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Abstract. The parameters of generalized linear models are generally estimated by the max-
imum likelihood estimator (MLE), computed using a Newton-Raphson type algorithm that can
be time-consuming for a large number of variables or modalities, or a large sample size. Explicit
estimators exist for these models but they are not always asymptotically efficient, especially for
simple effects models, although they are fast to calculate compared to the MLE. The article pro-
poses a fast and asymptotically efficient estimation of the parameters of generalized linear models
with categorical explanatory variables. It is based on a one-step procedure where a single step
of the gradient descent is performed on the log-likelihood function initialized from the explicit
estimators. This work presents the theoretical results obtained, the simulations carried out and
an application to car insurance pricing.

Keywords. Generalized linear models, explicit estimators, categorical explanatory variables,
one-step procedure

1 Introduction

Generalized linear models (GLMs) are regression models where the distribution of the response
variable belongs to the exponential family with a natural parameter which is a linear combina-
tion of explanatory variables (up to a link function, see e.g. McCullagh & Nelder (1989) for an
introduction). The unknown parameters of such models are generally estimated by the maximum
likelihood estimator (MLE) for which the asymptotic normality (and efficiency) have been estab-
lished by Fahrmeir & Kaufmann (1985). Since the MLE has no closed-form formula in general,
it is numerically computed by a Newton-type method (known as the Fisher scoring algorithm
which can be rewritten as an iteratively re-weighted least square method (IWLS), see McCullagh
& Nelder 1989). This computation method is time-consuming for large datasets or for numerous
explanatory variables.

The setting of sole categorical explanatory variables is singular due to the non-identifiability
of the model and linear identifiability conditions are usually imposed. In this setting, for some
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specific models, closed-form MLE has been proposed by Brouste, Dutang & Rohmer (2020) which
is asymptotically efficient. For other models, as the single effect models, closed-form alternative
estimator which is consistent, asymptotically normal but not asymptotically efficient has also been
built (see e.g. Brouste et al. 2022).

Dealing with categorical explanatory variables is of particular interest in practical applications.
A finite number of risk groups relying on categorical variables is used for the pricing of guaran-
tees (Denuit et al. 2020) or for modeling disease, fertility and milk production in dairy cattle in
Kadarmideen et al. (2000). The parameters of GLMs can be fastly estimated with the closed
formula and large datasets and/or large number of modalities can be handled.

But in most situations, explanatory variables are used as single effect ((McCullagh & Nelder
1989, Chapters 4 and 6), Lindsey (1997), (Denuit et al. 2020, Chapter 4), (Wuethrich & Merz
2021, Chapter 5)). Consequently, the loss of asymptotical efficiency for the gain of computation
speed could be questioned. We propose in this paper a fast and asymptotically efficient procedure
to estimate the parameters of GLM with categorical variables based on the one-step procedure.

The one-step procedure was initially considered for the estimation of parameters in indepen-
dent and identically distributed (i.i.d.) samples (see Le Cam (1956)). In such procedure, an
initial guess estimator is proposed which is fast to be computed but not asymptotically efficient.
Then, a single step of the gradient descent method is done on the log-likelihood function in order
to correct the initial estimation and reach asymptotic efficiency, see Brouste et al. (2021). With
some recent developments, the one-step procedure has been successfully generalized to more so-
phisticated statistical experiments as diffusion processes in Kamatani & Uchida (2015), Gloter &
Yoshida (2021), ergodic Markov chains in Kutoyants & Motrunich (2016), inhomogeneous Poisson
counting processes in Dabye et al. (2018), fractional Gaussian and stable noises observed at high
frequency in Brouste & Masuda (2018), Brouste, Soltane & Votsi (2020).

The paper falls into 5 parts. The notations for GLMs are given in Section 2. The notion of
restricted parameter is described in Section 3, which is new from our previous studies in Brouste,
Dutang & Rohmer (2020), Brouste et al. (2022), with the asymptotic properties of the MLE and
the closed-form estimator. The fast one-step estimation procedure is also presented in Section 3
with a convergence result. Monte-Carlo simulations on samples of finite size are done in Section 4
and an application to car insurance is given in Section 5. Technical lemmas and the proof of the
main are postponed in Appendix.

2 Preliminaries on GLMs

2.1 Notation for GLMs

Bold notations are given for the vectors. The index i ∈ I = {1, . . . , n} is reserved for the observa-
tions, while the indexes j, k are used for the explanatory variables.

The observation sample Y = (Y1, . . . , Yn) is composed of independent random variables valued
in Y ⊂ R where for i ∈ I, Yi belongs to the one-parameter exponential family of probability
measures valued in Λ ⊂ R. In this setting, the log-likelihood logL of the sample is

logL(ϑ, φ |Y ) =
n∑
i=1

λi(ϑ)Yi − b (λi(ϑ))

a(φ)
+

n∑
i=1

c(Yi, φ), (1)

where a : R→ R, b : Λ→ R and c : Y× R→ R are fixed real-valued measurable functions and φ
is the dispersion parameter, e.g. McCullagh & Nelder (1989, Section 2.2).
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The parameters λ1, . . . , λn in Equation (1) depend on a p-dimensional parameter ϑ ∈ Θ ⊂ Rp.
For i = 1, . . . , n, denote µi = b′(λi(ϑ)). Theoretical moments of Yi are explicitly given as a function
of a and derivatives of b

EϑYi = b′(λi(ϑ)) = µi and VarϑYi = b′′(λi(ϑ))a(φ) = V (µi)a(φ). (2)

The function V : µ 7→ V (µ) = b′′ ◦ (b′)−1(µ) is known as the variance function of the expectation
µ. Using a twice continuously differentiable and bijective function g from b′(Λ) to R, GLMs are
defined by assuming the following relation between the expectation EϑYi and the predictor

g(µi) = xTi ϑ = ηi, for all ϑ ∈ Θ,

where ηi are the linear predictors. The parameter ϑ ∈ Θ ⊂ Rp and the parameter φ > 0 are
unknown and are to be estimated. The function g is called the link function in the regression
framework. In other words, the bijective function ` = (b′)−1 ◦ g−1 is settled; then we have λi(ϑ) =
`(ηi). We summarize with the following relations

X ×Θ −→ D
`−1

�
`

Λ,

where D is the space of linear predictor and X the possible set of value of xi for i ∈ I. Here ` is
chosen and, consecutively Θ, Λ and D must be set. We talk of canonical link function, when ` is
the identity function, that is to say g = (b′)−1.

2.2 Score and Fisher information for GLMs

We introduce T as the part of the log-likelihood depending on ϑ only in order to express the
first-order condition verified by the maximum likelihood estimator (MLE)

T (ϑ |Y ) =
n∑
i=1

Yi`(ηi)− b (`(ηi)) .

Hence, the log-likelihood (1) can be rewritten as

logL(ϑ, φ |Y ) =
T (ϑ |Y )

a(φ)
+

n∑
i=1

c(Yi, φ).

The gradient of logL is

∇(ϑ,φ) logL(ϑ, φ |Y ) =

 ∇ϑT (ϑ |Y )/a(φ)

− a′(φ)
a(φ)2

T (ϑ |Y ) +
n∑
i=1

∂
∂φ
c(Yi, φ)

 =:

(
U(ϑ)/a(φ)
V(ϑ, φ)

)
.

The MLE (ϑ̂n, φ̂n) for (ϑ, φ) satisfies

U(ϑ̂n) = 0 and V(ϑ̂n, φ̂n) = 0. (3)

Using (2), we define the weight matrix and the explanatory variables matrix by

W (ϑ) =


1

(g′(µ1))
2V (µ1)

. . .
1

(g′(µn))
2V (µn)

 , X =

x
(1)
1 . . . x

(p)
1

...

x
(1)
n . . . x

(p)
n

 , (4)
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and Z the vector of mean deviations

Z(ϑ) =

(y1 − µ1)g
′(µ1)

...
(yn − µn)g′(µn)

 . (5)

Note that all diagonal terms W are positive so that W (ϑ) is invertible. U can be rewritten as a
matrix multiplication U(ϑ) = XTW (ϑ)Z(ϑ), cf. (25) in Appendix A.2, where for a matrix M ,
MT denotes the transposition of the matrix M . We have the following expression for the score
vector and the Fisher information

Sn(ϑ) =
XTW (ϑ)Z(ϑ)

a(φ)
, In(ϑ) =

XTW (ϑ)X

a(φ)
.

Since Fahrmeir & Kaufmann (1985), under regularity conditions, the MLE ϑ̂n of ϑ asymptot-
ically exists and as soon as the MLE is unique, that is to say there is no over-parametrization in
the model, we have

IT/2n (ϑ)(ϑ̂n − ϑ)
L−→

n→+∞
Np (0p, Ip) ,

with I1/2n IT/2n = In where Ip is the identity matrix of Rp×p.

3 Estimation of GLMs with categorical variables

Consider the case where all m explanatory variables are categorical, that is for j = 1, . . . ,m
every observations (x

(j+1)
i )i take values in a finite set {vj,1, . . . , vj,dj} and x

(1)
i = 1 is the intercept.

Assuming values are unordered, x
(j+1)
i needs to be encoded using binary dummies as

x
(j+1),k
i = 1{x(j+1)

i =vj,k}
, k ∈ {1, . . . , dj}.

These binary dummies can be used both in single-effect models or with cross-effect models.
In the following, we introduce the notion of restricted parameter which is new from our pre-

vious studies Brouste, Dutang & Rohmer (2020), Brouste et al. (2022) and recall the asymptotic
properties of the MLE of this parameter in Section 3.1. The properties of the closed-form estimator
(CFE) are given in Section 3.2.

It is worth mentioning that, on the one hand, the MLE will be shown to be asymptotically
efficient but time-consuming in the general setting. On the other hand, the CFE is fast to be
computed but is not asymptotically efficient.

3.1 Notion of restricted parameter

For the sake of presentation, we firstly consider the single-effect model and secondly present the
general case.

3.1.1 Model with single effects only

First let consider the GLMs with single effect only

g (EϑYi) =ϑ1 +
m+1∑
j=2

dj∑
k=1

x
(j),k
i ϑ

(j)
k . (6)
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For j = 2, . . . ,m + 1, denote ϑ(j) = (ϑ
(j)
k )k=1,...,dj . Hence the parameter vector is written as

ϑ = (ϑ1,ϑ
(2), . . . ,ϑ(m+1))T . The linear predictor vector η = (ηi)i=1...,n can be rewritten as η = Xϑ,

with

X =
(
1n x(2) . . . x(m+1)

)
, x(j) =

x
(j),1
1 . . . x

(j),dj
1

...
...

x
(j),1
n . . . x

(j),dj
n

 .

Because the redundancies of the matrix X going from
∑dj

k=1 x
(j),k
i = 1 for all i, j, at least m

linear conditions are needed to be imposed to get the identifiability of the model. Let contrast
vectors Rj such that

RT
j ϑ

(j) = 0, j = 1, . . . ,m.

This is equivalent to Rϑ = 0 with

R =

0 RT
1 . . . 0

...
. . .

0 0 . . . RT
m

 .

Note that the matrix R is a particular case of the constrast matrix considered in Brouste et al.
(2022). In other words, the identifiability conditions assume that one component of ϑ(j) can be
rewritten as a linear combination of the others. Therefore, we define a restricted parameter ϑ̃(j+1)

of size dj − 1 and a matrix Bj of size dj × (dj − 1) such that

ϑ(j+1) = Bjϑ̃
(j+1). (7)

In Table 1, two examples of such vectors Rj are given as well as the corresponding restricted
parameter and the corresponding coding matrix Bj. Note that for a given Rj, the choice of the
restricted parameter is not necessarily unique. We refer to Venables (2023) for further examples of
coding matrices Bj and associated contrasts matrices in the R statistical software (R Core Team
2023).

Name Rj Bj implication ϑ̃(j+1) R code

zero-sum (1, . . . , 1)

(
Idj−1
−1Tdj−1

)
ϑ
(j+1)
dj

= −
dj−1∑
k=1

ϑ
(j+1)
k

ϑ
(j+1)
1
...

ϑ
(j+1)
dj−1

 contr.sum

ref. category (1, 0, . . . , 0)

(
0Tdj−1
Idj−1

)
ϑ
(j+1)
1 = 0

ϑ
(j+1)
2
...

ϑ
(j+1)
dj

 contr.treatment

Table 1: Contrast examples and restricted parameters

Using the restricted parameters and the matrices B1, . . . , Bm, the linear predictor can be rewrit-
ten as

η = X̃ϑ̃, (8)

with
X̃ =

(
1n x(2)B1 . . . x(m+1)Bm

)
, ϑ̃ = (ϑ1, ϑ̃

(2), . . . , ϑ̃(m+1)).
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Using Appendix A.3, the score vector and the Fisher information write in an analogous way as the
previous section

S̃(ϑ) =
X̃TW (ϑ)Z(ϑ)

a(φ)
, Ĩn(ϑ) =

X̃TW (ϑ)X̃

a(φ)
. (9)

Note that the matrix W can be big for large datasets, and the Information matrix can be
time-consuming. To reduce the computing time, note that, it can be rewritten as Ĩn(ϑ) = (X̃ �
S)T X̃/a(φ), where � is Hadamard’s product and S is the vector constituted with the diagonal
elements of W .

3.1.2 General case

To take all possible GLM settings into account, we consider a GLM with predictor defined as

g (EϑYi) =ϑ1 +
m+1∑
j=2

dj∑
k=1

x
(j),k
i ϑ

(j)
k Intercept and single effect

+
∑
j2<j3

∑
k2,k3

x
(j2),k2
i x

(j3),k3
i ϑ

(j2,j3)
k2,k3

Double effect

+
∑

j2<j3<j4

∑
k2,k3,k4

x
(j2),k2
i x

(j3),k3
i x

(j4),k4
i ϑ

(j2,j3,j4)
k2,k3,k4

Triple effect

+ . . . . . .

+
∑

k2,...,km+1

x
(2),k2
i . . . x

(m+1),km+1

i ϑ
(2,...,m+1)
k2,...,km+1

, All crossed effect

(10)

where g is the link function and indexes ji are in {2, . . . ,m + 1} and kj are in {1, . . . , dj} for
j = 2, . . . ,m+ 1. The linear predictor η = (ηi)i=1...,n can be rewritten as η = Xϑ, with

X =
(
1n x(2) . . . x(m+1) x(2,3) . . . x(m,m+1) x(2,3,4) . . . x(m−1,m,m+1) . . .x(2,...,m+1)

)
,

and with for 2 ≤ j2 < j3 < . . . ,

x(j2,j3,...) =

x
(j2,j3,...,),1
1 . . . x

(j2,j3,...),dj2dj2 ...

1
...

...

x
(j2,j3,...),1
n . . . x

(j2,j3,...),dj2dj2 ...
n

 , x
(j2,j3,...,),k1k2,...
i = x

(j2),k1
i x

(j3),k2
i . . .

The unknown parameter vector is

ϑ =
(
ϑ1, (ϑ

(j))j, (ϑ
(j2,j3))j2<j3 , (ϑ

(j2,j3,j4))j2<j3<j4 , . . . , (ϑ
(2,...,m+1))

)T
,

with ϑ(j) = (ϑ
(j)
k )k, ϑ

(j2,j3) = (ϑ
(j2,j3)
k2,k3

)k2,k3 ,. . . , ϑ(2,...,m+1) = (ϑ
(2,...,m+1)
k2,...,km+1

)k2,...,km+1). The total number
of parameters of the model in (10) is

p = 1 +
m+1∑
j=2

dj +
∑
j2<j3

dj2dj3 + · · ·+
m+1∏
j=2

dj.

Because the model in (10) is not identifiable, we need to impose at least p −
∏m+1

j=2 dj linear
conditions. Here, we propose to reduce the dimension of the parameters.
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name parameter size of the restricted param. contrast number
Intercept ϑ1 1 0

single effect ϑ(j) dj − 1 dj − (dj − 1)

double effect ϑ(j2,j3) (dj3 − 1)(dj2 − 1) dj3dj2 − (dj3 − 1)(dj2 − 1)

triple effect ϑ(j2,j3,j4) (dj4 − 1)(dj3 − 1)(dj2 − 1) dj4dj3dj2 − (dj4 − 1)(dj3 − 1)(dj2 − 1)
...

...
...

all crossed-effect ϑ(2,...,m+1)
m+1∏
j=2

(dj − 1)
m+1∏
j=2

dj −
m+1∏
j=2

(dj − 1)

Table 2: size of the restricted parameters and contrast numbers

In Table 2, the number of considered linear contrasts and the size of the restricted parameter
ϑ̃(j) are given for each elements of the parameter vector. Note that this decomposition is not
unique. For example in the single-effect part, one could impose a null intercept or a zero-condition
on one of the parameter.

Let Rj, Rj2,j3 , . . . , Rj2,j3,...,jm+1 , 2 ≤ j2 < j3 < . . . < jm+1 ≤ m+ 1, matrices such that

RT
j ϑ

(j) = 0, RT
j2,j3
ϑ(j2,j3), . . . , RT

2,...,m+1ϑ
(2,...,m+1) = 0.

That is to say, Rϑ−1 = 0, with R the diagonal block matrix

R = diag ((Rj)j, (Rj2,j3)j2,j3 , . . . , R2,...,m+1) ,

and ϑ−1 the parameter vector without the intercept ϑ1.
For all m-effect parts of the model, we can define a restricted parameter ϑ̃(j), ϑ̃(j2,j3), . . .,

ϑ̃(2,...,m+1) of respective size d̃j = dj−1, d̃j2,j3 = (dj3−1)(dj2−1), . . ., d̃2,...,m+1 =
∏m+1

j=2 (dj−1) and

the corresponding coding matrix Bj, Bj2,j3 , . . ., B2,...,m+1 respectively of size dj × d̃j, dj2dj3 × d̃j2,j3 ,
. . . ,

∏m+1
j=2 dj × d̃2,...,m+1 such that

ϑ(j) = Bjϑ̃
(j), ϑ(j2,j3) = Bj2j3ϑ̃

(j2,j3), . . . , ϑ(2,...,m+1) = B2,...,m+1ϑ̃
(2,...,m+1). (11)

The coding matrices can be rewritten in terms of the Kronecker product. Consider B2, B3 and
B4 of respective dimension d2 × (d2 − 1), d3 × (d3 − 1) and d4 × (d4 − 1). Then the Kronecker
product B2,3 = B3⊗B2 has dimension d3d2× (d3− 1)(d2− 1). In the same way, B2,3,4 = B4⊗B2,3

has dimension d4d3d2× (d4− 1)(d3− 1)(d2− 1). More generally, for Bj of dimension dj × (dj − 1),⊗2
j=m+1Bj has dimension

∏2
j=m+1 dj ×

∏2
j=m+1(dj − 1).

Using the restricted parameters and the coding matrices Bj, Bj2j3 , . . . , B2,...,m the linear pre-
dictor can be rewritten as

η = X̃ϑ̃, (12)

with the new regressor matrix

X̃ =
(
1n x(2)B1 . . . x(m+1)Bm x(2,3)B2,3 . . . x(m,m+1)Bm,m+1 . . . x(2,...,m+1)B2,...,m+1

)
Note that the linear predictor ηi in (12) is identical whether we use ϑ or ϑ̃, leading to the same

expectation µi, henceforth the same matrices W (.) and Z(.).
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3.2 Asymptotic properties of the MLE and the closed-form estimator

Since the covariates are supposed to be categorical in this paper, the vector of linear predictors η
defined in (12) takes d =

∏
j dj distinct values namely h1, . . . , hd. We consider the unique d × p

matrix Q composed of binary dummies such that

η? = Qϑ, η? = (hj)j=1,...,d.

For example, in the single-effect model (6), Q = (M
()
m,M

(2)
m , . . . ,M

(m+1)
m ) with M

()
m = 1dm+1...d2 ,

and for 2 < j < m+ 1

M (2)
m = 1dm+1...d3 ⊗ Id2 , M (m+1)

m = Idm+1 ⊗ 1dm...d2 , M (j)
m = 1dm+1 ⊗ Idj ⊗ 1dj−1...d2 .

The general form of Q for the model (10) is given in Brouste et al. (2022).
Using the same restricted parameter as (11), and considering vectors Rj of size dj+1 such that

Rjϑ
(j+1) = 0, the restricted linear predictors η? can be rewritten as previously as

η? = Q̃ϑ̃.

For example in the single-effect model

Q̃ =
(
M

()
m M

(2)
m B1 . . . M

(m+1)
m Bm

)
, ϑ̃ = (ϑ1, ϑ̃

(2), . . . , ϑ̃(m+1)).

Note the the score S̃ and the information matrix Ĩn(ϑ) can be rewritten in term of the Q̃ matrix
as following

a(φ)S̃(ϑ) = nQ̃TΣn(ϑ)Z?(ϑ), a(φ)Ĩn(ϑ) = nQ̃TΣn(ϑ)Q̃,

with Σn is the diagonal matrix whose the diagonal elements are

Σn,j,j(ϑ) =
mj

n

(
(g′(µ?j))

2V (µ?j)
)−1

, µ?j = g−1(hj), j = 1, . . . , d, (13)

and
Z?(ϑ) = ((ȳ(j)n − µ?j)g′(µ?j))j=1,...,d, (14)

see Appendix A.3. Hence, when pj satisfies
mj

n
→ pj as n→∞, the asymptotic distribution of the

MLE converges in distribution

√
n(̂̃ϑn − ϑ̃)

L−→
n→+∞

Np?
(
0p? , Ĩ−1(ϑ)

)
, (15)

with p? the dimension of the restricted parameter and the information matrix expressed as

Ĩ(ϑ) =
Q̃ΣQ̃T

a(φ)
, Σ(ϑ) = diag(v1, . . . , vd), (16)

with diagonal elements are asymptotic variances vj = pj((g
′(µ?j))

2V (µ?j))
−1.

Because the MLE can be time-consuming for large datasets or for a large number of explanatory
variables or modalities for each variables, as soon as QTQ+RTR is definite positive, an alternative
closed-form estimator (CFE) which avoids the using of a time-consuming IWLS algorithm has
been defined in Brouste et al. (2022).
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The closed-form estimator of the restricted parameter is

ϑ̃CFEn = (Q̃T Q̃)−1Q̃Tg(Y n),

where

g(Y n) =


g(Y

1

n)
...

g(Y
k

n)
...

g(Y
d

n)

 , Y
k

n =

n∑
i=1;ηi=hk

Yi

mk

,mk = #{i ∈ {1, . . . , n}; ηi = hk}. (17)

From Theorem 1 in Brouste et al. (2022), we know the asymptotic distribution of ϑ̃CFEn :

√
n(ϑ̃CFEn − ϑ̃)

L−→
n→+∞

Np?
(
0p? , a (φ) (Q̃T Q̃)−1Q̃TΣ−1(ϑ̃)Q̃(Q̃T Q̃)−1

)
, (18)

with Σ(ϑ)−1 the diagonal matrix whose diagonal elements are 1/vj and pj satisfies
mj

n
→ pj as

n→∞.
As mentioned in Brouste et al. (2022), as soon as the closed-form estimator coincides with the

MLE (in this case the Q̃ is a square matrix), ϑ̃CFEn = Q̃−1g(Ȳn), and consequently using the delta
method we get

√
n(ϑ̃CFEn − ϑ̃)

L−→
n→+∞

Np?
(
0p? , a (φ) Q̃−1Σ−1(ϑ)(Q̃−1)T

)
. (19)

That is the asymptotic variance of
√
n(ϑ̃CFEn − ϑ̃) coincides with Ĩ−1(ϑ) defined in (15).

In general, for instance in single effect models, the CFE is not the MLE and is not asymptotically
efficient. For this reason, it is desirable to add a single step of the gradient descent method in
order to reach asymptotic efficiency. Hence we consider a one-step version of ϑ̃CFEn in the next
subsection.

3.3 One-Step Closed-form Estimator

The One-Step Closed-form Estimator (OS-CFE) of ϑ̃ is defined as

ϑ̃OS−CFEn = ϑ̃CFEn + Ĩn(ϑ̃CFEn )−1S̃(ϑ̃CFEn )

= (Q̃′Q̃)−1Q̃Tg(Y n) + (Q̃TΣn(ϑ̃CFEn )Q̃)−1Q̃TΣn(ϑ̃CFEn )Z?(ϑ̃CFEn ),

where Z? is defined in (14). It is worth emphasizing that the OS-CFE of ϑ̃ does not depend on
the dispersion parameter φ by simplification. The main result is that the OS-CFE of the restricted
parameter ϑ̃ is asymptotically equivalent in probability to the MLE. The proof of Theorem 1 is
postponed in Appendix B.

Theorem 1. Under some regular conditions, as soon as for all j = 1, . . . , d the frequencies
mj

n
→ pj

as n→∞,
√
n(ϑ̃OS−CFEn − ˆ̃ϑn)

P−→
n→+∞

0.

It also means that the OS-CFE is asymptotically normal with an optimal asymptotic variance,
i.e. √

n(ϑ̃OS−CFEn − ϑ̃)
L−→

n→+∞
Np?

(
0p? , Ĩ−1(ϑ)

)
(20)

where Ĩ(ϑ) is defined in (16).
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4 Monte Carlo illustrations

The performances on finite size samples of the aforementioned estimators (MLE, CFE, OS-CFE),
in terms of computation times and asymptotic variances, are assessed with numerical examples.
Monte Carlo simulations of samples for Poisson and Gamma GLMs are done. All computations
are carried out with the R statistical software (R Core Team 2023).

More precisely, for the Poisson GLMs, the sample Y = (Y1, . . . , Yn) is composed of independent
Poisson-distributed random variables with respective distributions

f(yi, µi) =
µyii
yi!

exp(−µiyi), µi > 0, yi ∈ N, i = 1, . . . , n.

In other words, Yi is characterized in Equation (1) by

λi = µi, a(φ) = 1, b(λ) = exp(λ) and c(yi, φ) = − log(yi!).

For the Gamma GLMs, the sample Y = (Y1, . . . , Yn) is composed of independent Gamma-
distributed random variables with respective distributions

f(yi, (α, βi)) =
yα−1i

Γ(α)
βαi exp(−βiyi), α > 0, βi > 0, yi > 0, i = 1, . . . , n.

In other words, Yi is characterized in Equation (1) by

λi = −
βi

α
, a(φ) = φ =

1

α
, b(λ) = − log(−λ) and c(yi, φ) =

(
1

φ
− 1

)
log(yi)− log Γ

(
1

φ

)
+

1

φ
log

1

φ
.

In this numerical example the canonical setting is used (` is the identity function) leading to a
log link function for the Poisson distribution (g(x) = log(x)) and the inverse link function for the
Gamma distribution (g(x) = 1/x).

4.1 Simulations with a fixed sample size and a modality number

In our simulations, we consider two explanatory variables x
(2)
i , x

(3)
i and d2, d3 modalities. As a

starting point d2 and d3 have respectively been taken equal to 2 and 3, and the true parameters
are chosen arbitrarily for each case as represented in Table 3. For the Gamma distribution, the
dispersion parameter φ is also chosen arbitrary: φ = 8. We consider B = 104 Monte Carlo
simulations of samples with the size of n = 104.

Distribution Link function intercept Variable 2 Variable 3

g(x) ϑ1 ϑ
(2)
1 ϑ

(2)
2 ϑ

(3)
1 ϑ

(3)
2 ϑ

(3)
3

Gamma 1/x 10 1 -1 2 3 -5
Poisson log(x) 0.05 1 -1 0.5 0.5 -1

Table 3: True parameter values

Further, for the sake of ease, histograms for Poisson and Gamma GLMs are drawn for only
ϑ1 and ϑ

(2)
2 parameters. The sequence of OS-CFE naturaly overcomes the performance of CFE in

terms of asymptotic variance (see Figures 1 and 2). According to the other comparison in terms
of computation time which is highlighted in Table 4, OS-CFE is almost 50 times faster than MLE
to be computed for the dataset with the size of n = 104.
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Figure 1: Histograms for the B = 104 simulations of the renormalized statistical errors of MLE,
CFE, OS-CFE for the Poisson distribution with 2 categorical variables with d2 = 2, d3 = 3 for
θ1 = ϑ1 and θ2 = ϑ

(2)
2 . Red and blue lines are the theoretical Gaussian asymptotic densities

respectively of the MLE (in red) and CFE (in blue).
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Figure 2: Histograms for the B = 104 Monte Carlo simulations of the renormalized statistical
errors of MLE, CFE, OS-CFE for the Gamma distribution (canonical link) with 2 categorical

variables with d2 = 2, d3 = 3 for θ1 = ϑ1 and θ2 = ϑ
(2)
2 and fixed φ = 8. Red and blue lines are the

theoretical Gaussian asymptotic densities respectively of the MLE (in red) and CFE (in blue).
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Computation time MLE CFE OS-CFE

Poisson 848.07 9.05 17.73
Gamma 1601.44 10.65 31.61

Table 4: Total computation time (s) based on B = 104 runs for Poisson and Gamma distributions

4.2 Simulations with an increasing sample size

In this section for both Poisson and Gamma GLMs keeping the number of modalities constant
(d2 = 2 and d3 = 3), the sample sizes are increasing from n = 103 to n = 107. The number of
Monte Carlo simulations are set to B = 100. The total computation time of the three estimators
are computed. The comparative gain of the OS-CFE over the MLE is increasing with the sample
size for both distributions, from 4 to 80 times faster as shown in Tables 5 and 6.

Dataset size 103 104 105 106 107

MLE 0.33 2.35 24.86 257.15 2678.38
CFE 0.07 0.06 0.26 2.50 26.77

OS-CFE 0.08 0.11 0.50 5.14 56.10

Table 5: Total computation time (s) based on B = 100 runs for Poisson distribution.

Dataset size 103 104 105 106 107

MLE 0.41 3.64 30.63 389.88 5120.97
CFE 0.06 0.06 0.29 2.96 38.29

OS-CFE 0.07 0.11 0.52 5.30 64.98

Table 6: Total computation time (s) based on B = 100 runs for Gamma distribution.

4.3 Simulations with an increasing number of modalities

Table 7 summarizes the results of the Monte Carlo simulations with an increasing number of
modalities when the number of simulations are fixed to B = 100 and sample size is n = 105.
Simulations have been done for 2 categorical variables with equal number of modalities d2 = d3 = d
varying from d = 5 to 40.

In this particular case, the true parameter value for Gamma distribution are chosen by simply
taking the ϑ1 = 3d + 1, the ϑ

(j)
k are equal to k/d for k = 1, . . . , d − 1, and the ϑ

(j)
d = − (d−1)

2
for

the two variables j = 1, 2.
In addition, for the Poisson distribution case, ϑ1 has been chosen to be equal to 0.5, ϑ

(j)
1 to

ϑ
(j)
d−1 are 1, 2, . . . , 1 or 2 each divided by the sum of all 1 and 2’s, and the ϑ

(j)
d is the minus sum of

all modalities for each of the two variables.
The data presented in Table 7 demonstrates that as the number of modalities increases, the

computation time for all estimators also increases for both Poisson and Gamma GLMs. The OS-
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CFE method demonstrates faster computation times when compared to the MLE method, even
at the highest number of modalities.

d Poisson Gamma
MLE CFE OS-CFE MLE CFE OS-CFE

5 36.49 0.31 0.71 50.59 0.41 0.67
10 71.95 0.58 0.92 109.39 0.60 0.91
15 135.12 0.97 1.56 175.90 0.79 1.67
20 150.19 1.15 2.42 181.79 0.92 1.92
25 173.01 1.42 3.97 346.64 2.23 5.50
30 264.51 2.61 10.27 429.85 2.51 9.58
35 254.86 3.23 14.10 618.42 3.97 19.96
40 343.16 3.85 25.74 675.58 4.60 28.12

Table 7: Total computation times based on B = 100 runs for Poisson (canonical link) and Gamma
(canonical link) GLMs.

5 Application to claim amounts in car insurance

The Covea Affinity dataset under study is composed of 76,446 claim amounts ranging from 4 to
33,531 EUR. Three covariates have been selected from the 124 available for the pricing of the
guarantee

� vehicle brand with d2 = 2 modalities,

� pricing segment with d3 = 6 modalities,

� age class with d4 = 8 modalities.

For confidentiality reasons, the modality values are not revealed.
The single effect models

g (EϑYi) = ϑ1 +
m+1∑
j=2

dj∑
k=1

x
(j),k
i ϑ

(j)
k ,

is generally used by the insurers to model the claim amounts with (non-canonical) Gamma GLMs
with a log link function (g(x) = log(x)). The “reference category” linear contrast has been used.
It is worth recalling that in this setting the MLE has no closed-form and the closed-form estimator
is not efficient. In order to compute the log-likelihood, we use Equation (3) to fit the dispersion
parameter.

The one-step estimator has been applied to the Covea dataset: Table 8 give parameter estimates
for MLE, CFE and OS-CFE. The CFE and OS-CFE were almost 30 times faster to obtain than
the MLE, with similar estimate and similar fitted log-likelihood.
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CFE OS-CFE MLE
ϑ1 6.23 6.04 6.03

ϑ
(2)
2 0.24 0.08 0.03

ϑ
(3)
2 0.18 0.22 0.22

ϑ
(3)
3 -0.48 0.04 -0.01

ϑ
(3)
4 -0.07 0.08 0.09

ϑ
(3)
5 0.06 0.18 0.19

ϑ
(3)
6 0.20 0.21 0.22

ϑ
(4)
2 -0.07 0.00 0.01

ϑ
(4)
3 0.06 0.16 0.16

ϑ
(4)
4 0.17 0.18 0.18

ϑ
(4)
5 0.34 0.41 0.40

ϑ
(4)
6 0.11 0.44 0.42

ϑ
(4)
7 0.16 0.25 0.26

ϑ
(4)
8 -0.01 0.34 0.33

logL -554,868 -553,708 -553,685
Time (s) 0.01 0.01 0.30

Table 8: Values of ϑ̂n, log-likelihood and total computation time (s) for CFE, OS-CFE and MLE

6 Conclusion

Generalized linear models with single effects and sole categorical explanatory variables are widely
used in different applications (e.g., insurance, agriculture, biology). On the one hand, the classical
iteratively re-weighted least-square calibration algorithm is asymptotically efficient but can be time
consuming for large datasets and/or large number of variables. On the other hand, closed-form
estimators proposed in Brouste et al. (2022) are fast to be computed but are not asymptotically
efficient.

In this paper, we proposed a fast and asymptotically efficient method for the calibration of
GLMs with categorical explanatory variables based on the one-step procedure that can also be
applied to single effect models. It is 30 times faster than the classical method on both simulated
and real datasets.

The proposed estimator could be further used for variable and/or model selection. For instance,
the model selection with fastly computable Akaike Information Criterion could be treated in a
further work. The one-step procedure can be extended in many directions: e.g., for multivariate
regression models.
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A Gradient and Hessian of the log-likelihood

Let b̃ = (b′)−1. We recall that

X =

x
(1)
1 . . . x

(p)
1

...

x
(1)
n . . . x

(p)
n

 , Y =

Y1...
Yn

 .

A.1 Gradient and Hessian of a single observation

For ease of notation, we consider a single observation in (1). We recall that µi = g−1(ηi) and
V (µi) = b′′(λi(ϑ)).

The ith contribution is

li(ϑ) =
λi(ϑ)yi − b (λi(ϑ))

a(φ)
+ c(yi, φ). (21)

To derive the first and second order derivatives, we first compute

∂λi
∂ϑj

= (b̃)′(g−1(ηi))× (g−1)′(ηi)× x(j)i =
1

b′′(b̃(g−1(ηi))
× x

(j)
i

g′(g−1(ηi))
=

x
(j)
i

g′(µi)V (µi)
.

Hence
∂li(ϑ)

∂ϑj
=
yi − b′(λi(ϑ))

a(φ)

∂λi
∂ϑj

= x
(j)
i

yi − µi
a(φ)g′(µi)V (µi)

. (22)

Furthermore,

∂2li(ϑ)

∂ϑj∂ϑl
=

∂

∂ϑl

(
yi − b′(λi)
a(φi)

)
1

b′′(λi)

x
(j)
i

g′(µi)
+

∂

∂ϑl

(
1

b′′(λi)

)
yi − b′(λi)
a(φ)

x
(j)
i

g′(µi)

+
∂

∂ϑl

(
x
(j)
i

g′(µi)

)
yi − b′(λi)
a(φ)

1

b′′(λi)
.

The first derivative term is

∂

∂ϑl

(
yi − b′(λi)
a(φ)

)
=
−b′′(λi)
a(φ)

× ∂λi
∂ϑl

=
−b′′(λi)
a(φ)

× 1

b′′(λi)

x
(l)
i

g′(µi)
=

−x(l)i
a(φ)g′(µi)

.

17



The second derivative term is

∂

∂ϑl

(
1

b′′(λi)

)
= − b′′′(λi)

(b′′(λi))2
∂λi
∂ϑl

= − b′′′(λi)

(b′′(λi))3
x
(l)
i

g′(µi)
= − b′′′(λi)

(V (µi))3
x
(l)
i

g′(µi)
.

The third derivative term is

∂

∂ϑl

(
x
(j)
i

g′(µi)

)
= − x

(j)
i

(g′(µi))2
∂(g′(µi))

∂ϑl
= −x

(j)
i g′′(µi)

(g′(µi))2
∂µi
∂ϑl

= −x
(j)
i x

(l)
i g
′′(µi)

(g′(µi))3
,

since
∂µi
∂ϑl

=
∂(b′(λi))

∂ϑl
= b′′(λi)

∂λi
∂ϑl

= b′′(λi)×
1

b′′(λi)

x
(l)
i

g′(µi)
=

x
(l)
i

g′(µi)
.

This leads to

∂2li(ϑ)

∂ϑj∂ϑl
= − x

(l)
i x

(j)
i

a(φi)V (µi)g′(µi)2
− yi − b′(λi)

a(φi)

x
(j)
i x

(l)
i b
′′′(λi)

g′(µi)2(V (µi))3
− yi − b′(λi)

a(φi)

x
(j)
i x

(l)
i g
′′(µi)

(g′(µi))3V (µi)
. (23)

A.2 Score and Fisher information

The score component is obtained by summing (22) over observations

Sj(ϑ) =
∂li(ϑ)

∂ϑj
=

1

a(φ)

n∑
i=1

x
(j)
i

yi − µi
g′(µi)V (µi)

. (24)

Using the matrices of weights, covariables (4), and the mean deviation vector (5), the score is
obtained by

S(ϑ) =
1

a(φ)
XTW (ϑ)Z(ϑ). (25)

Therefore, the information matrix is obtained by summing (23) over observations and taking the
expectation with respect to Yi (using E(Yi)− µi = 0)

In,l,j(ϑ) = −E

(∑
i

∂2li(ϑ)

∂ϑj∂ϑl

)
=

n∑
i=1

x
(l)
i x

(j)
i

a(φ)V (µi)g′(µi)2
. (26)

So that the Fisher information matrix is

In(ϑ) = (In,l,j(ϑ))l,j =
XTW (ϑ)X

a(φ)
. (27)

A.3 Information matrix and score in term of Q̃

Define q̃
(k)
j the element of the jth row and kth column of Q̃. Note that the ith row of X̃ is

equal to the jth row of Q̃ for all i such that ηi = hj. Using (26), the information matrix is
Ĩn(ϑ) = (Ĩn,k,l(ϑ))k,l=1,...,p? with

Ĩn,k,l(ϑ) =
1

a(φ)

n∑
i=1

x̃
(k)
i x̃

(l)
i

V (µi)(g′(µi))2
=

1

a(φ)

d∑
j=1

n∑
i=1;ηi=hj

x̃
(k)
i x̃

(l)
i

V (µi)(g′(µi))2

=
1

a(φ)

d∑
j=1

1

V (µ?j)(g
′(µ?j))

2

n∑
i=1;ηi=hj

x̃
(k)
i x̃

(l)
i =

1

a(φ)

d∑
j=1

mj

V (µ?j)(g
′(µ?j))

2
q̃
(k)
j q̃

(l)
j .
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Hence the information matrix rewrites similarly to the non-restricted case

Ĩn(ϑ) =
nQ̃TΣn(ϑ)Q̃

a(φ)
.

Now, using (22) the score component is

Ũk(ϑ) =
n∑
i=1

x̃
(k)
i (yi − µi)
V (µi)g′(µi)

=
d∑
j=1

1

V (µ?j)g
′(µ?j)

n∑
i=1;ηi=hj

q̃
(k)
j (yi − µ?j)

=
d∑
j=1

mj q̃
(k)
j (ȳ

(j)
n − µ?j)

V (µ?j)g
′(µ?j)

.

This yields to
Ũ(ϑ) = nQ̃TΣn(ϑ)Z?(ϑ).

B Proof of Theorem 1

Let us recall that the One-Step Closed-form Estimator (OS-CFE) is defined as

ϑ̃OS−CFEn = ϑ̃CFEn + Ĩn(ϑ̃CFEn )−1S̃(ϑ̃CFEn ). (28)

Let `n(ϑ) = logL(ϑ |Y ). The mean-value theorem gives, for the initial sequence of guess
estimators (ϑ̃CFEn , n ≥ 1),

∂

∂ϑ
`n

(
ϑ̃CFEn

)
=

∂

∂ϑ
`n

(̂̃ϑn)+

∫ 1

0

∂2

∂ϑ2
`n

(̂̃ϑn + v
(
ϑ̃CFEn − ̂̃ϑn)) dv · (ϑ̃CFEn − ̂̃ϑn)

=

∫ 1

0

∂2

∂ϑ2
`n

(̂̃ϑn + v
(
ϑ̃CFEn − ̂̃ϑn)) dv · (ϑ̃CFEn − ̂̃ϑn) (29)

since ∂
∂ϑ
`n

(̂̃ϑn) = 0 by definition. From (28), we have

(
ϑ̃OS−CFEn − ̂̃ϑn) =

(
ϑ̃CFEn − ̂̃ϑn)+ Ĩn(ϑ̃CFEn )−1 · ∂

∂ϑ
`n(ϑ̃CFEn )

and

(
ϑ̃OS−CFEn − ̂̃ϑn) =

(
Ip + Ĩn(ϑ̃CFEn )−1

∫ 1

0

∂2

∂ϑ2
`n

(
ϑ̃CFEn + v

(
ϑ̃CFEn − ̂̃ϑn)) dv)(ϑ̃CFEn − ̂̃ϑn)

where Ip is the p× p identity matrix.
In our setting, since the sequence of initial guess estimators is

√
n-consistent (see Equation

(19)), we get the asymptotic equivalence by showing that the quantity
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√
n
(
ϑ̃OS−CFEn − ̂̃ϑn)

=

Ip +

(
Ĩn(ϑ̃CFEn )

n

)−1 ∫ 1

0

1

n

∂2

∂ϑ2
`n

(̂̃ϑn + v
(
ϑ̃CFEn − ̂̃ϑn)) dv


︸ ︷︷ ︸

(A)

·
√
n
(
ϑ̃CFEn − ̂̃ϑn)︸ ︷︷ ︸

(B)

(30)

converges to zero as n→∞.

� For the quantity (B), we get from (15) and (18)

√
n
(
ϑ̃CFEn − ̂̃ϑn) =

√
n
(
ϑ̃CFEn − ϑ

)
−
√
n
(̂̃ϑn − ϑ)

is bounded in probability.

� For the quantity (A), by Markov’s law of large number and Equation (23) we have

1

n

∂2

∂ϑ2
`n(ϑ̃) +

Ĩn(ϑ̃)

n

a.s.−→
n→+∞

0

Using the consistency of the initial guess estimator and the uniform continuity of the Fisher
information matrix (16), we get the convergence to zero of the quantity (A).
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