
HAL Id: hal-04251578
https://hal.science/hal-04251578

Submitted on 20 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New incremental SVM algorithms for human activity
recognition in smart homes

Yala Nawal, Mourad Oussalah, Belkacem Fergani, Anthony Fleury

To cite this version:
Yala Nawal, Mourad Oussalah, Belkacem Fergani, Anthony Fleury. New incremental SVM algorithms
for human activity recognition in smart homes. Journal of Ambient Intelligence and Humanized
Computing, 2023, 14 (10), pp.13433-13450. �10.1007/s12652-022-03798-w�. �hal-04251578�

https://hal.science/hal-04251578
https://hal.archives-ouvertes.fr

Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:13433–13450
https://doi.org/10.1007/s12652-022-03798-w

ORIGINAL RESEARCH

New incremental SVM algorithms for human activity recognition
in smart homes

Yala Nawal1 · Mourad Oussalah2  · Belkacem Fergani1 · Anthony Fleury3

Received: 19 August 2021 / Accepted: 7 March 2022 / Published online: 24 March 2022
© The Author(s) 2022

Abstract
Smart homes are equipped with several sensor networks to keep an eye on both residents and their environment, to interpret
the current situation and to react immediately. Handling large scale dataset of sensory events on real time to enable efficient
interventions is challenging and very difficult. To deal with these data flows and challenges, traditional streaming data clas-
sification approaches can be boosted by use of incremental learning. In this paper, we presented two new Incremental SVM
methods to improve the performance of SVM classification in the context of human activity recognition tasks. Two feature
extraction methods elaborated by refining dependency sensor extraction feature and focusing on the last sensor event only
have been suggested. On the other hand, a clustering based approach and a similarity based approach have been suggested
to boost learning performance of the incremental SVM algorithms capitalizing on the relationship between data chunk and
support vectors of previous chunk. We demonstrate through several simulations on two major publicly available data sets
(Aruba and Tulum), the feasibility and improvements in learning and classification performances in real time achieved by
our proposed methods over the state-of-the-art. For instance, we have shown that the introduced similarity-based incremen-
tal learning is 5 to 9 times faster than other methods in terms of training performances. Similarly, the introduced Last-state
sensor feature method induces at least 5% improvement in terms of F1-score when using baseline SVM classifier.

Keywords  Smart home · Activity recognition · Incremental learning · Incremental SVM

1  Introduction

Smart home applications aim to make life easier and more
convenient for individuals, especially those with restricted
mobility Vischer (2007); Allameh et al. (2011). Some smart
homes provide peace of mind to its inhabitants by trans-
mitting regular reports regarding the status of key objects
and any suspected activities. Others provide energy sav-
ings through intelligent management of user’s location and
activities. Smart home technologies also contributed to assist

elderly raising the safety standards. Solaimani et al. (2013)
and Wilson et al. (2014) reported that the majority of the
surveyed smart home projects have an application on energy
optimization, safety or health. Strictly speaking, activity is
the primary type of context that characterizes the state of
an individual within surrounding inhabitants Abowd et al.
(1999); Cook et al. (2015). Hence, the need for activity rec-
ognition system is crucial. In the area of ubiquitous sensing,
a flexible and transparent set of wireless sensors is embed-
ded into everyday objects (e.g. fridges, door, cupboards,
bed, etc.) such that the inhabitant’s interactions with these
objects provide insights for identifying the ongoing activi-
ties of daily living (such as cooking, leaving home, sleeping,
eating, etc.).

Despite a large number of works in human activity of
daily living recognition (HAR) Straczkiewicz et al. (2021),
Demrozi et al. (2020), Fu et al. (2020), Liu et al. (2020), the
recognition phase turns in a “delayed mode” (Tapia 2003;
van Kasteren et al. 2008a; Krishnan and Cook 2012). That
is to say, the system waits1 for a given time- lapse- to collect
a certain number of new pieces of information to predict

 *	 Mourad Oussalah
	 Mourad.Oussalah@oulu.fi

1	 LISIC Laboratory, Electronics and Computer Sciences
Department, University of Science and Technology Houari
Boumediene, Algiers 16000, Algeria

2	 Faculty of ITEE, CMVS, University of Oulu, PO Box 4500,
Oulu 90014, North Ostrobothnia, Finland

3	 Computer Science and Automatic Control Department,
University of Lille, IMT LIlle Douai, Lille 5900, Nord,
France

http://orcid.org/0000-0002-4422-8723
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-022-03798-w&domain=pdf

13434	 Y. Nawal et al.

1 3

the current activity. While in real-time recognition system,
each new piece of information needs to be classified at the
moment of its arrival. In smart home like sensor network,
each event occurs within a specific daily living activity.
Besides, in the delayed recognition mode, the system col-
lects a number of events and predicts one single activity for
them. However, since people do their activities in a sequen-
tial, interleaved and concurrent manner, it is not excluded
that two consecutive events belong to different activities (see
Fig. 2). As such, the delayed recognition mode cannot iden-
tify non-sequential activities properly. One solution would
be to classify each event alone at the moment of its arrival.
A motivation for doing so arises when a specific applica-
tion tracks the execution of a daily living activity step-by-
step for delivering in-home interventions to a person or for
giving brief instructions describing the way a task should
be performed for its successful completion (Pollack et al.
2003). On the other hand, the learning phase employed by
most daily recognition activity algorithms requires a large
and consistent training database. The annotation of large
dataset is often very complex and presents a high propor-
tion of noise, which, in turn, compromises its reliability. For
instance, smart homes on which our work is based generate
an average of 7000 sensor events each day, which, in view of
the high makespan taken for learning activity models, is con-
sidered as a large-scale problem. Support Vector Machine
(SVM) based classification has established itself as a well-
respected standard in daily living activity recognition task
(van Kasteren et al. 2008b; Ordóñez et al. 2013; Wilson
and Atkeson 2005; Tapia et al. 2004b) due to its rigorous
mathematical foundation, good generalization capabilities
and high accuracy rate. Nevertheless, in case of large-scale
class-imbalance dataset, the limitation and complexity of
the training phase are well acknowledged and documented
as well (Barger et al. 2005). For instance, in Krishnan and
Cook (2012), a batch of SVMs takes four days to learn activ-
ity models. Indeed, SVM training requires solving a quad-
ratic programming (QP) problem in a number of coefficients
equal to the number of training examples, which, in turn,
makes standard numerical techniques for QP infeasible for
a such large dataset. To overcome this difficulty, some prac-
tical techniques decompose the problem into manageable
sub-problems over part of the data Lester et al. (2005) or,
perform component-wise optimization (Kim et al. 2013), or,
to some extent, iterative pairwise comparison (Wang et al.
2011). Other researchers suggested to transform the batch
SVMs to the incremental ones by adapting an incremental
or online learning techniques (Cauwenberghs et al. 2001;
Syed et al. 1999). According to Bao and Intille (2004), there
are three classes of incremental learning methods: exam-
ple-incremental learning, class-incremental learning, and
attribute-incremental learning, which cooperate new exam-
ples, new classes, and new attributes to the trained learning

system respectively. On the other hand, since the behavior
of people can change over time, this can affect the way the
activities are performed by the individual over time. In this
case, an update of activity models is required. Strictly speak-
ing, possibly because of its offline nature and the fact that
the speed of the prediction/estimation at the online phase
is more relevant from the end-user perspective, the learn-
ing phase is often overlooked. Learning phase involves fea-
ture selection and model selection where optimal parameter
values should be found. Furthermore, if the model is to be
trained over a mobile or a resource-constrained platform,
reducing the training time would still make more sense. This
highlights the importance and critical nature of the training
phase in this respect. The main contribution of this paper
is to present a novel solution for HAR, which achieves two
main goals. First, it enables a real-time human activity rec-
ognition task (A1). Second, it learns activity models incre-
mentally (A2).

More specifically, our contributions are fourfold:

•	 We provide a short and concise review of incremental
SVM learning methods with a focus on both computa-
tional and memory requirement handling as well as deal-
ing with imbalanced class dataset, which often occurs in
human daily activity recognition problems.

•	 Acknowledging the importance of feature engineering
in HAR problems and incremental learning methods,
we present two extensions of the approach proposed in
Krishnan and Cook (2012). The key is to divide sensor
event sequence into segments of equal length. The first
approach extends the dependency sensor feature extrac-
tion method by re-interpreting the concept of mutual
information between two sensors as the probability that
the two sensors fall on the same windows (of a fixed size)
of events. The second approach promotes the importance
of the last-state of the sensor within the given segment
so that its feature representation is reduced to the status
of this last event of the segment. By doing so, we sig-
nificantly enhance the computational performance of the
developed model to achieve target A1.

•	 We propose two methods to train SVMs incrementally
to achieve target A2 by capitalizing on the similarity
between support vectors of previous data chunk and cur-
rent batch of data to reduce the size of training sample.
The first method performs this using a clustering based
approach by iterating k-clustering algorithms and using
the concepts of pure cluster and hybrid clusters brought
from molecular studies, so that datum associated with
pure clusters are discarded and those with hybrid clus-
ters are added to support vector list. The second method
suggests to prone the training datum at each data chunk
using a two-side similarity calculus process, where sup-
port vectors that are found highly similar to data in the

13435New incremental SVM algorithms for human activity recognition in smart homes﻿	

1 3

new chunk are discarded, and then, datums that bear
similarity in the sense of Euclidean distance metric to
the same support vector are reduced.

•	 The developed methods are then assessed using two pub-
licly available datasets commonly employed in activity
recognition task developed in CASAS smart-home pro-
ject; namely, Aruba and Tulum datasets. Then, their per-
formances are compared to some state-of-the-art HAR
methods that used the same dataset. The choice of these
dataset is motivated by the availability of comparative
results using state-of-the-art methods. A general over-
view of the concept advocated in this paper is highlighted
in Fig. 1.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly revisits and concisely summarizes the work
that has been previously performed on data segmentation
and feature extraction methods for HAR purpose with a
focus on incremental learning based approaches. The devel-
oped approach is then reported in Sect. 3 where two new
feature extraction methods and two novel SVM incremen-
tal learning modes are put forward. Section 4 presents the
experimental setup and results for assessing and discussing
the proposed algorithms. Conclusion and future works are
reported in Sect. 5.

2 � Background

For the sake of illustration purpose and link with our devel-
oped approach, we distinguish in this section data segmenta-
tion / feature extraction task in the context of daily activity
recognition and SVM incremental learning-based approach.

2.1 � Streaming data segmentation and features
extraction

In the context of daily human activity recognition task, the
activities are often performed on a regular basis, consecu-
tively and, sometimes, through a concurrent and interleaved

activity execution, which makes it difficult to determine the
exact boundaries between two instances of consecutive
activities. Segmentation aims to distinguish various chunks
/ segments, each possibly corresponds to a single activity,
from raw streaming sensor events taking into account time
window, context and effects of uncertainty. Various seg-
mentation approaches have been proposed in the literature
depending on the nature of contextual information, sensory
data and uncertainty framework. Especially, one distin-
guishes time-based (or time window-based) segmentation
and sensor event based segmentation. Time-based segmen-
tation divides data into fixed time windows. It is the most
commonly used segmentation method for activity recogni-
tion Bao and Intille (2004); Tapia et al. (2004a); Wang et al.
(2012). However, many of the classification errors using this
method came from the selection of the window length Gu
et al. (2009). If a small length is selected, there is a possibil-
ity that the window contains insufficient information to take
an appropriate decision or train a machine learning based
model. On the contrary, if the length is too wide, informa-
tion of multiple activities can be embedded in one window,
which reduces the ability to distinguish different activities.
Another drawback of this technique arises when the sen-
sors are discrete (e.g., in case of motion and door sensors
that are “event-based”). For instance, in case of relaxing or
sleeping activity, discrete sensors yield no change of their
output values over a long period of time. The result of seg-
mentation process in this case is either a number of silent
windows (all sensors are off while segmentation process
continues to provide empty windows) or repeated windows
(no changes in the sensor values while segmentation process
continues to provide windows with the same values of sen-
sors). Therefore, time-based segmentation is more suitable
for continuous sensors such as accelerometer which has a
constant acquisition rate such that data for every time inter-
val is always guaranteed. Sensor events-based segmenta-
tion divides sensor event sequence into windows of equal
number of sensor events (Krishnan and Cook 2012). Typi-
cally, such windows have different time duration. Indeed,
during the execution of activities, multiple sensors could
be triggered, while at silent periods, whose time window
can be much larger, a reduced number of sensors is fired.
History of event occurrence provides insights to model and
account for contextual information. Especially event-based
segmentation is found to be more suitable in case of dis-
crete sensors, which is the case for the study carried out
in this paper. Figure 2 shows an example of stream sensor
events during the acquisition stage, while Fig. 3 illustrates an
example of time-windows and event-based segmentation. To
characterize individual sensor event, previous sensor events
are typically accounted for. More specifically, each event is
described by the list of sensor events that precede it. Fig-
ure 4 illustrates this process. Nevertheless, a such method Fig. 1   Overall concept of the developed approach

13436	 Y. Nawal et al.

1 3

has also its own drawbacks. For example, consider the seg-
ment Seg_6 shown in Fig. 4. The last sensor event of this
segment corresponds to the beginning of activity “Sleeping”,
while all events that precede it belong to another activity. We
notice a significant gap between this event and the preced-
ing. In fact, a such case represents a transition between two
activities. Therefore, the relevance of the use of all sensor
events in this segment with the last event in the same seg-
ment might be questionable considering the large elapsed
time. Another drawback occurs when an inhabitant does two

or more activities simultaneously (concurred activities). In
a such scenario, one segment can contain sensor events of
different activities. Therefore, a cautious attitude should be
considered when dealing with last sensor events. Typically,
once the sensor event window is defined, we transform this
window into a feature vector that best captures its informa-
tion content including temporal span, frequency of events
and possibility first and last events. In this course, Krishnan
and Cook Krishnan and Cook (2012) proposed a feature
extraction method based on sensor dependency model to
account for the relationship between the sensor events.

The detail of the feature extraction methods, including the
newly proposed ones, is reported to Methodology section of
this paper. Next, incremental SVM learning is presented.

2.2 � Incremental SVM learning algorithms—
background

As pointed out in the introduction section of this paper,
despite the acknowledged advantages of SVM in terms of
its rigorous mathematical foundation, resistance to over-
fitting by adjusting its regularization parameter, tackling
nonlinearity issues through appropriate choice of kernel
function, its training phase becomes computationally non-
appealing for large scale dataset. Incremental learning is a
suitable solution to speed up the training process or to han-
dle the concept drift. In a such case, only a small subset of
the data is considered at each step of the learning process
and the solutions of the optimization problem are adapted
when necessary. This learning mode is used when either the
dataset is too large to be used at once or when all the data is
not available at the training phase. An incremental learning
algorithm, as defined by Polikar et al. (2001), follows the
three procedures:

1.	 It learns from a new incoming data and adapts to changes
in the data models in case of non-stationary data;

2.	 It does not require access to the original data used to
train the new classifier;

3.	 It preserves the previously acquired knowledge.

SVM are known to be large margin classifiers that find a
hyperplane to decide the class for a new data point. This
hyperplane corresponds to the one with the largest margin
between the classes. The dimension of a such hyperplane
depends upon the number of features used for data represen-
tation. If the number of input features is 2, then the hyper-
plane is just a line, and becomes a two-dimensional plane
if input features is 3, etc. Data points that are closer to the
hyperplane and influence the position and orientation of the
hyperplane are known as support vectors. Deleting a given
support vector may ultimately change the position of the
hyperplane. Therefore, the principle of SVM is to summarize

Fig. 2   Example of stream sensor events from Aruba dataset

Fig. 3   Example of time-window and event-based segmentation

Fig. 4   Sensor event based segmentation for real time recognition

13437New incremental SVM algorithms for human activity recognition in smart homes﻿	

1 3

the training data using a set of relevant support vectors that
enable hyperplanes with largest-margins between the corre-
sponding classes. From the Karush–Kuhn–Tucker optimiza-
tion condition perspective, this corresponds to training sam-
ples with non-null Lagrange multipliers. Since the majority
of the training samples have zero Lagrange multipliers, e.g.,
they are non-support vectors and, thereby, have no influ-
ence on the SVM classification result, we can subsequently
reduce the training process by dropping out a such data. This
property yields great capacities to SVMs for their use into
incremental learning scheme, by storing only the support
vectors at each incremental step and discarding the remain-
ing data (major part). Further relearning process (adaptation)
is, in that case, simplified in terms of complexity.

2.3 � Incremental SVM algorithms: state‑of‑the‑art
methods

We can distinguish two main approaches for extending clas-
sical SVM to accommodate incremental learning. The first
one uses a recursive online algorithm (Cauwenberghs et al.
2001). To learn and adapt the model, a new instance is added
to the learning set. If it is correctly classified by the cur-
rent solution, no change will be necessary. Otherwise, an
update of the current solution is performed by correcting the
solution using the Lagrange multipliers while respecting the
Karush_Kuhn_Tucker optimal conditions (Kuhn and Tucker
1951). An exact solution is constructed by this approach.
However, its efficiency was questioned in case of large data-
sets as the update time could be non-negligible (comparing
to the frequency of reception of the new data) (Gâlmeanu
and Andonie 2008). To our knowledge, no successful practi-
cal application of this algorithm has been acknowledged.

The second approach is based on a set of adaptive algo-
rithms Syed et al. (1999) where the training data is divided
into chunks. At each incremental step, a significant amount
of the training data is discarded while maintaining the set
of support vectors describing the precedent decision bound-
ary. Especially, once a new chunk of data is collected, there
are different possibilities to update the current model. Syed
et al. (1999) proposed a fixed-partition algorithm (Fixed)
as shown in Fig. 5. Authors in Domeniconi and Gunopulos
(2001) introduced the error-driven method ERRD, in which
the new chunk of data is filtered at each incremental step.
Previous model is used to classify the new chunk of data. If
the data is misclassified, it will be maintained, otherwise it
will be discarded. The support vectors of the previous incre-
mental step together with the misclassified points are used as
training data to obtain the new model. In this regards, mis-
classified data is considered as critical examples that have a
higher likelihood to become support vectors during the next
update step. If data is imbalanced and changes over time, this
misclassification could be more important. This occurs for

instance when an inhabitant changes his/her way of living
(e.g., to adapt to a new season, weather or accommodate
new environmental conditions). Likewise, accommodating
transitions between activities bears similar patterns. A such
type of data instances prohibits updating the model correctly.

Furthermore, a common problem to ERRD and Fixed is
that there is no limitation to memory growth. Fixed method
adds all data in the new chunk and keeps all support vectors
of the previous model. While ERRD filters data in a new
chunk but keeps all support vectors of the previous model.
As the incremental steps occur, the size of the reserved data
increases and, hence, so is the learning time of the models as
well. To cope with this problem, Pronobis et al. (2010) used
Least Significant Support Vector Forget (LSSVF) to reduce
memory footprint of the algorithm. This method discards
the least relevant support vectors at each incremental step,
i.e. the support vectors with the smaller value of Lagrange
Multipliers. Authors in Domeniconi and Gunopulos (2001)
used Oldest Support Vector Forget. This removes the oldest
support vector of the current model. This sounds useful for
applications in which the distribution of the data changes
over time (non-stationary data). Least relevant Support Vec-
tors are those having a very small Lagrange multiplier value.
The support vectors can be bounded support vectors (BSVs)
if their Lagrange multipliers values are equal to penalty C
or unbounded support vectors (UBSVs) if their Lagrange
multipliers values are smaller than C. BSVs are data vec-
tors that lie beyond the margin of its class label. They can
be approximated by the number of classification errors dur-
ing training stage. Their number scales at least linearly with
the number of training data. BSVs are associated with a

Fig. 5   Incremental SVM using adaptive process

13438	 Y. Nawal et al.

1 3

maximum Lagrange multipliers values. Therefore, they are
not affected by the reduction of support vectors in the LSSVF
method. Consequently, discarding support vectors with very
small Lagrange multipliers does not speed up the training
process in the case of large datasets. Furthermore, discarding
an important amount of support vectors with small weight
can decrease performance, especially the performances of
small size classes, since a process similar to the unsampling
has been applied. Our approach is also ultimately linked to
the second approach (adaptive algorithm) pointed out earlier
as we also aim to speed-up the training performance of the
iterative learning of SVM model but with the introduction
of new innovative approaches for both feature extraction
and iterative learning method. In parallel to the preceding
attempt in improving incremental learning of SVM, we
shall also mention the growing effort to enhance the SVM
computational performance by improving the efficiency of
the underlined SVM optimization or by boosting paralleli-
zation of the associated software implementation. In this
respect, Schlag et al. (2021) provided a recent up-to-date
review of fast implementations of support vector machines,
focusing on multi-level approaches. Fan et al. (2005) sug-
gested a set selection methods to achieve faster convergence,
while Osuna et al. (1997) put forward a decomposition algo-
rithm that automatically compute the number of required
of support vectors to achieve cost benefits. Yu et al. (2003)
promoted the hierarchically clustered representation of the
data by merging data points based on distance using linear
classifiers, which are then extended to non-linear kernels.
Similarly, Razzaghi and Safro (2015) suggested a graph
representation instead of feature space representation and
approximate k-nearest neighbors to yield a multilevel algo-
rithm that trains the SVM where the support vectors of the
previous coarser hierarchy level are used to train on the cur-
rent level. The approach is also shown to be less sensitive
to imbalanced data. In terms of software toolkit that boost
the parallelization and GPU-based implementation, we shall
mention the DC-SVM Hsieh et al. (2014) that implements a
multilevel divide-and-conquer SVM that uses adaptive clus-
tering, and Thunder SVM Wen et al. (2018), which imple-
ments a parallel SVM library that runs on GPUs as well as
multi-core CPUs.

3 � Method

3.1 � Features extraction

3.1.1 � Baseline feature extraction method (BL)

Before demonstrating the details of the dependency sensors
features method, we shall present our baseline feature extrac-
tion method. Let us consider [ E1 , E2 , ..., EN ] a sequence of all

sensor events collected from a given smart home. Each event
is represented by its date and timestamp of day, sensor ID,
sensor status and associated activity (see Fig. 2). Sensors IDs
starting with M and D are motion and door sensors, respec-
tively. Sensor status can be [ ON, OFF, CLOSE, OPEN ].
Usually, ON/OFF states are used for Television, Personal
Computers, Cooking heater, and Cleaning appliances (e.g.,
ceiling light, vacuum), while CLOSE/OPEN states are
used for Doors, Fridge (appliances with a door or a gate).
Often, we can disregard the type of appliance in defining the
states, which yields a binary state output only (so, ON/OFF
become equivalent to CLOSE/OPEN). Following Krishnan
and Cook (2012), in order to account for the context, the
above sensor events are divided into equal number of sensor
events. Let m be the number of events in the underlying win-
dow. Then a sensor event Ei is represented by the sequence
Segi = [ Ei-m , Ei-m+1 , ... , Ei-1 , Ei]. The hyperparameter m is
calculated as follows: If A = [ a1 , a2 , ..., ad ] is the set of d
activities performed in the smart home, lA = [ la1 , la2,..., lad ]
is the average number of sensor events that were triggered
during each activity. The hyperparameter m can take any
value in the interval [minA, maxA] with which the classifier
gives the best classification rate, such as minA = min(lA) and
maxA = max(lA). To transform Segi to a Fi feature vector, we
construct a fixed dimensional feature vector Fi containing:

1.	 The time-triggered of the first event in the window Segi ,
e.g., the time of event Ei−m;

2.	 The triggering time of the last event in the window Segi ,
e.g., the time of event Ei;

3.	 The time duration of the window Segi , e.g., (time of Ei
- time of Ei−m);

4.	 A simple count of the different sensor events within the
window Segi . For instance, if l is the number of sensors
installed in the smart home, the dimension of the fea-
tures vector Fi will be l + 3 . Fi is tagged with label Yi of
EiKrishnan and Cook (2012).

3.1.2 � Dependency sensor features extraction method (DS)

AS explained above, we can observe a significant gap of
time between two events Ei−1 and Ei over the same segment.
This time gap can be interpreted as a different location of
sensors. Often, in activity recognition, two different loca-
tions means two different activities (e.g., transition between
two activities or two residents do their activities in the same
time in different locations). Furthermore, if two sensors
have different locations, they often do not fire consecu-
tively. Therefore, Krishnan and Cook (2012) suggested to
use mutual information measure between sensors (refereed
to as sensor dependency) as a weighting scheme in order to
infer conclusions about last sensor event. This is defined as
the likelihood that two sensors occur consecutively in the

13439New incremental SVM algorithms for human activity recognition in smart homes﻿	

1 3

entire sensor event sequence. In other words, if Ei−1 and Ei
occur consecutively at several occasions, the value of the
dependency score will be high. This method aims to give
a weight to each event in the segment Segi . The weight is
nothing but the dependency between each event in Segi and
the last event in the same segment. More specifically, if Si
and Sj are two sensors, then their dependency, or mutual-
information, denoted D(i; j), is defined as:

The evaluation of D(i; j) reaches a value one when the cur-
rent sensor is Si and the next sensor is Sj . The value of this
dependency is linked to the proximity of both sensor events.
To compute the feature vector Fi , instead of counting the dif-
ferent sensor events, we sum up the contributions of every
sensor event based on dependency that defines the feature
vector.

3.1.3 � Two new approaches for feature extraction

Herein, we propose two new distinct approaches for feature
extraction that can be utilized in our incremental learning
HAR task.

Proposed method 1: Modified Dependency sensor feature
extraction method (MDS)

The dependency between two sensors as previously
described depends on the order of firing of sensors in the
entire data sequence. For instance, let us assume, without
loss of generality, four sensors, installed in a tight place of
a smart home, that can be triggered simultaneously when
a specific activity runs. Assume, for instance, that a given
activity can be triggered using two distinct sequence of sen-
sors; say, the sequence S1 → S2 → S3 → S4 or the sequence
S1 → S3 → S2 → S4 . Intuitively, one notices whenever the
sensor S1 is fired, S2 is actioned as well, although a such
firing is not necessarily successive, which makes the evalu-
ation in Eq. (1) concludes the absence of dependency. To
take into account this observation, we propose to compute
the dependency between sensors Si and Sj by calculating
their frequency of occurrence within an interval of n sensor
events along the entire data sequence (instead of tracking
consecutive occurrences only as in Eq. 1), as quantified by
the following equation:

(1)D(i, j) =
1

N

N−1
∑

k=1

�(Sk, Si)�(Sk+1, Sj)

(2)�(Sk, Si) =

{

0 if Sk ≠ Si
1 if Sk = Si

(3)D(i, j) =
1

W

W−1
∑

l=0

∇(Si, Sj)

where W is the number of windows in which we compute
the frequency of occurrence and n is the number of events
in one single window. For a chosen window size n (number
of events in the window), and a total number N of all sensor
events collected from the given smart home, then it holds
that W = N − n.

The quantity [ El∗n+1 ,...,El∗n+n ] with l=0 refers to the first
sequence of n events indicating the status of the sensors.
Equation (4) indicates whether the event “occurrence of Si is
followed by occurrence of Sj ” occurs in the sequence [ El∗n+1
,...,El∗n+n].

Proposed method 2: Last-State sensor based method (LS)
This method is motivated by our observation of inherent

limitations in motion sensors installed in smart home, espe-
cially, small number of cone sensors (as shown in Fig. 6).
Considering this fact, segments can contain sensors with
active and inactive status (ON and OFF). Sensors with high
sensitivity and detection capabilities can be triggered even if
the inhabitant is not in the functional area of these sensors.
This is because a smart home design often allows for a such
situation to occur. For instance, motion sensor M020 is in an
open surface. Therefore, we hypothesize that the last-state of
a sensor within a segment Segi can be more informative and
descriptive for the last event Ei . In this method, the feature
vector is computed as follows: For each sensor Si , if its last
state within Segi is [ON/OFF] then it will be represented by
respectively 1/-1 in the feature vector Fi , otherwise it will be
represented by 0 (absent).

(4)∇(Si, Sj) =

{

1 if (Si, Sj) ∈ [El∗n+1, ...,El∗n+n]

0 otherwise

Fig. 6   Smart home floor plan in which Aruba dataset is collected
Aruba and Tulum (2011)

13440	 Y. Nawal et al.

1 3

The next step is feeding the learning machine with these
features vectors, In the next section, we discuss our learning
machine choice.

3.2 � Proposed incremental SVM algorithm

Whatever the incremental SVM method, the model resulting
from the first incremental step is considered as a prelimi-
nary version of the optimal decision plan. In the following
incremental steps, the decision hyperplan will move in a
way that is not a priori determined. Updating the model
means to add new data as well as remove some old and/or
obsolete data (remove some support vectors). We conjunc-
ture the data that should be deleted must be either those that
prevent the hyperplane from moving to a new “functioning
mode”6 that is due to the evolution of the behavior or those
that are redundant. Two new incremental SVM methods are
described in this section to implement the aforementioned
conjuncture. The first one aims to reduce the data size in new
chunks, whereas the second aims to reduce both the number
of support vectors preserved from the previous incremental
step and the data size in new chunks.

3.2.1 � Clustering‑based incremental SVM method

This method aims to eliminate the data in new chunk that
the system finds non-necessary to its evolution. The idea put
forward here consists of a successive K-means clustering
applied on the new chunk data. Specifically, we first apply
K-means clustering on the new chunk data with a number
of clusters taken equal to the number of activity classes in
the new data. Then, we separate among the resulting clus-
ters those containing only data with a unique activity label
(pure clusters) from those containing multiple labels (hybrid
clusters). Data from pure clusters are removed. Then, a sec-
ond clustering is applied on the data belonging to hybrid
clusters with a lower number of clusters to be generated.
The new number of clusters (in the second k-means pass)
is obtained by subtracting the number of distinct labels in
identified pure clusters from the total number of activities
available at the new chunk data. This process is repeated
each time we find hybrid clusters. After a number of itera-
tions, hybrid clusters data is kept and added to the support
vectors of previous model to train the current one. The idea
of discarding data can be explained by the fact that if the
clustering algorithm has succeeded in producing pure clus-
ters, it would then be easy to use SVM classifier to separate
the two types of data. It is unlikely that the well separated
data by clustering will be support vectors. On the con-
trary, hybrid cluster data represents critical points that are

likely to become support vectors of the adapted model. The
pseudo-code of successive clustering procedure is given in
Algorithm 1, while the incremental SVM process is given
in Algorithm 3. We denote this technique as IncSucc for
future reference. In Algorithm 1, we deliberately reduced
the number of iterations in hybrid-cluster to three, so that
after a maximum of three applications of k-means (in a rare
scenario, we may endup with large number of pure clusters
and one or two hybrid-clusters after first or second k-means
pass only, so that there is no need to more to third pass), all
the resulting hybrid-clusters will be passed as support vec-
tors in subsequent training operation. We shall also point out
the following issues that might be raised.

•	 The question of the number of iterations or equivalently
the number of times the k-means algorithm will be trig-
gered is legitimate. Although, it can be possible to set up
a global criterion, that can be associated, for instance,
to the proportion of pure clusters, or hybrid clusters
generated, two concerns maybe raised against a such
approach. First, the call of several passes of k-means can
substantially increase the computational complexity of
the overall method, which may question its usefulness
as the primarily target of the whole developed approach
is to reduce a such burden complexity. Second, the con-
vergence properties are not fully lied down yet, in the
sense that there is no guarantee that an increased number
of iterations would lead systematically to a reduction of
number of hybrid clusters or an increase in the number
of pure clusters. This would require further theoretical
developments. Nevertheless, the starting guess of num-
ber of clusters (k) in k-means implementation where it
was set to the number of available activity classes can be
questioned. This will be further investigated in sensitivity
analysis section.

•	 The question to apply a such clustering trick on the entire
dataset, instead of each incremental data chunk only, to
reduce the data and finally to train the traditional SVM
could also be raised. Nevertheless, this is rather difficult
to perform because k-means algorithm is known to strug-
gle to find clusters in the case of large size discrepancy
(which is the case for dataset employed in this study). In
this situation, finding pure clusters becomes either rare
or will take a lot of computational clustering resources.
Therefore, a prudent manipulation of small size data
expects to bring more efficiency. Moreover, using it with
incremental classification algorithm will allow us, for
real-time applications, to almost process the data online
as they become available.

13441New incremental SVM algorithms for human activity recognition in smart homes﻿	

1 3

Algorithm 1 ---succKmeans procedure
An example of 3 successives clustering

Require: One data chunk, Kmeans() procedure,
k1,k2,k3:number of clusters to be
generated in the 1st,2nd and 3rd kmeans
clustering (k1, k2, k3). ----- � get all
Hybrid clusters and remove pure clusters

1: HybridClusters ← kmeans(chunk, k1)
2: nbC ← number of clusters inHybridClusters
3:

4: for i = 1 to nbC
do----------------------------------- �
get all Hybrid clusters and remove pure
clusters

5: HybridClusters2 ←
kmeans(HybridClustersi, k2)

6: nbC2 ← number of clusters inHybridClusters2
7:

8: for j = 1 to nbC2 do
--
� get all Hybrid clusters and remove pure
clusters

9: HybridClusters3 ←
kmeans(HybridClusters2j, k3)

10: end for
11: end for
12: return data in HybridClusters3

Fig. 7   Example of similarity based data reduction through incremen-
tal SVM method

3.2.2 � Similarity based incremental SVM method

The general idea of this method is as follows: the new data
chunk may contain examples very similar to the support vec-
tors of the previous model or the same. These examples are
likely to be support vectors of the new model but do not
serve to evolve the hyperplane. To avoid increasing the train-
ing time and the size of the model (the number of support
vectors) to no avail, we propose an algorithm that tries to
detect the useless learning data in current incremental step.
First, the algorithm detects similarities between new chunk
data and the support vectors preserved from the previous
model. Then, the support vectors that are found to have a
strong similarity to data in new chunk are discarded. Simi-
larly, we carry out the reverse operation by checking on the
data in new chunk that bears strong similarity to the same
support vector (many data to one support vector relationship
similarity), which will again be reduced to further shorten
the training phase. This reduction is performed in a way
to keep only those datum that exhibits high similarity with
the associated support vector. To illustrate this reasoning,
let us consider the example of Fig. 7, where the similarity
calculation shows that d1 has a strong similarity to the sup-
port vector SV6 . Similarly, d2 , d3 and d4 have a strong simi-
larity to SV7 . d5 has a strong similarity to SV9 . The vectors

( SV6 , SV7 and S9 ) will then be removed as per first filtering
process. For the second filtering stage, we observe that SV7
has a strong similarity with 3 new chunk data. So, we select
from ( d2 , d3 , d4 ) the ones that have high similarity values
and discard the others. The amount to be discarded can
be open to debate as it balances the classification rate and
training time. In the sharp scenario, we can decide to retain
only one datum that yields the highest similarity score. But
this bears the risk to substantially reduce the training set to
make it less relevant. Alternatively, we can decide to keep
a certain percentage, say P, of the total number according
to their similarity scores. This reasoning is advocated in our
method (where the percentage of deletion can be either fixed
manually or tuned automatically according to some overall

13442	 Y. Nawal et al.

1 3

criterion). The remaining dataset, after the aforementioned
two deletion stages, is used to train a new model. In sum-
mary, with this method, data is eliminated in both directions.
Especially, if sz is the size of a given activity class in the new
chunk, it is easy to see that the size of the discarded support
vectors from this activity class is less or equal than sz (In
reality, often less than sz). Figure 7 and summary below
illustrate how this method work. To compute the datum-
support vector similarity scores, we used the Euclidean dis-
tance as in the following equation:

where dm is the dimension of data (and support vector as
well). Reasonably, we shall consider datum dj similar to sup-
port vector svi if and only if Eucld(dj, svk) ⩾ 0.9

Setting a similarity threshold higher than 0.9 will result in
smaller number of datums to be considered for data reduc-
tion, while setting the value too low will results in a subse-
quently larger number of datums.

(a)	 Building the initial model:

A small portion of data is used to build the initial model.
Traditional SVM classifier is used for this step. The data
selected to build the initial model is the first arrived data.

(b)	 Incremental steps (updating the model)

At each incremental step:

•	 New data is received (new chunk data).
•	 A set of support vectors are extracted from the previous

model.
•	 Calculate similarities between each data sample in new

chunk and the set of the support vectors of the class that
the data sample belongs to.

•	 All support vectors with strong similarities to new data
are removed. In the example of the Fig. 7, SV6 , SV7 and
SV9 will be removed.

•	 If one support vector is found to be similar to more than
one new sample data, we keep only the new data that
exhibits highest similarity value. In the example of the
Fig. 7, d2 , d3 and d4 have a strong similiraty with one
support vector SV7 . We suppose that the similarity value
�

∑dm

i=1
(d2i − SV7i)

2 >
�

∑dm

i=1
(d3i − SV7i)

2 >
�

∑dm

i=1
(d4i − SV7i)

2 . So, we keep only P% of [ d2 , d3 , d4 ].
P is a determined in order to find an optimal trade-off
between classification rate and training time.

(5)Eucld(dj, svk) =

√

√

√

√

dm
∑

i=1

(dji − svki)
2

•	 The returned data is used to train the new model
•	 A test phase is applied at the end of the incremental step.

A pseudo-code version of the method is given in Algo-
rithm.2 . We denote this technique as SimInc for future
reference.

Algorithm 2 -------IncSim
Require: data chunks, number of training

steps N, multiclassSVM() procedure, G
= Gamma kernel parameter, Penality C,
calculEuclideanSimilarity() procedure,
P: number of new chunk data to be
removed.
� Building the initial model

1: classifier0 ←
multiclassSVM(chunk0, Gamma,C)
--------------- � Incremental step
(updating the model)-------

2:

3: for i = 1 to N-1 do
4: SVs ← extract support vectors from

classifieri−1 �
V contains the closet Support Vectors to
chunki.D contains distance between data
in chunki and V

5: D,V ← calculateEuclideanSimilarity(
chunki, SVs)

6: S = unique(V)
7:

8: for each support vector s in S do
9: [indices,num] ← occurrence number

of s in V
10:

11: if num > 1 then
12: redundancyData ←

chunki(indices)
13: RD ← ascendingSort(redundancyData)

� delete the P half data in RD
14: dataLower ← RD[1:P]
15: end if
16: end for
17: presevedSVs ← delete S from SVs
18: newChunkData ← delete dataLower from

chunki
19: trainingDatai ← presevedSVs+

newChunkData
20: classifieri ←

multiclassSVM(trainingDatai, G,C)
21: end for

13443New incremental SVM algorithms for human activity recognition in smart homes﻿	

1 3

Algorithm 3 -------IncSucc
Require: data chunks, number of training

steps N, multiclassSVM() procedure,G
= Gamma kernel parameter, Penality C,
succKmeans() procedure, k1,k2,k3: number
of clusters to be generated in the
1st,2nd,3rd clustering.------------- �
Building the initial model

1: classifier0 ←
multiclassSVM(chunk0, Gamma,C)
-------------------------- � Incremental
step (updating the model)

2:

3: for i = 1 to N-1 do
4: SVs ← support vector from classiferi-1
5: HybridData ←

succKmeans(chunki, k1, k2, k3)
6: trainingDatai ← HybridData + SVs
7: classefieri ←

multiclassSVM(trainingDatai, G,C)
8: end for

4 � Simulations and results

4.1 � Datasets

To evaluate the proposed methods, we chose the Aruba and
Tulum (2009) real-world datasets from the Washington State
University CASAS smart-home project (Aruba and Tulum
2011). In Aruba smart home, the activities of daily living
of an elderly woman were recorded. 34 motion and door
sensors have been installed in the smart home. Sensor data
were collected over a period of 220 days. Tulum contains
sequential and simultaneous activities data of two inhabit-
ants. 16 motion sensors are attached to objects. Sensor data
were collected over a period of 4 months. Tables 1 and 2
summarize the characteristics of Aruba and Tulum datasets,
respectively. We shall notice the so-called “Other events” are
the ones with missing labels. This class represents a kind
of an exclusion class that gathers the data that cannot be
segmented or the data that have not been indexed because
of inherent ambiguity that cannot be solved by the user. This
covers 55% and 50 % of the entire Aruba and Tulum data
sequence respectively. Therefore, missing labels activities
are discarded in this work. Accuracy, F-measure, execution
time and the size of the classifier are the metrics used for
evaluating the effectiveness of classifiers. Accuracy shows
the percentage of correctly classified instances, while the
F-measure is defined as the harmonic mean of recall and
precision. Precision measures the percentage of inferred
activities correctly recognized while recall measures the
percentage of ground truth activities correctly recognized.
F-measure is important when we face a highly unbalanced’

dataset as in our case. The size of the classifier is the number
of resulting support vectors. For the incremental learning,
the size of the data presented to the training system at each
incremental step is used too to know which classifier elimi-
nates more data.

4.2 � Results and discussion

To assess the data reduction performance using the clus-
tering-based incremental SVM method, Table 3 shows the
quantity of data reduced when this method is applied incre-
mentally and non-incrementally. We applied 8 consecutive
clustering processes on the entire datasets (non-incremen-
tally) and 3 consecutive clustering processes on each data
chunk (incrementally), where about two-third of the initial
training dataset has been red.

Next, we conducted two experiments sets. The first set
aims to evaluate the features extraction methods, presented

Table 1   Aruba dataset statistics

Activity (label) # of events

Bed-to-Toilet (1) 1330
Eating (2) 16,037
Enter-Home (3) 2018
Housekeeping (4) 10,583
Leave-Home (5) 1922
Meal-Preparation (6) 285,149
Relax (7) 354,585
Respirate (8) 542
Sleeping (9) 32,682
Wash-Dishes (10) 10,464
Work (11) 16,321
Other events (12) 871,320
of events without other events 731,633

Table 2   Tulum (2009) data set’s statistics

Activity (label) # of events

Cook-Breakfast(1) 23,748
Cook-Lunch(2) 8915
Enter-Home(3) 597
Group-Meeting(4) 22,554
Leave-Home(5) 1574
R1-Eat-Breakfast(6) 10,395
R1-Snack(7) 95,089
R2-Eat-Breakfast(8) 12,234
Wash-Dishes(9) 24,392
Watch-TV(10) 50,250
Other events(11) 203,484
of events without Other events 249,748

13444	 Y. Nawal et al.

1 3

in Sects. 3.1 and 3.1.3. SVM traditional (batch algorithm) is
used to train activity models. While the second set (reported
in Sect. 4.5) aims to evaluate the incremental SVM methods,
in which the features extracted by the Last-state sensor based
method LS were used. We choose this feature method to
evaluate the incremental learning classifiers since it outper-
forms the other methods and it does not require any offline
calculation unlike the dependency sensor based features
extraction method, which requires calculating the depend-
ency matrix offline (in the presence of all data). The one vs.
one SVM paradigm is used for learning activity models,
since it is the appropriate strategy to counter unbalanced
data and because it is the multiclass method that has the best
ratio between efficiency, rapidity and global performances
as highlighted in Krishnan and Cook (2012). A radial basis
function kernel was used with a width parameter of 1. The
penalty parameter C was set to 100. Training data samples
were normalized before being presented to the classifier
(explaining the width parameter). Whatever the learning
type (batch, incremental), 75% and 25% of data are used
for training and testing, respectively. The data test remains

the same in both traditional and incremental algorithms.
Algorithms presented in this paper are coded in python.
SciKit Learn package is used to train the initial SVM models
Pedregosa et al. (2011). The Single CPU(2.5 GHz) is used
in the evaluation with 8 GB of RAM.

4.3 � Discussing results obtained by the batch
Learning

We began our experiment by testing BL feature extraction
method with different number of events per window. We
obtained the best performances (classification) with a num-
ber that is lower than the average number of sensor events
that span all the instances of activities in the entire data.
Then, we tested DS approach Krishnan and Cook (2012)
and our two proposed feature extraction approaches MDS
and LS. Table 5 summarizes the results obtained from the
two datasets.

The LS proposed feature method outperforms the other
methods over the two datasets. As it is shown in Table 4,
the F-measure, Accuracy scores resulted from the proposed

Table 3   Process of reducing
training data using successive
clustering method

Datasets Non-incrementally Incrementally

Aruba Tulum Aruba Tulum

Training data 671,407 341,880 631,164 305,562
Deleted training 152,089 (23%) 96,869 (29%) 422,594 (67%) 170,700 (56%)

Table 4   Batch SVM: evaluation
of the features extraction
methods. MDS and LS are the
proposed methods

Datasets Aruba Tulum

BL DS MDS LS BL DS MDS LS

Accuracy (in%) 90.14 88.00 91.37 93.00 54.96 72.06 72.96 73.56
F-measure (in %) 63.81 60.71 65.88 67.06 44.89 53.98 54.65 57.37
Training time (h) 40.56 34.32 47.28 73.44 1.24 1.00 1.08 1.25
of Support vectors 92220 106968 99289 87091 92433 92974 90461 92467

Table 5   Batch SVM: individual
F-measure (In percentages)

Activity label Aruba Tulum

BL DS MDS LS BL DS MDS LS

1 62.33 42.95 87.25 85.87 66.79 66.03 67.06 67.93
2 74.17 62.75 74.17 70.14 31.19 12.185 16.15 15.67
3 76.92 76.18 75.24 68.22 39.89 37.17 39.40 43.84
4 34.36 22.72 32.97 41.92 72.90 78.39 80.06 80.20
5 33.98 52.19 56.86 63.68 57.50 58.23 54.38 58.58
6 89.56 89.61 90.96 93.03 14.16 04.16 05.21 16.14
7 93.29 92.39 94.45 96.01 69.40 78.21 78.99 79.05
8 37.04 49.54 19.82 20.00 6.39 44.90 45.92 46.32
9 96.48 90.97 96.71 97.48 0.21 51.54 51.27 56.44
10 0.00 0.00 0.00 0.00 0.64 85.60 86.72 87.34
11 81.39 7.58 86.08 88.78

13445New incremental SVM algorithms for human activity recognition in smart homes﻿	

1 3

methods are higher than BL and DS methods, for most
of the activities. For instance, in the case of Aruba data-
set, the LS proposed feature extraction method achieves
an F-measure of 67.06%, outperforming BL and DS with
F-measure 63.81% and 60.71%, respectively. Similarly, in
the case of Tulum dataset, LS achieves an F-measure of
57.37%, whereas BL and DS yield an F-measure of 44.89%
and 53.98%, respectively. On the other hand, our proposed
MDS method aims to correct some errors classification that
can occur using the DS features method. Although, it has
done so successfully, it still show a less performance than
of the proposed LS feature extraction method.

When looking at the result from a single activity task,
Table 5 shows individual F-measure score for each activity
performed in the two smart homes. For Aruba dataset, it
reveals that no method could identify the dishes(10) activ-
ity, where most of its test instances are identified as Meal-
prepartion(6) activity. This is because the two activities run
in the same location and trigger the same sensors.

Likewise, most of the test instances of the Test-to-Bed(1)
activity were correctly identified by the proposed methods
MDS and LS. This is not the case with BL and DS state-
of-the-art methods. The DS method identified correctly the
most test instances of the Respirate(8) rare activity; however,
it provided a lower performance of recognizing Work(11)
activity. This is mainly because of its misclassification as
Relax(7) activity. Classifier under our proposed LS feature
method yields the smaller number of resulting support vec-
tors (Not-sparse solution). However it took more time to
train activity models (73 h, about 3 days), since the LS fea-
ture matrix is a not sparse matrix as opposed to other feature
matrices.

As for Tulum smart home, inhabitants performed theirs
activities simultaneously. Classifier with BL feature method
failed in recognizing R2-Eat-Breakfast(8), Wash-Dishes(9)
and Watch-TV(10) activities. These activities run generally
simultaneously in the smart home and a simple count of
trigger sensors was not enough to identify them. The three
other methods could identify them in varying proportions.
In the average, training activity models lasted 48.9 and 1.14
h for Aruba and Tulum datasets, respectively. This seems
quite high for Aruba dataset.

4.4 � Sensitivity analysis of the parameters

In this section we shall analyze the sensitivity of the devel-
oped approach with respect to the two key identified param-
eters that impact the construction of the developed models
as well number of clusters in clustering based incremental
learning method. The first parameter consists of the window
size n in the modified dependency sensor feature extraction
method (MDS). While the second parameter corresponds to
the proportion P, in the similarity based incremental SVM

method (IncSim), which controls the extent to which datums
are preserved when they judged similar to the same support
vector from the previous incremental step. In both cases, we
evaluated the effect of these parameters on the performance
of the model when assessed using F1-measure. The choice
of the F1-measure metric is justified by its good summariza-
tion of the overall performance of the system as it explicitly
takes into account both the precision and recall performance
metrics. We varied the parameter n from 1 till 10. The use
of higher values seems not practical as at some incremen-
tal steps, the number of event sensors available cannot be
that high. Similarly, we varied the ratio P from 5% till 100
%. The latter corresponds to the case where all datums are
considered in the training even if some are highly similar to
the same support vector from previous increment step. Fig-
ure 8 exhibits the overall performance using batch-algorithm
when using MDS feature for different values of n for both
Aruba and Tulum dataset. The plot shows that choosing a
size window n = 4 and n = 5 provide best performance for
Aruba and Tulum dataset, respectively.

Similarly, Fig. 9 exhibits the overall F1-measure perfor-
mance of similarity-based incremental SVM method for
different values of proportion P for both Aruba and Tulum
datasets. The plot indicates that proportions P = 45% and
P = 40% achieve the best F1 performance, in Aruba and
Tulum dataset, respectively. This indicates that the best per-
formance is rather achieved when we discard nearly half
of the datums that are found similar to the same support
vector in similarity-based incremental SVM method. This
also shows that a prudent attitude should be followed when
deciding to prone the initial data as a too small training sam-
ple may not be robust enough to capture all data variability,
which yields negative consequences. Next, we attempt to

Fig. 8   Sensitivity with respect to size of window in MDS feature
extraction method

13446	 Y. Nawal et al.

1 3

investigate the sensitivity of the clustering-based incre-
mental SVM method with respect to the initial seed of the
number of clusters k in the first application of k-means algo-
rithm. For this purpose, and for practicality considerations,
we restrict the choice of the value of k close to the number
of activity classes C available at the given data chunk. Spe-
cifically, we took a window of size five around C, so that we
test, whenever available, scenarios, k = C + 2 , k = C + 1 ,
k = C , k = C − 1 , k = C − 2.

Figure 10 shows the average variations (over all incre-
ment steps) of F1-measure with respect to each choice of
cluster seed value when LS feature is employed. The reading

of the result exhibited in the plot indicates a slight preference
of the case where the k-means algorithm is initialized with
a number of clusters taken equal to the number of activities
k = C.

4.5 � Discussing results obtained by the incremental
learning

In this set of experiments, our objective is to compare the
proposed incremental SVM methods with those of the state-
of-the-art on one hand and to compare incremental and tradi-
tional SVM learning, on the other hand. We evaluated three
state-of-the-art incremental SVM learning (Fixed, ERRD
and LSSVF) and our two proposed methods (IncSim and Inc-
Succ). In this experiment the features extracted by the Last-
state sensor based method LS were used. We choose this fea-
ture method to evaluate incremental learning classifiers since
it outperforms the other methods and it does not require any
offline calculation as the dependency sensor based features
extraction method which requires calculating the depend-
ency matrix offline. The datasets were divided into chunks
of 1 day data. Data of the first 6 days were then used to train
the initial model (classifier at the step 0). These data were
retrieved from the original dataset using timestamp infor-
mation. The values of RBF and C penalty parameters were
chosen equal to the ones used for the traditional algorithms
(default parameters in baseline SVM model). For LSSVF
technique, we obtained the best results when 20% of the
least significant support vectors were discarded. This cor-
responds to a trade-off between accuracy and training time.
For the IncSucc proposed method, three successive k-means
processes were applied. For the IncSim proposed method, we
obtained the best results when P, in Algorithm.2, is close
to 50%, i.e, 50% of data in new chunk are removed at each
incremental step when they are found similar to the same
support vector (this is highlighted in sensitivity analysis sec-
tion as well). Table 6 summarizes the results obtained from
the two datasets. The bold values represent the best results.
Figures 11 and 12 illustrate the evolution of Accuracy and
F-measure over incremental steps, while Fig. 12 shows the
amount of training data fed into the classifier at each incre-
mental step. We note that the Tulum dataset is not a large
scale data; however, it is used here to evaluate our methods.
Two Times are reported in the Table 6. The first one is the
completion time taken by the system for training all chunks
data, i.e, the sum of training time taken by the system for
training each chunk data. The second one is the average time
(over successive incremental steps) taken by the system to
learn one model. We report these two Times because we
can either use incremental learning for online training by
using the resulting model at each incremental step for rec-
ognition or for speeding up the training phase by using only
the last incremental step model for recognition. Then we

Fig. 9   Sensitivity with respect to proportion of deletion P in the simi-
larity based incremental SVM

Fig. 10   Sensitivity with respect to number of cluster in IncSucc
method

13447New incremental SVM algorithms for human activity recognition in smart homes﻿	

1 3

report the average Accuracy and F-measure over successive
incremental steps as well as the number of support vectors
and the classification performances of the last incremental
step. The model of the last incremental step is considered as
the solution to which the incremental algorithm converges.

Regarding Aruba dataset, one notices the following.
The Fixed method is the one that uses all the chunk data
together with the previous model support vectors to learn

a new model. It exhibits the best performances in terms of
Accuracy and F-measure (90.5 % and 61.5 %) but it takes
longer time to train the algorithm, among the other presented
incremental methods. For instance, it takes 53 h to train the
models of all steps, an average of 19.87 min to train one
model. This is almost impractical since we can not use it
to speed up the algorithm and, even in the online setting its
time complexity increases over steps (it trains last model
in 1 h).

The ERRD method has less learning time compared to
Fixed method. It takes 21.06 h to train models of all steps,
and an average of 7.90 mins to train one model. Despite
the fact that the F-measure for the last step model is close
to that obtained by Fixed method, ERRD method still suf-
fer from the instability of its classification performances.
Indeed, when an incremental step yields a high recognition
rate, in the next step, the rate can drop significantly as it can
be seen in Fig. 11. This is mainly due to its limited filtering
process as was discussed in Sect. 2.2. Their instability makes
it unfit to work online.

The LSSVF method discards a part of support vectors of
the previous model. It runs faster than the two first meth-
ods and the IncSucc proposed method, but it yields lower
F-measure scores. This is because discarding support vectors
process does not consider imbalanced data and is rather con-
sidered as a resampling procedure on majority and minority
classes. This partly explains why it has lower F-measure
values.

The IncSucc proposed method runs faster than the Fixed
and ERRD state-of-the-art methods. It takes 14.51 h to train
models of all steps, an average of 5.44 min to train one
model. It generated classification performances better than
all other methods, if we exclude the Fixed method.

The proposed IncSim method is 5 to 9 times faster than
other methods presented here and yields an almost a hori-
zontal line in the training data (constant value) as shown in
Fig. 13. It takes 3.56 h to train models of all steps, and an
average of 1.3 mins to train one model. It shows a classifica-
tion performances better than those obtained by ERRD and
LSSVF state-of-the-art methods. We observe that by evalu-
ating Aruba dataset, all classifier methods (except Fixed

Fig. 11   Accuracy for each incremental step. a Aruba dataset; b
Tulum dataset

Table 6   The performance
measures of incremental
methods. T1:Time to train all
chunks. T2: Time Average to
train one model. A.: Average;
L.M: Last Model

Aruba Tulum

Metrics Fixed ERRD LSSVF IncSucc IncSim Fixed ERRD LSSVF IncSucc IncSim

T1 (h) 53.00 21.06 9.66 14.51 3.56 6.84 3.04 3.87 3.36 0.715
T2 (minutes) 19.87 7.90 3.62 5.44 1.33 7.33 3.25 4.15 3.19 0.715
A. Accuracy 90.5 87.14 88.83 88.87 87.19 64.08 62.58 63.61 64.34 63.42
A. F-measure 61.5 57.64 54.98 58.45 57.10 50.09 49.04 48.49 51.04 50.62
L.M Accuracy 92.76 91.45 90.44 91.44 89.85 65.29 62.55 62.57 66.22 63.78
L.M F-measure 64.31 62.17 51.01 58.78 58.04 56.29 55.85 52.15 57.06 54.74
of SVs L.M 64580 41477 21519 33189 15280 59914 39356 46214 50957 27034

13448	 Y. Nawal et al.

1 3

method) has a lower execution time than those of batch
algorithm runs.

In summary, the IncSim is the only method where the
training time of all chunk data of Tulum dataset is less than
the training time taken by the batch algorithm. In fact, it is
expected from this method to perform well when the distri-
bution of data changes over time, since it discards at each
step a set of selective support vectors. Interpretations of
Aruba results are still valid for Tulum. The proposed Inc-
Succ method outperforms all other methods including the
Fixed method, in term of Accuracy and F-measure.

To recap, the IncSucc proposed incremental method
speeds up significantly the training time while it keeps
the classification performances close or better than those
obtained by state-of-the-art methods and it is expected to
perform well when the distribution in data change over time.

5 � Conclusion and future work

In order to provide a prompt service for dependent people in
their own home, a real time system recognizing daily human
activities from sensor readings is required. Most of the tech-
niques used in the literature have inherent limitations due to
the high execution time or to the constraints governing the
model construction that are imposed by the employed clas-
sification method. In this paper, we propose and evaluate an
extension of a sensor window approach to perform activity
recognition in a streaming way, i.e. recognizing activities
when a new sensor event is recorded. As our experiments
deal with large scale dataset, training data offline become
impractical. For this, we introduced two new incremental
SVM techniques as extension to Krishnan and Cook (2012).
The first one refines the dependency sensor feature extraction
method by re-interpreting the concept of mutual information
between two sensors as the probability that the two sensors

Fig. 12   F-measure for each incremental step. a Aruba dataset; b
Tulum dataset

Fig. 13   Size of data fed into classifier at each incremental step. a
Aruba dataset; b Tulum dataset

13449New incremental SVM algorithms for human activity recognition in smart homes﻿	

1 3

fall on the same windows (of a fixed size) of events. The sec-
ond one acknowledges the importance of the last-state of the
sensor within a given segment so that its feature representa-
tion is reduced to the status of this last event of the segment,
which significantly boosts the computational efficiency of
the feature extraction method. Next, we also proposed two
candidate solutions for SVM incremental learning methods
by capitalizing on the similarity between support vectors of
previous data chunk and current batch of data to reduce the
training phase. The first method builds on the concept of
pure and hybrid cluster to apply iterative k-means algorithms
so that datum associated with pure clusters are discarded and
those with hybrid clusters are added to support vector list.
The second method suggests to prone the training datum at
each data chunk using a two-side similarity calculus pro-
cess, through an Euclidean metric, where support vectors
that are found highly similar to data in the new chunk are
discarded, and then, datums that bear similarity to the same
support vector are reduced. The evaluation of the developed
approached have been carried out using publicly available
Aruba and Tulum dataset. The results were also compared
to the state-of-the-art methods; namely, Fixedm ERRD and
LSSVF methods. The findings confirm both the feasibility
and the high performance of the proposals in terms of accu-
racy, F1-score and data simplification. First, from the feature
engineering perspective, and using baseline SVM method
reveals that the introduced Last-State sensor based method
outperforms all other feature extraction methods, including
the introduced MDS approach. Second, the proposed cluster-
ing based-incremental methods are found to run faster than
the Fixed and ERRD state-of-the-art methods. Especially,
the proposed similarity based incremental learning is found
to be 5 to 9 times faster than other presented methods, while
achieving good performance in terms of F1-measure and
accuracy as well. As perspective work, the detailed con-
vergence properties of the introduced incremental learning
algorithms are still to be investigated. This would provide
a solid theoretical framework for further development of
empirical research in human activity recognition. On the
other hand, the detailed investigation of the effect of imbal-
anced class dataset is part of our planned future investiga-
tions as the currently developed method would fail if high
class imbalance occurs. We hypothesize that data segmenta-
tion into small chunks would constitute a first asset to tackle
a such phenomenon. Therefore, re-examining other related
datasets with complex class distribution is pivotal. Another
challenge is to update the model at each incremental step
without system retrain and then to create a real-world model
that can be used and tested online in a smart home. This
will serve as input to some profiling system to create some
optimized version tailored to each individual Karami et al.
(2016). This will be investigated as part of perspective work.

Acknowledgements  This work is partly supported by European project
YoungRes (#823701), and Academy of Finland DigiHealth projects
No.326291 which are gratefully acknowledged.

Author Contributions  YN has performed the initial implementation
and produced draft under supervision of BF. MO reshaped the draft
and checked overall implementation. AF interacted with BF to extent
their initial framework of incremental SVM.

Funding  Open Access funding provided by University of Oulu includ-
ing Oulu University Hospital. This work is partly supported by Euro-
pean project YoungRes (#823701), and Academy of Finland Digi-
Health projects No.326291 which are gratefully acknowledged.

Declarations 

Conflict of interest  None.

Ethical approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Availability of data and materials  All employed dataset are open
sources

Code availability.  Code can be made on reasonable request.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aruba and Tulum (2011) Aruba dataset from wsu casas smart home
project

Abowd GD, Dey AK, Brown PJ, Davies N, Smith M, Steggles P (1999)
Towards a better understanding of context and context-awareness.
In: Gellersen H-W (ed) Handheld and Ubiquitous Computing, pp
304–307, Springer, Berlin

Allameh E, Heidari Jozam M, Vries B. d, Timmermans H, Beetz J
(2011) Smart home as a smart real estate: a state of the art review.
In: 18th International Conference of European Real Estate Soci-
ety, Eindhoven, The Netherlands Eindhoven: ERES

Bao L, Intille SS (2004) Activity recognition from user-annotated
acceleration data. In: Pervasive computing, pp 1–17, Springer,
Berlin

Barger TS, Brown DE, Alwan M (2005) Health-status monitoring
through analysis of behavioral patterns. Trans Syst Man Cyber
Part A 35(1):22–27

http://creativecommons.org/licenses/by/4.0/

13450	 Y. Nawal et al.

1 3

Cauwenberghs G, Poggio T (2001) Incremental and decremental sup-
port vector machine learning. In: Advances in neural information
processing systems (NIPS*2000), volume 13

Cook DJ, Khrishnan N (eds) (2015) Activity learning, discovering,
recognizing and predicting, Wiley, London, 1st edn

Demrozi F, Pravadelli G, Bihorac A, Rashidi P (2020) Human activity
recognition using inertial, physiological and environmental sen-
sors: a comprehensive survey. IEEE Access 8:210816–210836

Domeniconi C, Gunopulos D (2001) Incremental support vector
machine construction. In: IEEE international conference, pp
589–592

Fan R-E, Chen P-H, Lin C-J (2005) Working set selection using second
order information for training support vector machines. J Mach
Learn Res 6:1889–1918

Fu B, Damer N, Kirchbuchner F, Kuijper A (2020) Sensing technology
for human activity recognition: a comprehensive survey. IEEE
Access 8:83791–83820

Gu T, Wu Z, Tao X, Pung H. K, Lu J (2009) epsicar: An emerging
patterns based approach to sequential, interleaved and concurrent
activity recognition. In: 2009 IEEE international conference on
pervasive computing and communications, pp 1–9

Gâlmeanu H, Andonie R (2008) Implementation issues of an incremen-
tal and decremental svm. In: Artificial Neural Networks - ICANN.
Lecture Notes in Computer Science, vol 5163, Springer, Berlin

Hsieh C.-J, Si S, Dhillon IS (2014) A divide-and-conquer solver for
kernel support vector machines. In: Proceedings of the 31st Inter-
national Conference on International Conference on Machine
Learning - Volume 32, pages 566—-574, China. JMLR

Karami AB, Fleury A, Boonaert J, Lecoeuche S (2016) User in the
loop: Adaptive smart homes exploiting user feedback – state of
the art and future directions. Information 7(2):35

Kim S-C, Jeong Y-S, Park S-O (2013) Rfid-based indoor location track-
ing to ensure the safety of the elderly in smart home environments.
Person Ubiquit Comput 17(8):1699–1707

Krishnan NC, Cook DJ (2012) Activity recognition on streaming sen-
sor data. Pervasiv Mob Comput, pp 1–17

Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceedings
of the Second Berkeley Symposium on Mathematical Statistics
and Probability, 1950, number 0047303 (13,855f), pages 481–492,
Berkeley and Los Angeles

Lester J, Choudhury T, Kern N, Borriello G, Hannaford B (2005) A
hybrid discriminative/generative approach for modeling human
activities. In: Proceedings of the 19th International Joint Confer-
ence on Artificial Intelligence, pages 766–772

Liu J, Liu H, Chen Y, Wang Y, Wang C (2020) Wireless sens-
ing for human activity: a survey. IEEE Commun Surv Tutor
22:1629–1645

Ordóñez FJ, de Toledo P, Sanchis A (2013) Activity recognition using
hybrid generative/discriminative models on home environments
using binary sensors. Sensors 13(5):54–60

Osuna E, Freund R, Girosi F (1997) An improved training algorithm for
support vector machines. In: Neural Networks for Signal Process-
ing VII. Proceedings of the 1997 IEEE Signal Processing Society
Workshop, pages 276–285

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel
O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas
J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E
(2011) Scikit-learn: machine learning in Python. J Mach Learn
Res 12:2825–2830

Polikar R, Upda L, Upda SS, Honavar V (2001) Learn++: an incre-
mental learning algorithm for supervised neural networks. Trans
Syst Man Cybern Part C 31(4):497–508

Pollack ME, Brown L, Colbry D, McCarthy CE, Orosz C, Peintner B,
Ramakrishnan S, Tsamardinos I (2003) Autominder: an intelligent
cognitive orthotic system for people with memory impairment.
Robot Auton Syst 44(3):273–282

Pronobis A, Luo J, Caputo B (2010) The more you learn, the less you
store: memory-controlled incremental svm for visual place rec-
ognition. Image and vision computing

Razzaghi T, Safro I (2015) Scalable multilevel support vector
machines. Procedia Comput Sci 51(C):2683–2687

Schlag S, Schmitt M, Schulz C (2021) Faster support vector machines.
26(15)

Solaimani S, Keijzer-Broers W, Bouwman H (2013) What we do–and
don’t–know about the smart home: an analysis of the smart home
literature. Indoor Built Environ, pp 1420326X13516350

Straczkiewicz M, James P, Onnela J (2021) A systematic review of
smartphone-based human activity recognition methods for health
research. npj Digital Medicine, 148

Syed NA, Liu H, Sung KK (1999) Incremental learning with support
vector machines. In: Workshop on Support Vector Machines at the
International Joint Conference on Artificial Intelligence (IJCAI-
99), Stockholm, Sweden

Tapia EM (2003) Activity recognition in the home setting using simple
and ubiquitous sensors. PhD thesis, Massachusetts Institute of
Technology

Tapia EM, Intille S, Larson K (2004a) Activity recognition in the home
using simple and ubiquitous sensors. In: In Pervasive, pp 158–175

Tapia EM, Intille SS, Larson K (2004b) Activity recognition in the
home using simple and ubiquitous sensors, pp 158–175

van Kasteren T, Noulas A, Englebienne G, Kröse B (2008a) Accurate
activity recognition in a home setting. In: Proceedings of the 10th
international conference on ubiquitous computing, UbiComp ’08

van Kasteren T, Noulas A, Englebienne G, Kröse B (2008b) Accurate
activity recognition in a home setting. In: Proceedings of the 10th
international conference on ubiquitous computing, UbiComp ’08,
pages 1–9

Vischer JC (2007) The concept of environmental comfort in workplace
performance. Ambiente Construído 7(1):21–34

Wang L, Gu T, Tao X, Chen H, Lu J (2011) Recognizing multi-user
activities using wearable sensors in a smart home. Pervasive Mob
Comput 7(3):287–298

Wang L, Gu T, Tao X, Lu J (2012) A hierarchical approach to real-
time activity recognition in body sensor networks. Pervasive Mob
Comput 8(1):115–130

Wen Z, Shi J, Li Q, He B, Chen J (2018) Thundersvm: a fast svm
library on gpus and cpus. J Mach Learn Res 19(1):797–801

Wilson C, Hargreaves T, Hauxwell-Baldwin R (2014) Smart homes and
their users: a systematic analysis and key challenges. Pers Ubiquit
Comput 19(2):463–476

Wilson DH, Atkeson C (2005) Simultaneous tracking and activity
recognition (star) using many anonymous, binary sensors. In:
Proceedings of the Third International Conference on Pervasive
Computing, PERVASIVE’05, pp 62–79

Yu H, Yang J, Han J (2003) Classifying large data sets using svms with
hierarchical clusters. page 306–315, Washington, D.C. Associa-
tion for Computing Machinery

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	New incremental SVM algorithms for human activity recognition in smart homes
	Abstract
	1 Introduction
	2 Background
	2.1 Streaming data segmentation and features extraction
	2.2 Incremental SVM learning algorithms—background
	2.3 Incremental SVM algorithms: state-of-the-art methods

	3 Method
	3.1 Features extraction
	3.1.1 Baseline feature extraction method (BL)
	3.1.2 Dependency sensor features extraction method (DS)
	3.1.3 Two new approaches for feature extraction

	3.2 Proposed incremental SVM algorithm
	3.2.1 Clustering-based incremental SVM method
	3.2.2 Similarity based incremental SVM method

	4 Simulations and results
	4.1 Datasets
	4.2 Results and discussion
	4.3 Discussing results obtained by the batch Learning
	4.4 Sensitivity analysis of the parameters
	4.5 Discussing results obtained by the incremental learning

	5 Conclusion and future work
	Acknowledgements
	References

