a person or for 
giving brief instructions describing the way a task should 
be performed for its successful completion (Pollack et al. 
2003). On the other hand, the learning phase employed by 
most daily recognition activity algorithms requires a large 
and consistent training database. The annotation of large 
dataset is often very complex and presents a high propor-
tion of noise, which, in turn, compromises its reliability. For 
instance, smart homes on which our work is based generate 
an average of 7000 sensor events each day, which, in view of 
the high makespan taken for learning activity models, is con-
sidered as a large-scale problem. Support Vector Machine 
(SVM) based classification has established itself as a well-
respected standard in daily living activity recognition task 
(van Kasteren et al. 2008b; Ordóñez et al. 2013; Wilson 
and Atkeson 2005; Tapia et al. 2004b) due to its rigorous 
mathematical foundation, good generalization capabilities 
and high accuracy rate. Nevertheless, in case of large-scale 
class-imbalance dataset, the limitation and complexity of 
the training phase are well acknowledged and documented 
as well (Barger et al. 2005). For instance, in Krishnan and 
Cook (2012), a batch of SVMs takes four days to learn activ-
ity models. Indeed, SVM training requires solving a quad-
ratic programming (QP) problem in a number of coefficients 
equal to the number of training examples, which, in turn, 
makes standard numerical techniques for QP infeasible for 
a such large dataset. To overcome this difficulty, some prac-
tical techniques decompose the problem into manageable 
sub-problems over part of the data Lester et al. (2005) or, 
perform component-wise optimization (Kim et al. 2013), or, 
to some extent, iterative pairwise comparison (Wang et al. 
2011). Other researchers suggested to transform the batch 
SVMs to the incremental ones by adapting an incremental 
or online learning techniques (Cauwenberghs et al. 2001; 
Syed et al. 1999). According to Bao and Intille (2004), there 
are three classes of incremental learning methods: exam-
ple-incremental learning, class-incremental learning, and 
attribute-incremental learning, which cooperate new exam-
ples, new classes, and new attributes to the trained learning 

system respectively. On the other hand, since the behavior 
of people can change over time, this can affect the way the 
activities are performed by the individual over time. In this 
case, an update of activity models is required. Strictly speak-
ing, possibly because of its offline nature and the fact that 
the speed of the prediction/estimation at the online phase 
is more relevant from the end-user perspective, the learn-
ing phase is often overlooked. Learning phase involves fea-
ture selection and model selection where optimal parameter 
values should be found. Furthermore, if the model is to be 
trained over a mobile or a resource-constrained platform, 
reducing the training time would still make more sense. This 
highlights the importance and critical nature of the training 
phase in this respect. The main contribution of this paper 
is to present a novel solution for HAR, which achieves two 
main goals. First, it enables a real-time human activity rec-
ognition task (A1). Second, it learns activity models incre-
mentally (A2).

More specifically, our contributions are fourfold:

• We provide a short and concise review of incremental 
SVM learning methods with a focus on both computa-
tional and memory requirement handling as well as deal-
ing with imbalanced class dataset, which often occurs in 
human daily activity recognition problems.

• Acknowledging the importance of feature engineering 
in HAR problems and incremental learning methods, 
we present two extensions of the approach proposed in 
Krishnan and Cook (2012). The key is to divide sensor 
event sequence into segments of equal length. The first 
approach extends the dependency sensor feature extrac-
tion method by re-interpreting the concept of mutual 
information between two sensors as the probability that 
the two sensors fall on the same windows (of a fixed size) 
of events. The second approach promotes the importance 
of the last-state of the sensor within the given segment 
so that its feature representation is reduced to the status 
of this last event of the segment. By doing so, we sig-
nificantly enhance the computational performance of the 
developed model to achieve target A1.

• We propose two methods to train SVMs incrementally 
to achieve target A2 by capitalizing on the similarity 
between support vectors of previous data chunk and cur-
rent batch of data to reduce the size of training sample. 
The first method performs this using a clustering based 
approach by iterating k-clustering algorithms and using 
the concepts of pure cluster and hybrid clusters brought 
from molecular studies, so that datum associated with 
pure clusters are discarded and those with hybrid clus-
ters are added to support vector list. The second method 
suggests to prone the training datum at each data chunk 
using a two-side similarity calculus process, where sup-
port vectors that are found highly similar to data in the 
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new chunk are discarded, and then, datums that bear 
similarity in the sense of Euclidean distance metric to 
the same support vector are reduced.

• The developed methods are then assessed using two pub-
licly available datasets commonly employed in activity 
recognition task developed in CASAS smart-home pro-
ject; namely, Aruba and Tulum datasets. Then, their per-
formances are compared to some state-of-the-art HAR 
methods that used the same dataset. The choice of these 
dataset is motivated by the availability of comparative 
results using state-of-the-art methods. A general over-
view of the concept advocated in this paper is highlighted 
in Fig. 1.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly revisits and concisely summarizes the work 
that has been previously performed on data segmentation 
and feature extraction methods for HAR purpose with a 
focus on incremental learning based approaches. The devel-
oped approach is then reported in Sect. 3 where two new 
feature extraction methods and two novel SVM incremen-
tal learning modes are put forward. Section 4 presents the 
experimental setup and results for assessing and discussing 
the proposed algorithms. Conclusion and future works are 
reported in Sect. 5.

2  Background

For the sake of illustration purpose and link with our devel-
oped approach, we distinguish in this section data segmenta-
tion / feature extraction task in the context of daily activity 
recognition and SVM incremental learning-based approach.

2.1  Streaming data segmentation and features 
extraction

In the context of daily human activity recognition task, the 
activities are often performed on a regular basis, consecu-
tively and, sometimes, through a concurrent and interleaved 

activity execution, which makes it difficult to determine the 
exact boundaries between two instances of consecutive 
activities. Segmentation aims to distinguish various chunks 
/ segments, each possibly corresponds to a single activity, 
from raw streaming sensor events taking into account time 
window, context and effects of uncertainty. Various seg-
mentation approaches have been proposed in the literature 
depending on the nature of contextual information, sensory 
data and uncertainty framework. Especially, one distin-
guishes time-based (or time window-based) segmentation 
and sensor event based segmentation. Time-based segmen-
tation divides data into fixed time windows. It is the most 
commonly used segmentation method for activity recogni-
tion Bao and Intille (2004); Tapia et al. (2004a); Wang et al. 
(2012). However, many of the classification errors using this 
method came from the selection of the window length Gu 
et al. (2009). If a small length is selected, there is a possibil-
ity that the window contains insufficient information to take 
an appropriate decision or train a machine learning based 
model. On the contrary, if the length is too wide, informa-
tion of multiple activities can be embedded in one window, 
which reduces the ability to distinguish different activities. 
Another drawback of this technique arises when the sen-
sors are discrete (e.g., in case of motion and door sensors 
that are “event-based”). For instance, in case of relaxing or 
sleeping activity, discrete sensors yield no change of their 
output values over a long period of time. The result of seg-
mentation process in this case is either a number of silent 
windows (all sensors are off while segmentation process 
continues to provide empty windows) or repeated windows 
(no changes in the sensor values while segmentation process 
continues to provide windows with the same values of sen-
sors). Therefore, time-based segmentation is more suitable 
for continuous sensors such as accelerometer which has a 
constant acquisition rate such that data for every time inter-
val is always guaranteed. Sensor events-based segmenta-
tion divides sensor event sequence into windows of equal 
number of sensor events (Krishnan and Cook 2012). Typi-
cally, such windows have different time duration. Indeed, 
during the execution of activities, multiple sensors could 
be triggered, while at silent periods, whose time window 
can be much larger, a reduced number of sensors is fired. 
History of event occurrence provides insights to model and 
account for contextual information. Especially event-based 
segmentation is found to be more suitable in case of dis-
crete sensors, which is the case for the study carried out 
in this paper. Figure 2 shows an example of stream sensor 
events during the acquisition stage, while Fig. 3 illustrates an 
example of time-windows and event-based segmentation. To 
characterize individual sensor event, previous sensor events 
are typically accounted for. More specifically, each event is 
described by the list of sensor events that precede it. Fig-
ure 4 illustrates this process. Nevertheless, a such method Fig. 1  Overall concept of the developed approach
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has also its own drawbacks. For example, consider the seg-
ment Seg_6 shown in Fig. 4. The last sensor event of this 
segment corresponds to the beginning of activity “Sleeping”, 
while all events that precede it belong to another activity. We 
notice a significant gap between this event and the preced-
ing. In fact, a such case represents a transition between two 
activities. Therefore, the relevance of the use of all sensor 
events in this segment with the last event in the same seg-
ment might be questionable considering the large elapsed 
time. Another drawback occurs when an inhabitant does two 

or more activities simultaneously (concurred activities). In 
a such scenario, one segment can contain sensor events of 
different activities. Therefore, a cautious attitude should be 
considered when dealing with last sensor events. Typically, 
once the sensor event window is defined, we transform this 
window into a feature vector that best captures its informa-
tion content including temporal span, frequency of events 
and possibility first and last events. In this course, Krishnan 
and Cook Krishnan and Cook (2012) proposed a feature 
extraction method based on sensor dependency model to 
account for the relationship between the sensor events.

The detail of the feature extraction methods, including the 
newly proposed ones, is reported to Methodology section of 
this paper. Next, incremental SVM learning is presented.

2.2  Incremental SVM learning algorithms—
background

As pointed out in the introduction section of this paper, 
despite the acknowledged advantages of SVM in terms of 
its rigorous mathematical foundation, resistance to over-
fitting by adjusting its regularization parameter, tackling 
nonlinearity issues through appropriate choice of kernel 
function, its training phase becomes computationally non-
appealing for large scale dataset. Incremental learning is a 
suitable solution to speed up the training process or to han-
dle the concept drift. In a such case, only a small subset of 
the data is considered at each step of the learning process 
and the solutions of the optimization problem are adapted 
when necessary. This learning mode is used when either the 
dataset is too large to be used at once or when all the data is 
not available at the training phase. An incremental learning 
algorithm, as defined by Polikar et al. (2001), follows the 
three procedures: 

1. It learns from a new incoming data and adapts to changes 
in the data models in case of non-stationary data;

2. It does not require access to the original data used to 
train the new classifier;

3. It preserves the previously acquired knowledge.

SVM are known to be large margin classifiers that find a 
hyperplane to decide the class for a new data point. This 
hyperplane corresponds to the one with the largest margin 
between the classes. The dimension of a such hyperplane 
depends upon the number of features used for data represen-
tation. If the number of input features is 2, then the hyper-
plane is just a line, and becomes a two-dimensional plane 
if input features is 3, etc. Data points that are closer to the 
hyperplane and influence the position and orientation of the 
hyperplane are known as support vectors. Deleting a given 
support vector may ultimately change the position of the 
hyperplane. Therefore, the principle of SVM is to summarize 

Fig. 2  Example of stream sensor events from Aruba dataset

Fig. 3  Example of time-window and event-based segmentation

Fig. 4  Sensor event based segmentation for real time recognition
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the training data using a set of relevant support vectors that 
enable hyperplanes with largest-margins between the corre-
sponding classes. From the Karush–Kuhn–Tucker optimiza-
tion condition perspective, this corresponds to training sam-
ples with non-null Lagrange multipliers. Since the majority 
of the training samples have zero Lagrange multipliers, e.g., 
they are non-support vectors and, thereby, have no influ-
ence on the SVM classification result, we can subsequently 
reduce the training process by dropping out a such data. This 
property yields great capacities to SVMs for their use into 
incremental learning scheme, by storing only the support 
vectors at each incremental step and discarding the remain-
ing data (major part). Further relearning process (adaptation) 
is, in that case, simplified in terms of complexity.

2.3  Incremental SVM algorithms: state‑of‑the‑art 
methods

We can distinguish two main approaches for extending clas-
sical SVM to accommodate incremental learning. The first 
one uses a recursive online algorithm (Cauwenberghs et al. 
2001). To learn and adapt the model, a new instance is added 
to the learning set. If it is correctly classified by the cur-
rent solution, no change will be necessary. Otherwise, an 
update of the current solution is performed by correcting the 
solution using the Lagrange multipliers while respecting the 
Karush_Kuhn_Tucker optimal conditions (Kuhn and Tucker 
1951). An exact solution is constructed by this approach. 
However, its efficiency was questioned in case of large data-
sets as the update time could be non-negligible (comparing 
to the frequency of reception of the new data) (Gâlmeanu 
and Andonie 2008). To our knowledge, no successful practi-
cal application of this algorithm has been acknowledged.

The second approach is based on a set of adaptive algo-
rithms Syed et al. (1999) where the training data is divided 
into chunks. At each incremental step, a significant amount 
of the training data is discarded while maintaining the set 
of support vectors describing the precedent decision bound-
ary. Especially, once a new chunk of data is collected, there 
are different possibilities to update the current model. Syed 
et al. (1999) proposed a fixed-partition algorithm (Fixed) 
as shown in Fig. 5. Authors in Domeniconi and Gunopulos 
(2001) introduced the error-driven method ERRD, in which 
the new chunk of data is filtered at each incremental step. 
Previous model is used to classify the new chunk of data. If 
the data is misclassified, it will be maintained, otherwise it 
will be discarded. The support vectors of the previous incre-
mental step together with the misclassified points are used as 
training data to obtain the new model. In this regards, mis-
classified data is considered as critical examples that have a 
higher likelihood to become support vectors during the next 
update step. If data is imbalanced and changes over time, this 
misclassification could be more important. This occurs for 

instance when an inhabitant changes his/her way of living 
(e.g., to adapt to a new season, weather or accommodate 
new environmental conditions). Likewise, accommodating 
transitions between activities bears similar patterns. A such 
type of data instances prohibits updating the model correctly.

Furthermore, a common problem to ERRD and Fixed is 
that there is no limitation to memory growth. Fixed method 
adds all data in the new chunk and keeps all support vectors 
of the previous model. While ERRD filters data in a new 
chunk but keeps all support vectors of the previous model. 
As the incremental steps occur, the size of the reserved data 
increases and, hence, so is the learning time of the models as 
well. To cope with this problem, Pronobis et al. (2010) used 
Least Significant Support Vector Forget (LSSVF) to reduce 
memory footprint of the algorithm. This method discards 
the least relevant support vectors at each incremental step, 
i.e. the support vectors with the smaller value of Lagrange 
Multipliers. Authors in Domeniconi and Gunopulos (2001) 
used Oldest Support Vector Forget. This removes the oldest 
support vector of the current model. This sounds useful for 
applications in which the distribution of the data changes 
over time (non-stationary data). Least relevant Support Vec-
tors are those having a very small Lagrange multiplier value. 
The support vectors can be bounded support vectors (BSVs) 
if their Lagrange multipliers values are equal to penalty C 
or unbounded support vectors (UBSVs) if their Lagrange 
multipliers values are smaller than C. BSVs are data vec-
tors that lie beyond the margin of its class label. They can 
be approximated by the number of classification errors dur-
ing training stage. Their number scales at least linearly with 
the number of training data. BSVs are associated with a 

Fig. 5  Incremental SVM using adaptive process
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maximum Lagrange multipliers values. Therefore, they are 
not affected by the reduction of support vectors in the LSSVF 
method. Consequently, discarding support vectors with very 
small Lagrange multipliers does not speed up the training 
process in the case of large datasets. Furthermore, discarding 
an important amount of support vectors with small weight 
can decrease performance, especially the performances of 
small size classes, since a process similar to the unsampling 
has been applied. Our approach is also ultimately linked to 
the second approach (adaptive algorithm) pointed out earlier 
as we also aim to speed-up the training performance of the 
iterative learning of SVM model but with the introduction 
of new innovative approaches for both feature extraction 
and iterative learning method. In parallel to the preceding 
attempt in improving incremental learning of SVM, we 
shall also mention the growing effort to enhance the SVM 
computational performance by improving the efficiency of 
the underlined SVM optimization or by boosting paralleli-
zation of the associated software implementation. In this 
respect, Schlag et al. (2021) provided a recent up-to-date 
review of fast implementations of support vector machines, 
focusing on multi-level approaches. Fan et al. (2005) sug-
gested a set selection methods to achieve faster convergence, 
while Osuna et al. (1997) put forward a decomposition algo-
rithm that automatically compute the number of required 
of support vectors to achieve cost benefits. Yu et al. (2003) 
promoted the hierarchically clustered representation of the 
data by merging data points based on distance using linear 
classifiers, which are then extended to non-linear kernels. 
Similarly, Razzaghi and Safro (2015) suggested a graph 
representation instead of feature space representation and 
approximate k-nearest neighbors to yield a multilevel algo-
rithm that trains the SVM where the support vectors of the 
previous coarser hierarchy level are used to train on the cur-
rent level. The approach is also shown to be less sensitive 
to imbalanced data. In terms of software toolkit that boost 
the parallelization and GPU-based implementation, we shall 
mention the DC-SVM Hsieh et al. (2014) that implements a 
multilevel divide-and-conquer SVM that uses adaptive clus-
tering, and Thunder SVM Wen et al. (2018), which imple-
ments a parallel SVM library that runs on GPUs as well as 
multi-core CPUs.

3  Method

3.1  Features extraction

3.1.1  Baseline feature extraction method (BL)

Before demonstrating the details of the dependency sensors 
features method, we shall present our baseline feature extrac-
tion method. Let us consider [ E1 , E2 , ..., EN ] a sequence of all 

sensor events collected from a given smart home. Each event 
is represented by its date and timestamp of day, sensor ID, 
sensor status and associated activity (see Fig. 2). Sensors IDs 
starting with M and D are motion and door sensors, respec-
tively. Sensor status can be [ ON, OFF, CLOSE, OPEN ]. 
Usually, ON/OFF states are used for Television, Personal 
Computers, Cooking heater, and Cleaning appliances (e.g., 
ceiling light, vacuum), while CLOSE/OPEN states are 
used for Doors, Fridge (appliances with a door or a gate). 
Often, we can disregard the type of appliance in defining the 
states, which yields a binary state output only (so, ON/OFF 
become equivalent to CLOSE/OPEN). Following Krishnan 
and Cook (2012), in order to account for the context, the 
above sensor events are divided into equal number of sensor 
events. Let m be the number of events in the underlying win-
dow. Then a sensor event Ei is represented by the sequence 
Segi = [ Ei-m , Ei-m+1 , ... , Ei-1 , Ei ]. The hyperparameter m is 
calculated as follows: If A = [ a1 , a2 , ..., ad ] is the set of d 
activities performed in the smart home, lA = [ la1 , la2,..., lad ] 
is the average number of sensor events that were triggered 
during each activity. The hyperparameter m can take any 
value in the interval [minA, maxA] with which the classifier 
gives the best classification rate, such as minA = min(lA) and 
maxA = max(lA). To transform Segi to a Fi feature vector, we 
construct a fixed dimensional feature vector Fi containing: 

1. The time-triggered of the first event in the window Segi , 
e.g., the time of event Ei−m;

2. The triggering time of the last event in the window Segi , 
e.g., the time of event Ei;

3. The time duration of the window Segi , e.g., (time of Ei 
- time of Ei−m );

4. A simple count of the different sensor events within the 
window Segi . For instance, if l is the number of sensors 
installed in the smart home, the dimension of the fea-
tures vector Fi will be l + 3 . Fi is tagged with label Yi of 
EiKrishnan and Cook (2012).

3.1.2  Dependency sensor features extraction method (DS)

AS explained above, we can observe a significant gap of 
time between two events Ei−1 and Ei over the same segment. 
This time gap can be interpreted as a different location of 
sensors. Often, in activity recognition, two different loca-
tions means two different activities (e.g., transition between 
two activities or two residents do their activities in the same 
time in different locations). Furthermore, if two sensors 
have different locations, they often do not fire consecu-
tively. Therefore, Krishnan and Cook (2012) suggested to 
use mutual information measure between sensors (refereed 
to as sensor dependency) as a weighting scheme in order to 
infer conclusions about last sensor event. This is defined as 
the likelihood that two sensors occur consecutively in the 
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entire sensor event sequence. In other words, if Ei−1 and Ei 
occur consecutively at several occasions, the value of the 
dependency score will be high. This method aims to give 
a weight to each event in the segment Segi . The weight is 
nothing but the dependency between each event in Segi and 
the last event in the same segment. More specifically, if Si 
and Sj are two sensors, then their dependency, or mutual-
information, denoted D(i; j), is defined as:

The evaluation of D(i; j) reaches a value one when the cur-
rent sensor is Si and the next sensor is Sj . The value of this 
dependency is linked to the proximity of both sensor events. 
To compute the feature vector Fi , instead of counting the dif-
ferent sensor events, we sum up the contributions of every 
sensor event based on dependency that defines the feature 
vector.

3.1.3  Two new approaches for feature extraction

Herein, we propose two new distinct approaches for feature 
extraction that can be utilized in our incremental learning 
HAR task.

Proposed method 1: Modified Dependency sensor feature 
extraction method (MDS)

The dependency between two sensors as previously 
described depends on the order of firing of sensors in the 
entire data sequence. For instance, let us assume, without 
loss of generality, four sensors, installed in a tight place of 
a smart home, that can be triggered simultaneously when 
a specific activity runs. Assume, for instance, that a given 
activity can be triggered using two distinct sequence of sen-
sors; say, the sequence S1 → S2 → S3 → S4 or the sequence 
S1 → S3 → S2 → S4 . Intuitively, one notices whenever the 
sensor S1 is fired, S2 is actioned as well, although a such 
firing is not necessarily successive, which makes the evalu-
ation in Eq. (1) concludes the absence of dependency. To 
take into account this observation, we propose to compute 
the dependency between sensors Si and Sj by calculating 
their frequency of occurrence within an interval of n sensor 
events along the entire data sequence (instead of tracking 
consecutive occurrences only as in Eq. 1), as quantified by 
the following equation:

(1)D(i, j) =
1

N

N−1
∑

k=1

�(Sk, Si)�(Sk+1, Sj)

(2)�(Sk, Si) =

{

0 if Sk ≠ Si
1 if Sk = Si

(3)D(i, j) =
1

W

W−1
∑

l=0

∇(Si, Sj)

where W is the number of windows in which we compute 
the frequency of occurrence and n is the number of events 
in one single window. For a chosen window size n (number 
of events in the window), and a total number N of all sensor 
events collected from the given smart home, then it holds 
that W = N − n.

The quantity [ El∗n+1 ,...,El∗n+n ] with l=0 refers to the first 
sequence of n events indicating the status of the sensors. 
Equation (4) indicates whether the event “occurrence of Si is 
followed by occurrence of Sj ” occurs in the sequence [ El∗n+1 
,...,El∗n+n].

Proposed method 2: Last-State sensor based method (LS)
This method is motivated by our observation of inherent 

limitations in motion sensors installed in smart home, espe-
cially, small number of cone sensors (as shown in Fig. 6). 
Considering this fact, segments can contain sensors with 
active and inactive status (ON and OFF). Sensors with high 
sensitivity and detection capabilities can be triggered even if 
the inhabitant is not in the functional area of these sensors. 
This is because a smart home design often allows for a such 
situation to occur. For instance, motion sensor M020 is in an 
open surface. Therefore, we hypothesize that the last-state of 
a sensor within a segment Segi can be more informative and 
descriptive for the last event Ei . In this method, the feature 
vector is computed as follows: For each sensor Si , if its last 
state within Segi is [ON/OFF] then it will be represented by 
respectively 1/-1 in the feature vector Fi , otherwise it will be 
represented by 0 (absent).

(4)∇(Si, Sj) =

{

1 if (Si, Sj) ∈ [El∗n+1, ...,El∗n+n]

0 otherwise

Fig. 6  Smart home floor plan in which Aruba dataset is collected 
Aruba and Tulum (2011)
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The next step is feeding the learning machine with these 
features vectors, In the next section, we discuss our learning 
machine choice.

3.2  Proposed incremental SVM algorithm

Whatever the incremental SVM method, the model resulting 
from the first incremental step is considered as a prelimi-
nary version of the optimal decision plan. In the following 
incremental steps, the decision hyperplan will move in a 
way that is not a priori determined. Updating the model 
means to add new data as well as remove some old and/or 
obsolete data (remove some support vectors). We conjunc-
ture the data that should be deleted must be either those that 
prevent the hyperplane from moving to a new “functioning 
mode”6 that is due to the evolution of the behavior or those 
that are redundant. Two new incremental SVM methods are 
described in this section to implement the aforementioned 
conjuncture. The first one aims to reduce the data size in new 
chunks, whereas the second aims to reduce both the number 
of support vectors preserved from the previous incremental 
step and the data size in new chunks.

3.2.1  Clustering‑based incremental SVM method

This method aims to eliminate the data in new chunk that 
the system finds non-necessary to its evolution. The idea put 
forward here consists of a successive K-means clustering 
applied on the new chunk data. Specifically, we first apply 
K-means clustering on the new chunk data with a number 
of clusters taken equal to the number of activity classes in 
the new data. Then, we separate among the resulting clus-
ters those containing only data with a unique activity label 
(pure clusters) from those containing multiple labels (hybrid 
clusters). Data from pure clusters are removed. Then, a sec-
ond clustering is applied on the data belonging to hybrid 
clusters with a lower number of clusters to be generated. 
The new number of clusters (in the second k-means pass) 
is obtained by subtracting the number of distinct labels in 
identified pure clusters from the total number of activities 
available at the new chunk data. This process is repeated 
each time we find hybrid clusters. After a number of itera-
tions, hybrid clusters data is kept and added to the support 
vectors of previous model to train the current one. The idea 
of discarding data can be explained by the fact that if the 
clustering algorithm has succeeded in producing pure clus-
ters, it would then be easy to use SVM classifier to separate 
the two types of data. It is unlikely that the well separated 
data by clustering will be support vectors. On the con-
trary, hybrid cluster data represents critical points that are 

likely to become support vectors of the adapted model. The 
pseudo-code of successive clustering procedure is given in 
Algorithm 1, while the incremental SVM process is given 
in Algorithm 3. We denote this technique as IncSucc for 
future reference. In Algorithm 1, we deliberately reduced 
the number of iterations in hybrid-cluster to three, so that 
after a maximum of three applications of k-means (in a rare 
scenario, we may endup with large number of pure clusters 
and one or two hybrid-clusters after first or second k-means 
pass only, so that there is no need to more to third pass), all 
the resulting hybrid-clusters will be passed as support vec-
tors in subsequent training operation. We shall also point out 
the following issues that might be raised.

• The question of the number of iterations or equivalently 
the number of times the k-means algorithm will be trig-
gered is legitimate. Although, it can be possible to set up 
a global criterion, that can be associated, for instance, 
to the proportion of pure clusters, or hybrid clusters 
generated, two concerns maybe raised against a such 
approach. First, the call of several passes of k-means can 
substantially increase the computational complexity of 
the overall method, which may question its usefulness 
as the primarily target of the whole developed approach 
is to reduce a such burden complexity. Second, the con-
vergence properties are not fully lied down yet, in the 
sense that there is no guarantee that an increased number 
of iterations would lead systematically to a reduction of 
number of hybrid clusters or an increase in the number 
of pure clusters. This would require further theoretical 
developments. Nevertheless, the starting guess of num-
ber of clusters (k) in k-means implementation where it 
was set to the number of available activity classes can be 
questioned. This will be further investigated in sensitivity 
analysis section.

• The question to apply a such clustering trick on the entire 
dataset, instead of each incremental data chunk only, to 
reduce the data and finally to train the traditional SVM 
could also be raised. Nevertheless, this is rather difficult 
to perform because k-means algorithm is known to strug-
gle to find clusters in the case of large size discrepancy 
(which is the case for dataset employed in this study). In 
this situation, finding pure clusters becomes either rare 
or will take a lot of computational clustering resources. 
Therefore, a prudent manipulation of small size data 
expects to bring more efficiency. Moreover, using it with 
incremental classification algorithm will allow us, for 
real-time applications, to almost process the data online 
as they become available.
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Algorithm 1 ---succKmeans procedure
An example of 3 successives clustering

Require: One data chunk, Kmeans() procedure,
k1,k2,k3:number of clusters to be
generated in the 1st,2nd and 3rd kmeans
clustering (k1, k2, k3). ----- � get all
Hybrid clusters and remove pure clusters

1: HybridClusters ← kmeans(chunk, k1)
2: nbC ← number of clusters inHybridClusters
3:

4: for i = 1 to nbC
do----------------------------------- �
get all Hybrid clusters and remove pure
clusters

5: HybridClusters2 ←
kmeans(HybridClustersi, k2)

6: nbC2 ← number of clusters inHybridClusters2
7:

8: for j = 1 to nbC2 do
----------------------------------------------------------
� get all Hybrid clusters and remove pure
clusters

9: HybridClusters3 ←
kmeans(HybridClusters2j, k3)

10: end for
11: end for
12: return data in HybridClusters3

Fig. 7  Example of similarity based data reduction through incremen-
tal SVM method

3.2.2  Similarity based incremental SVM method

The general idea of this method is as follows: the new data 
chunk may contain examples very similar to the support vec-
tors of the previous model or the same. These examples are 
likely to be support vectors of the new model but do not 
serve to evolve the hyperplane. To avoid increasing the train-
ing time and the size of the model (the number of support 
vectors) to no avail, we propose an algorithm that tries to 
detect the useless learning data in current incremental step. 
First, the algorithm detects similarities between new chunk 
data and the support vectors preserved from the previous 
model. Then, the support vectors that are found to have a 
strong similarity to data in new chunk are discarded. Simi-
larly, we carry out the reverse operation by checking on the 
data in new chunk that bears strong similarity to the same 
support vector (many data to one support vector relationship 
similarity), which will again be reduced to further shorten 
the training phase. This reduction is performed in a way 
to keep only those datum that exhibits high similarity with 
the associated support vector. To illustrate this reasoning, 
let us consider the example of Fig. 7, where the similarity 
calculation shows that d1 has a strong similarity to the sup-
port vector SV6 . Similarly, d2 , d3 and d4 have a strong simi-
larity to SV7 . d5 has a strong similarity to SV9 . The vectors 

( SV6 , SV7 and S9 ) will then be removed as per first filtering 
process. For the second filtering stage, we observe that SV7 
has a strong similarity with 3 new chunk data. So, we select 
from ( d2 , d3 , d4 ) the ones that have high similarity values 
and discard the others. The amount to be discarded can 
be open to debate as it balances the classification rate and 
training time. In the sharp scenario, we can decide to retain 
only one datum that yields the highest similarity score. But 
this bears the risk to substantially reduce the training set to 
make it less relevant. Alternatively, we can decide to keep 
a certain percentage, say P, of the total number according 
to their similarity scores. This reasoning is advocated in our 
method (where the percentage of deletion can be either fixed 
manually or tuned automatically according to some overall 
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criterion). The remaining dataset, after the aforementioned 
two deletion stages, is used to train a new model. In sum-
mary, with this method, data is eliminated in both directions. 
Especially, if sz is the size of a given activity class in the new 
chunk, it is easy to see that the size of the discarded support 
vectors from this activity class is less or equal than sz (In 
reality, often less than sz). Figure 7 and summary below 
illustrate how this method work. To compute the datum-
support vector similarity scores, we used the Euclidean dis-
tance as in the following equation:

where dm is the dimension of data (and support vector as 
well). Reasonably, we shall consider datum dj similar to sup-
port vector svi if and only if Eucld(dj, svk) ⩾ 0.9

Setting a similarity threshold higher than 0.9 will result in 
smaller number of datums to be considered for data reduc-
tion, while setting the value too low will results in a subse-
quently larger number of datums. 

(a) Building the initial model:

A small portion of data is used to build the initial model. 
Traditional SVM classifier is used for this step. The data 
selected to build the initial model is the first arrived data. 

(b) Incremental steps (updating the model)

At each incremental step:

• New data is received (new chunk data).
• A set of support vectors are extracted from the previous 

model.
• Calculate similarities between each data sample in new 

chunk and the set of the support vectors of the class that 
the data sample belongs to.

• All support vectors with strong similarities to new data 
are removed. In the example of the Fig. 7, SV6 , SV7 and 
SV9 will be removed.

• If one support vector is found to be similar to more than 
one new sample data, we keep only the new data that 
exhibits highest similarity value. In the example of the 
Fig. 7, d2 , d3 and d4 have a strong similiraty with one 
support vector SV7 . We suppose that the similarity value 
�

∑dm

i=1
(d2i − SV7i)

2  >  
�

∑dm

i=1
(d3i − SV7i)

2  > 
�

∑dm

i=1
(d4i − SV7i)

2 . So, we keep only P% of [ d2 , d3 , d4 ]. 
P is a determined in order to find an optimal trade-off 
between classification rate and training time.

(5)Eucld(dj, svk) =

√

√

√

√

dm
∑

i=1

(dji − svki)
2

• The returned data is used to train the new model
• A test phase is applied at the end of the incremental step.

A pseudo-code version of the method is given in Algo-
rithm.2 . We denote this technique as SimInc for future 
reference.

Algorithm 2 -------IncSim
Require: data chunks, number of training

steps N, multiclassSVM() procedure, G
= Gamma kernel parameter, Penality C,
calculEuclideanSimilarity() procedure,
P: number of new chunk data to be
removed.
� Building the initial model

1: classifier0 ←
multiclassSVM(chunk0, Gamma,C)
--------------- � Incremental step
(updating the model)-------

2:

3: for i = 1 to N-1 do
4: SVs ← extract support vectors from

classifieri−1 �
V contains the closet Support Vectors to
chunki.D contains distance between data
in chunki and V

5: D,V ← calculateEuclideanSimilarity(
chunki, SVs)

6: S = unique(V)
7:

8: for each support vector s in S do
9: [indices,num] ← occurrence number

of s in V
10:

11: if num > 1 then
12: redundancyData ←

chunki(indices)
13: RD ← ascendingSort(redundancyData)

� delete the P half data in RD
14: dataLower ← RD[1:P]
15: end if
16: end for
17: presevedSVs ← delete S from SVs
18: newChunkData ← delete dataLower from

chunki
19: trainingDatai ← presevedSVs+

newChunkData
20: classifieri ←

multiclassSVM(trainingDatai, G,C)
21: end for
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Algorithm 3 -------IncSucc
Require: data chunks, number of training

steps N, multiclassSVM() procedure,G
= Gamma kernel parameter, Penality C,
succKmeans() procedure, k1,k2,k3: number
of clusters to be generated in the
1st,2nd,3rd clustering.------------- �
Building the initial model

1: classifier0 ←
multiclassSVM(chunk0, Gamma,C)
-------------------------- � Incremental
step (updating the model)

2:

3: for i = 1 to N-1 do
4: SVs ← support vector from classiferi-1
5: HybridData ←

succKmeans(chunki, k1, k2, k3)
6: trainingDatai ← HybridData + SVs
7: classefieri ←

multiclassSVM(trainingDatai, G,C)
8: end for

4  Simulations and results

4.1  Datasets

To evaluate the proposed methods, we chose the Aruba and 
Tulum (2009) real-world datasets from the Washington State 
University CASAS smart-home project (Aruba and Tulum 
2011). In Aruba smart home, the activities of daily living 
of an elderly woman were recorded. 34 motion and door 
sensors have been installed in the smart home. Sensor data 
were collected over a period of 220 days. Tulum contains 
sequential and simultaneous activities data of two inhabit-
ants. 16 motion sensors are attached to objects. Sensor data 
were collected over a period of 4 months. Tables 1 and 2 
summarize the characteristics of Aruba and Tulum datasets, 
respectively. We shall notice the so-called “Other events” are 
the ones with missing labels. This class represents a kind 
of an exclusion class that gathers the data that cannot be 
segmented or the data that have not been indexed because 
of inherent ambiguity that cannot be solved by the user. This 
covers 55% and 50 % of the entire Aruba and Tulum data 
sequence respectively. Therefore, missing labels activities 
are discarded in this work. Accuracy, F-measure, execution 
time and the size of the classifier are the metrics used for 
evaluating the effectiveness of classifiers. Accuracy shows 
the percentage of correctly classified instances, while the 
F-measure is defined as the harmonic mean of recall and 
precision. Precision measures the percentage of inferred 
activities correctly recognized while recall measures the 
percentage of ground truth activities correctly recognized. 
F-measure is important when we face a highly unbalanced’ 

dataset as in our case. The size of the classifier is the number 
of resulting support vectors. For the incremental learning, 
the size of the data presented to the training system at each 
incremental step is used too to know which classifier elimi-
nates more data.

4.2  Results and discussion

To assess the data reduction performance using the clus-
tering-based incremental SVM method, Table 3 shows the 
quantity of data reduced when this method is applied incre-
mentally and non-incrementally. We applied 8 consecutive 
clustering processes on the entire datasets (non-incremen-
tally) and 3 consecutive clustering processes on each data 
chunk (incrementally), where about two-third of the initial 
training dataset has been red.

Next, we conducted two experiments sets. The first set 
aims to evaluate the features extraction methods, presented 

Table 1  Aruba dataset statistics

Activity (label) # of events

Bed-to-Toilet (1) 1330
Eating (2) 16,037
Enter-Home (3) 2018
Housekeeping (4) 10,583
Leave-Home (5) 1922
Meal-Preparation (6) 285,149
Relax (7) 354,585
Respirate (8) 542
Sleeping (9) 32,682
Wash-Dishes (10) 10,464
Work (11) 16,321
Other events (12) 871,320
# of events without other events 731,633

Table 2  Tulum (2009) data set’s statistics

Activity (label) # of events

Cook-Breakfast(1) 23,748
Cook-Lunch(2) 8915
Enter-Home(3) 597
Group-Meeting(4) 22,554
Leave-Home(5) 1574
R1-Eat-Breakfast(6) 10,395
R1-Snack(7) 95,089
R2-Eat-Breakfast(8) 12,234
Wash-Dishes(9) 24,392
Watch-TV(10) 50,250
Other events(11) 203,484
# of events without Other events 249,748
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in Sects. 3.1 and 3.1.3. SVM traditional (batch algorithm) is 
used to train activity models. While the second set (reported 
in Sect. 4.5) aims to evaluate the incremental SVM methods, 
in which the features extracted by the Last-state sensor based 
method LS were used. We choose this feature method to 
evaluate the incremental learning classifiers since it outper-
forms the other methods and it does not require any offline 
calculation unlike the dependency sensor based features 
extraction method, which requires calculating the depend-
ency matrix offline (in the presence of all data). The one vs. 
one SVM paradigm is used for learning activity models, 
since it is the appropriate strategy to counter unbalanced 
data and because it is the multiclass method that has the best 
ratio between efficiency, rapidity and global performances 
as highlighted in Krishnan and Cook (2012). A radial basis 
function kernel was used with a width parameter of 1. The 
penalty parameter C was set to 100. Training data samples 
were normalized before being presented to the classifier 
(explaining the width parameter). Whatever the learning 
type (batch, incremental), 75% and 25% of data are used 
for training and testing, respectively. The data test remains 

the same in both traditional and incremental algorithms. 
Algorithms presented in this paper are coded in python. 
SciKit Learn package is used to train the initial SVM models 
Pedregosa et al. (2011). The Single CPU(2.5 GHz) is used 
in the evaluation with 8 GB of RAM.

4.3  Discussing results obtained by the batch 
Learning

We began our experiment by testing BL feature extraction 
method with different number of events per window. We 
obtained the best performances (classification) with a num-
ber that is lower than the average number of sensor events 
that span all the instances of activities in the entire data. 
Then, we tested DS approach Krishnan and Cook (2012) 
and our two proposed feature extraction approaches MDS 
and LS. Table 5 summarizes the results obtained from the 
two datasets.

The LS proposed feature method outperforms the other 
methods over the two datasets. As it is shown in Table 4, 
the F-measure, Accuracy scores resulted from the proposed 

Table 3  Process of reducing 
training data using successive 
clustering method

Datasets Non-incrementally Incrementally

Aruba Tulum Aruba Tulum

Training data 671,407 341,880 631,164 305,562
Deleted training 152,089 (23%) 96,869 (29%) 422,594 (67%) 170,700 (56%)

Table 4  Batch SVM: evaluation 
of the features extraction 
methods. MDS and LS are the 
proposed methods

Datasets Aruba Tulum

BL DS MDS LS BL DS MDS LS

Accuracy (in%) 90.14 88.00 91.37 93.00 54.96 72.06 72.96 73.56
F-measure (in %) 63.81 60.71 65.88 67.06 44.89 53.98 54.65 57.37
Training time (h) 40.56 34.32 47.28 73.44 1.24 1.00 1.08 1.25
# of Support vectors 92220 106968 99289 87091 92433 92974 90461 92467

Table 5  Batch SVM: individual 
F-measure (In percentages)

Activity label Aruba Tulum

BL DS MDS LS BL DS MDS LS

1 62.33 42.95 87.25 85.87 66.79 66.03 67.06 67.93
2 74.17 62.75 74.17 70.14 31.19 12.185 16.15 15.67
3 76.92 76.18 75.24 68.22 39.89 37.17 39.40 43.84
4 34.36 22.72 32.97 41.92 72.90 78.39 80.06 80.20
5 33.98 52.19 56.86 63.68 57.50 58.23 54.38 58.58
6 89.56 89.61 90.96 93.03 14.16 04.16 05.21 16.14
7 93.29 92.39 94.45 96.01 69.40 78.21 78.99 79.05
8 37.04 49.54 19.82 20.00 6.39 44.90 45.92 46.32
9 96.48 90.97 96.71 97.48 0.21 51.54 51.27 56.44
10 0.00 0.00 0.00 0.00 0.64 85.60 86.72 87.34
11 81.39 7.58 86.08 88.78
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methods are higher than BL and DS methods, for most 
of the activities. For instance, in the case of Aruba data-
set, the LS proposed feature extraction method achieves 
an F-measure of 67.06%, outperforming BL and DS with 
F-measure 63.81% and 60.71%, respectively. Similarly, in 
the case of Tulum dataset, LS achieves an F-measure of 
57.37%, whereas BL and DS yield an F-measure of 44.89% 
and 53.98%, respectively. On the other hand, our proposed 
MDS method aims to correct some errors classification that 
can occur using the DS features method. Although, it has 
done so successfully, it still show a less performance than 
of the proposed LS feature extraction method.

When looking at the result from a single activity task, 
Table 5 shows individual F-measure score for each activity 
performed in the two smart homes. For Aruba dataset, it 
reveals that no method could identify the dishes(10) activ-
ity, where most of its test instances are identified as Meal-
prepartion(6) activity. This is because the two activities run 
in the same location and trigger the same sensors.

Likewise, most of the test instances of the Test-to-Bed(1) 
activity were correctly identified by the proposed methods 
MDS and LS. This is not the case with BL and DS state-
of-the-art methods. The DS method identified correctly the 
most test instances of the Respirate(8) rare activity; however, 
it provided a lower performance of recognizing Work(11) 
activity. This is mainly because of its misclassification as 
Relax(7) activity. Classifier under our proposed LS feature 
method yields the smaller number of resulting support vec-
tors (Not-sparse solution). However it took more time to 
train activity models (73 h, about 3 days), since the LS fea-
ture matrix is a not sparse matrix as opposed to other feature 
matrices.

As for Tulum smart home, inhabitants performed theirs 
activities simultaneously. Classifier with BL feature method 
failed in recognizing R2-Eat-Breakfast(8), Wash-Dishes(9) 
and Watch-TV(10) activities. These activities run generally 
simultaneously in the smart home and a simple count of 
trigger sensors was not enough to identify them. The three 
other methods could identify them in varying proportions. 
In the average, training activity models lasted 48.9 and 1.14 
h for Aruba and Tulum datasets, respectively. This seems 
quite high for Aruba dataset.

4.4  Sensitivity analysis of the parameters

In this section we shall analyze the sensitivity of the devel-
oped approach with respect to the two key identified param-
eters that impact the construction of the developed models 
as well number of clusters in clustering based incremental 
learning method. The first parameter consists of the window 
size n in the modified dependency sensor feature extraction 
method (MDS). While the second parameter corresponds to 
the proportion P, in the similarity based incremental SVM 

method (IncSim), which controls the extent to which datums 
are preserved when they judged similar to the same support 
vector from the previous incremental step. In both cases, we 
evaluated the effect of these parameters on the performance 
of the model when assessed using F1-measure. The choice 
of the F1-measure metric is justified by its good summariza-
tion of the overall performance of the system as it explicitly 
takes into account both the precision and recall performance 
metrics. We varied the parameter n from 1 till 10. The use 
of higher values seems not practical as at some incremen-
tal steps, the number of event sensors available cannot be 
that high. Similarly, we varied the ratio P from 5% till 100 
%. The latter corresponds to the case where all datums are 
considered in the training even if some are highly similar to 
the same support vector from previous increment step. Fig-
ure 8 exhibits the overall performance using batch-algorithm 
when using MDS feature for different values of n for both 
Aruba and Tulum dataset. The plot shows that choosing a 
size window n = 4 and n = 5 provide best performance for 
Aruba and Tulum dataset, respectively.

Similarly, Fig. 9 exhibits the overall F1-measure perfor-
mance of similarity-based incremental SVM method for 
different values of proportion P for both Aruba and Tulum 
datasets. The plot indicates that proportions P = 45% and 
P = 40% achieve the best F1 performance, in Aruba and 
Tulum dataset, respectively. This indicates that the best per-
formance is rather achieved when we discard nearly half 
of the datums that are found similar to the same support 
vector in similarity-based incremental SVM method. This 
also shows that a prudent attitude should be followed when 
deciding to prone the initial data as a too small training sam-
ple may not be robust enough to capture all data variability, 
which yields negative consequences. Next, we attempt to 

Fig. 8  Sensitivity with respect to size of window in MDS feature 
extraction method
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investigate the sensitivity of the clustering-based incre-
mental SVM method with respect to the initial seed of the 
number of clusters k in the first application of k-means algo-
rithm. For this purpose, and for practicality considerations, 
we restrict the choice of the value of k close to the number 
of activity classes C available at the given data chunk. Spe-
cifically, we took a window of size five around C, so that we 
test, whenever available, scenarios, k = C + 2 , k = C + 1 , 
k = C , k = C − 1 , k = C − 2.

Figure 10 shows the average variations (over all incre-
ment steps) of F1-measure with respect to each choice of 
cluster seed value when LS feature is employed. The reading 

of the result exhibited in the plot indicates a slight preference 
of the case where the k-means algorithm is initialized with 
a number of clusters taken equal to the number of activities 
k = C.

4.5  Discussing results obtained by the incremental 
learning

In this set of experiments, our objective is to compare the 
proposed incremental SVM methods with those of the state-
of-the-art on one hand and to compare incremental and tradi-
tional SVM learning, on the other hand. We evaluated three 
state-of-the-art incremental SVM learning (Fixed, ERRD 
and LSSVF) and our two proposed methods (IncSim and Inc-
Succ). In this experiment the features extracted by the Last-
state sensor based method LS were used. We choose this fea-
ture method to evaluate incremental learning classifiers since 
it outperforms the other methods and it does not require any 
offline calculation as the dependency sensor based features 
extraction method which requires calculating the depend-
ency matrix offline. The datasets were divided into chunks 
of 1 day data. Data of the first 6 days were then used to train 
the initial model (classifier at the step 0). These data were 
retrieved from the original dataset using timestamp infor-
mation. The values of RBF and C penalty parameters were 
chosen equal to the ones used for the traditional algorithms 
(default parameters in baseline SVM model). For LSSVF 
technique, we obtained the best results when 20% of the 
least significant support vectors were discarded. This cor-
responds to a trade-off between accuracy and training time. 
For the IncSucc proposed method, three successive k-means 
processes were applied. For the IncSim proposed method, we 
obtained the best results when P, in Algorithm.2, is close 
to 50%, i.e, 50% of data in new chunk are removed at each 
incremental step when they are found similar to the same 
support vector (this is highlighted in sensitivity analysis sec-
tion as well). Table 6 summarizes the results obtained from 
the two datasets. The bold values represent the best results. 
Figures 11 and 12 illustrate the evolution of Accuracy and 
F-measure over incremental steps, while Fig. 12 shows the 
amount of training data fed into the classifier at each incre-
mental step. We note that the Tulum dataset is not a large 
scale data; however, it is used here to evaluate our methods. 
Two Times are reported in the Table 6. The first one is the 
completion time taken by the system for training all chunks 
data, i.e, the sum of training time taken by the system for 
training each chunk data. The second one is the average time 
(over successive incremental steps) taken by the system to 
learn one model. We report these two Times because we 
can either use incremental learning for online training by 
using the resulting model at each incremental step for rec-
ognition or for speeding up the training phase by using only 
the last incremental step model for recognition. Then we 

Fig. 9  Sensitivity with respect to proportion of deletion P in the simi-
larity based incremental SVM

Fig. 10  Sensitivity with respect to number of cluster in IncSucc 
method
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report the average Accuracy and F-measure over successive 
incremental steps as well as the number of support vectors 
and the classification performances of the last incremental 
step. The model of the last incremental step is considered as 
the solution to which the incremental algorithm converges.

Regarding Aruba dataset, one notices the following. 
The Fixed method is the one that uses all the chunk data 
together with the previous model support vectors to learn 

a new model. It exhibits the best performances in terms of 
Accuracy and F-measure (90.5 % and 61.5 %) but it takes 
longer time to train the algorithm, among the other presented 
incremental methods. For instance, it takes 53 h to train the 
models of all steps, an average of 19.87 min to train one 
model. This is almost impractical since we can not use it 
to speed up the algorithm and, even in the online setting its 
time complexity increases over steps (it trains last model 
in 1 h).

The ERRD method has less learning time compared to 
Fixed method. It takes 21.06 h to train models of all steps, 
and an average of 7.90 mins to train one model. Despite 
the fact that the F-measure for the last step model is close 
to that obtained by Fixed method, ERRD method still suf-
fer from the instability of its classification performances. 
Indeed, when an incremental step yields a high recognition 
rate, in the next step, the rate can drop significantly as it can 
be seen in Fig. 11. This is mainly due to its limited filtering 
process as was discussed in Sect. 2.2. Their instability makes 
it unfit to work online.

The LSSVF method discards a part of support vectors of 
the previous model. It runs faster than the two first meth-
ods and the IncSucc proposed method, but it yields lower 
F-measure scores. This is because discarding support vectors 
process does not consider imbalanced data and is rather con-
sidered as a resampling procedure on majority and minority 
classes. This partly explains why it has lower F-measure 
values.

The IncSucc proposed method runs faster than the Fixed 
and ERRD state-of-the-art methods. It takes 14.51 h to train 
models of all steps, an average of 5.44 min to train one 
model. It generated classification performances better than 
all other methods, if we exclude the Fixed method.

The proposed IncSim method is 5 to 9 times faster than 
other methods presented here and yields an almost a hori-
zontal line in the training data (constant value) as shown in 
Fig. 13. It takes 3.56 h to train models of all steps, and an 
average of 1.3 mins to train one model. It shows a classifica-
tion performances better than those obtained by ERRD and 
LSSVF state-of-the-art methods. We observe that by evalu-
ating Aruba dataset, all classifier methods (except Fixed 

Fig. 11  Accuracy for each incremental step. a Aruba dataset; b 
Tulum dataset

Table 6  The performance 
measures of incremental 
methods. T1:Time to train all 
chunks. T2: Time Average to 
train one model. A.: Average; 
L.M: Last Model

Aruba Tulum

Metrics Fixed ERRD LSSVF IncSucc IncSim Fixed ERRD LSSVF IncSucc IncSim

T1 (h) 53.00 21.06 9.66 14.51 3.56 6.84 3.04 3.87 3.36 0.715
T2 (minutes) 19.87 7.90 3.62 5.44 1.33 7.33 3.25 4.15 3.19 0.715
A. Accuracy 90.5 87.14 88.83 88.87 87.19 64.08 62.58 63.61 64.34 63.42
A. F-measure 61.5 57.64 54.98 58.45 57.10 50.09 49.04 48.49 51.04 50.62
L.M Accuracy 92.76 91.45 90.44 91.44 89.85 65.29 62.55 62.57 66.22 63.78
L.M F-measure 64.31 62.17 51.01 58.78 58.04 56.29 55.85 52.15 57.06 54.74
# of SVs L.M 64580 41477 21519 33189 15280 59914 39356 46214 50957 27034
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method) has a lower execution time than those of batch 
algorithm runs.

In summary, the IncSim is the only method where the 
training time of all chunk data of Tulum dataset is less than 
the training time taken by the batch algorithm. In fact, it is 
expected from this method to perform well when the distri-
bution of data changes over time, since it discards at each 
step a set of selective support vectors. Interpretations of 
Aruba results are still valid for Tulum. The proposed Inc-
Succ method outperforms all other methods including the 
Fixed method, in term of Accuracy and F-measure.

To recap, the IncSucc proposed incremental method 
speeds up significantly the training time while it keeps 
the classification performances close or better than those 
obtained by state-of-the-art methods and it is expected to 
perform well when the distribution in data change over time.

5  Conclusion and future work

In order to provide a prompt service for dependent people in 
their own home, a real time system recognizing daily human 
activities from sensor readings is required. Most of the tech-
niques used in the literature have inherent limitations due to 
the high execution time or to the constraints governing the 
model construction that are imposed by the employed clas-
sification method. In this paper, we propose and evaluate an 
extension of a sensor window approach to perform activity 
recognition in a streaming way, i.e. recognizing activities 
when a new sensor event is recorded. As our experiments 
deal with large scale dataset, training data offline become 
impractical. For this, we introduced two new incremental 
SVM techniques as extension to Krishnan and Cook (2012). 
The first one refines the dependency sensor feature extraction 
method by re-interpreting the concept of mutual information 
between two sensors as the probability that the two sensors 

Fig. 12  F-measure for each incremental step. a Aruba dataset; b 
Tulum dataset

Fig. 13  Size of data fed into classifier at each incremental step. a 
Aruba dataset; b Tulum dataset
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fall on the same windows (of a fixed size) of events. The sec-
ond one acknowledges the importance of the last-state of the 
sensor within a given segment so that its feature representa-
tion is reduced to the status of this last event of the segment, 
which significantly boosts the computational efficiency of 
the feature extraction method. Next, we also proposed two 
candidate solutions for SVM incremental learning methods 
by capitalizing on the similarity between support vectors of 
previous data chunk and current batch of data to reduce the 
training phase. The first method builds on the concept of 
pure and hybrid cluster to apply iterative k-means algorithms 
so that datum associated with pure clusters are discarded and 
those with hybrid clusters are added to support vector list. 
The second method suggests to prone the training datum at 
each data chunk using a two-side similarity calculus pro-
cess, through an Euclidean metric, where support vectors 
that are found highly similar to data in the new chunk are 
discarded, and then, datums that bear similarity to the same 
support vector are reduced. The evaluation of the developed 
approached have been carried out using publicly available 
Aruba and Tulum dataset. The results were also compared 
to the state-of-the-art methods; namely, Fixedm ERRD and 
LSSVF methods. The findings confirm both the feasibility 
and the high performance of the proposals in terms of accu-
racy, F1-score and data simplification. First, from the feature 
engineering perspective, and using baseline SVM method 
reveals that the introduced Last-State sensor based method 
outperforms all other feature extraction methods, including 
the introduced MDS approach. Second, the proposed cluster-
ing based-incremental methods are found to run faster than 
the Fixed and ERRD state-of-the-art methods. Especially, 
the proposed similarity based incremental learning is found 
to be 5 to 9 times faster than other presented methods, while 
achieving good performance in terms of F1-measure and 
accuracy as well. As perspective work, the detailed con-
vergence properties of the introduced incremental learning 
algorithms are still to be investigated. This would provide 
a solid theoretical framework for further development of 
empirical research in human activity recognition. On the 
other hand, the detailed investigation of the effect of imbal-
anced class dataset is part of our planned future investiga-
tions as the currently developed method would fail if high 
class imbalance occurs. We hypothesize that data segmenta-
tion into small chunks would constitute a first asset to tackle 
a such phenomenon. Therefore, re-examining other related 
datasets with complex class distribution is pivotal. Another 
challenge is to update the model at each incremental step 
without system retrain and then to create a real-world model 
that can be used and tested online in a smart home. This 
will serve as input to some profiling system to create some 
optimized version tailored to each individual Karami et al. 
(2016). This will be investigated as part of perspective work.
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