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The parameters of generalized linear models are generally estimated by the maximum likelihood estimator (MLE), computed using a Newton-Raphson type algorithm that can be time-consuming for a large number of variables or modalities, or a large sample size. Explicit estimators exist for these models but they are not always asymptotically efficient, especially for simple effects models, although they are fast to calculate compared to the MLE. The article proposes a fast and asymptotically efficient estimation of the parameters of generalized linear models with categorical explanatory variables. It is based on a one-step procedure where a single step of the gradient descent is performed on the log-likelihood function initialized from the explicit estimators. This work presents the theoretical results obtained, the simulations carried out and an application to car insurance pricing.

Introduction

Generalized linear models (GLMs) are regression models where the distribution of the response variable belongs to the exponential family with a natural parameter which is a linear combination of explanatory variables (up to a link function, see e.g. [START_REF] Mccullagh | Generalized linear models[END_REF] for an introduction). The unknown parameters of such models are generally estimated by the maximum likelihood estimator (MLE) for which the asymptotic normality (and efficiency) have been established by [START_REF] Fahrmeir | Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models[END_REF]. Since the MLE has no closed-form formula in general, it is numerically computed by a Newton-type method (known as the Fisher scoring algorithm which can be rewritten as an iteratively re-weighted least square method (IWLS), see [START_REF] Mccullagh | Generalized linear models[END_REF]. This computation method is time-consuming for large datasets or for numerous explanatory variables.

The setting of sole categorical explanatory variables is singular due to the non-identifiability of the model and linear identifiability conditions are usually imposed. In this setting, for some specific models, closed-form MLE has been proposed by [START_REF] Brouste | Closed-form maximum likelihood estimator for generalized linear models in the case of categorical explanatory variables: application to insurance loss modeling[END_REF] which is asymptotically efficient. For other models, as the single effect models, closed-form alternative estimator which is consistent, asymptotically normal but not asymptotically efficient has also been built (see e.g. [START_REF] Brouste | A closed-form alternative estimator for GLM with categorical explanatory variables[END_REF].

Dealing with categorical explanatory variables is of particular interest in practical applications. A finite number of risk groups relying on categorical variables is used for the pricing of guarantees [START_REF] Denuit | Effective Statistical Learning Methods for Actuaries I: GLMs and Extensions[END_REF] or for modeling disease, fertility and milk production in dairy cattle in [START_REF] Kadarmideen | Linear and threshold model genetic parameters for disease, fertility and milk production in dairy cattle[END_REF]. The parameters of GLMs can be fastly estimated with the closed formula and large datasets and/or large number of modalities can be handled.

But in most situations, explanatory variables are used as single effect ((McCullagh & Nelder 1989, Chapters 4 and 6), [START_REF] Lindsey | Applying Generalized Linear Models[END_REF], (Denuit et al. 2020, Chapter 4), (Wuethrich & Merz 2021, Chapter 5)). Consequently, the loss of asymptotical efficiency for the gain of computation speed could be questioned. We propose in this paper a fast and asymptotically efficient procedure to estimate the parameters of GLM with categorical variables based on the one-step procedure.

The one-step procedure was initially considered for the estimation of parameters in independent and identically distributed (i.i.d.) samples (see Le [START_REF] Cam | On the asymptotic theory of estimation and testing hypothesis[END_REF]). In such procedure, an initial guess estimator is proposed which is fast to be computed but not asymptotically efficient. Then, a single step of the gradient descent method is done on the log-likelihood function in order to correct the initial estimation and reach asymptotic efficiency, see [START_REF] Brouste | Onestep -Le Cam's onestep estimation procedure[END_REF]. With some recent developments, the one-step procedure has been successfully generalized to more sophisticated statistical experiments as diffusion processes in [START_REF] Kamatani | Hybrid multi-step estimators for stochastic differential equations based on sampled data[END_REF], [START_REF] Gloter | Adaptive estimation for degenerate diffusion processes[END_REF], ergodic Markov chains in [START_REF] Kutoyants | On multi-step MLE-process for markov sequences[END_REF], inhomogeneous Poisson counting processes in [START_REF] Dabye | Method of moments estimators and multi-step mle for poisson processes[END_REF], fractional Gaussian and stable noises observed at high frequency in [START_REF] Brouste | Efficient estimation of stable Lévy process with symmetric jumps[END_REF], [START_REF] Brouste | Onestep estimation for the fractional gaussian noise model at high-frequency[END_REF].

The paper falls into 5 parts. The notations for GLMs are given in Section 2. The notion of restricted parameter is described in Section 3, which is new from our previous studies in [START_REF] Brouste | Closed-form maximum likelihood estimator for generalized linear models in the case of categorical explanatory variables: application to insurance loss modeling[END_REF], [START_REF] Brouste | A closed-form alternative estimator for GLM with categorical explanatory variables[END_REF], with the asymptotic properties of the MLE and the closed-form estimator. The fast one-step estimation procedure is also presented in Section 3 with a convergence result. Monte-Carlo simulations on samples of finite size are done in Section 4 and an application to car insurance is given in Section 5. Technical lemmas and the proof of the main are postponed in Appendix.

Preliminaries on GLMs

Notation for GLMs

Bold notations are given for the vectors. The index i ∈ I = {1, . . . , n} is reserved for the observations, while the indexes j, k are used for the explanatory variables.

The observation sample Y = (Y 1 , . . . , Y n ) is composed of independent random variables valued in Y ⊂ R where for i ∈ I, Y i belongs to the one-parameter exponential family of probability measures valued in Λ ⊂ R. In this setting, the log-likelihood log L of the sample is The parameters λ 1 , . . . , λ n in Equation ( 1) depend on a p-dimensional parameter ϑ ∈ Θ ⊂ R p . For i = 1, . . . , n, denote µ i = b (λ i (ϑ)). Theoretical moments of Y i are explicitly given as a function of a and derivatives of b

log L(ϑ, φ | Y ) = n i=1 λ i (ϑ)Y i -b (λ i (ϑ)) a(φ) + n i=1 c(Y i , φ), (1) 
E ϑ Y i = b (λ i (ϑ)) = µ i and Var ϑ Y i = b (λ i (ϑ))a(φ) = V (µ i )a(φ).
(2)

The function

V : µ → V (µ) = b • (b ) -1 (µ)
is known as the variance function of the expectation µ. Using a twice continuously differentiable and bijective function g from b (Λ) to R, GLMs are defined by assuming the following relation between the expectation E ϑ Y i and the predictor g(µ i ) = x T i ϑ = η i , for all ϑ ∈ Θ, where η i are the linear predictors. The parameter ϑ ∈ Θ ⊂ R p and the parameter φ > 0 are unknown and are to be estimated. The function g is called the link function in the regression framework. In other words, the bijective function = (b ) -1 • g -1 is settled; then we have λ i (ϑ) = (η i ). We summarize with the following relations

X × Θ -→ D -1 Λ,
where D is the space of linear predictor and X the possible set of value of x i for i ∈ I. Here is chosen and, consecutively Θ, Λ and D must be set. We talk of canonical link function, when is the identity function, that is to say g = (b ) -1 .

Score and Fisher information for GLMs

We introduce T as the part of the log-likelihood depending on ϑ only in order to express the first-order condition verified by the maximum likelihood estimator (MLE)

T (ϑ | Y ) = n i=1 Y i (η i ) -b ( (η i )) .
Hence, the log-likelihood (1) can be rewritten as

log L(ϑ, φ | Y ) = T (ϑ | Y ) a(φ) + n i=1 c(Y i , φ).
The gradient of log L is

∇ (ϑ,φ) log L(ϑ, φ | Y ) =   ∇ ϑ T (ϑ | Y )/a(φ) -a (φ) a(φ) 2 T (ϑ | Y ) + n i=1 ∂ ∂φ c(Y i , φ)   =: U (ϑ)/a(φ) V(ϑ, φ) .
The MLE ( ϑ n , φ n ) for (ϑ, φ) satisfies

U ( ϑ n ) = 0 and V( ϑ n , φ n ) = 0. (3) 
Using (2), we define the weight matrix and the explanatory variables matrix by

W (ϑ) =    1 (g (µ 1 )) 2 V (µ 1 ) . . . 1 (g (µn)) 2 V (µn)    , X =    x (1) 1 . . . x (p) 1 . . . x (1) n . . . x (p) n    , (4) 
and Z the vector of mean deviations

Z(ϑ) =    (y 1 -µ 1 )g (µ 1 ) . . . (y n -µ n )g (µ n )    . (5) 
Note that all diagonal terms W are positive so that W (ϑ) is invertible. U can be rewritten as a matrix multiplication U (ϑ) = X T W (ϑ)Z(ϑ), cf. (25) in Appendix A.2, where for a matrix M , M T denotes the transposition of the matrix M . We have the following expression for the score vector and the Fisher information

S n (ϑ) = X T W (ϑ)Z(ϑ) a(φ) , I n (ϑ) = X T W (ϑ)X a(φ) .
Since [START_REF] Fahrmeir | Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models[END_REF], under regularity conditions, the MLE ϑ n of ϑ asymptotically exists and as soon as the MLE is unique, that is to say there is no over-parametrization in the model, we have

I T /2 n (ϑ)( ϑ n -ϑ) L -→ n→+∞ N p (0 p , I p ) , with I 1/2 n I
T /2 n = I n where I p is the identity matrix of R p×p .

Estimation of GLMs with categorical variables

Consider the case where all m explanatory variables are categorical, that is for j = 1, . . . , m every observations (x

) i take values in a finite set {v j,1 , . . . , v j,d j } and x

(1) i = 1 is the intercept. Assuming values are unordered, x (j+1) i needs to be encoded using binary dummies as

x (j+1),k i = 1 {x (j+1) i =v j,k } , k ∈ {1, . . . , d j }.
These binary dummies can be used both in single-effect models or with cross-effect models.

In the following, we introduce the notion of restricted parameter which is new from our previous studies [START_REF] Brouste | Closed-form maximum likelihood estimator for generalized linear models in the case of categorical explanatory variables: application to insurance loss modeling[END_REF], [START_REF] Brouste | A closed-form alternative estimator for GLM with categorical explanatory variables[END_REF] and recall the asymptotic properties of the MLE of this parameter in Section 3.1. The properties of the closed-form estimator (CFE) are given in Section 3.2.

It is worth mentioning that, on the one hand, the MLE will be shown to be asymptotically efficient but time-consuming in the general setting. On the other hand, the CFE is fast to be computed but is not asymptotically efficient.

Notion of restricted parameter

For the sake of presentation, we firstly consider the single-effect model and secondly present the general case.

Model with single effects only

First let consider the GLMs with single effect only

g (E ϑ Y i ) =ϑ 1 + m+1 j=2 d j k=1 x (j),k i ϑ (j) k . (6) 
For j = 2, . . . , m + 1, denote ϑ (j) = (ϑ

(j)
k ) k=1,...,d j . Hence the parameter vector is written as ϑ = (ϑ 1 , ϑ (2) , . . . , ϑ (m+1) ) T . The linear predictor vector η = (η i ) i=1...,n can be rewritten as η = Xϑ, with

X = 1 n x (2) . . . x (m+1) , x (j) =    x (j),1 1 . . . x (j),d j 1 . . . . . . x (j),1 n . . . x (j),d j n    .
Because the redundancies of the matrix X going from

d j k=1 x (j),k i
= 1 for all i, j, at least m linear conditions are needed to be imposed to get the identifiability of the model. Let contrast vectors R j such that R T j ϑ (j) = 0, j = 1, . . . , m. This is equivalent to Rϑ = 0 with

R =    0 R T 1 . . . 0 . . . . . . 0 0 . . . R T m    .
Note that the matrix R is a particular case of the constrast matrix considered in [START_REF] Brouste | A closed-form alternative estimator for GLM with categorical explanatory variables[END_REF]. In other words, the identifiability conditions assume that one component of ϑ (j) can be rewritten as a linear combination of the others. Therefore, we define a restricted parameter θ(j+1) of size d j -1 and a matrix B j of size d j × (d j -1) such that

ϑ (j+1) = B j θ(j+1) . (7) 
In Table 1, two examples of such vectors R j are given as well as the corresponding restricted parameter and the corresponding coding matrix B j . Note that for a given R j , the choice of the restricted parameter is not necessarily unique. We refer to Venables (2023) for further examples of coding matrices B j and associated contrasts matrices in the R statistical software (R Core Team 2023).

Name

R j B j implication θ(j+1) R code zero-sum (1, . . . , 1) I d j -1 -1 T d j -1 ϑ (j+1) d j = - d j -1 k=1 ϑ (j+1) k    ϑ (j+1) 1 . . . ϑ (j+1) d j -1    contr.sum ref. category (1, 0, . . . , 0) 0 T d j -1 I d j -1 ϑ (j+1) 1 = 0    ϑ (j+1) 2 . . . ϑ (j+1) d j    contr.treatment
Table 1: Contrast examples and restricted parameters

Using the restricted parameters and the matrices B 1 , . . . , B m , the linear predictor can be rewritten as η = X θ, ( 8)

with X = 1 n x (2) B 1 . . . x (m+1) B m , θ = (ϑ 1 , θ(2) , . . . , θ(m+1) ).
Using Appendix A.3, the score vector and the Fisher information write in an analogous way as the previous section

S(ϑ) = XT W (ϑ)Z(ϑ) a(φ) , Ĩn (ϑ) = XT W (ϑ) X a(φ) . (9) 
Note that the matrix W can be big for large datasets, and the Information matrix can be time-consuming. To reduce the computing time, note that, it can be rewritten as Ĩn (ϑ) = ( X S) T X/a(φ), where is Hadamard's product and S is the vector constituted with the diagonal elements of W .

General case

To take all possible GLM settings into account, we consider a GLM with predictor defined as

g (E ϑ Y i ) =ϑ 1 + m+1 j=2 d j k=1 x (j),k i ϑ (j) k
Intercept and single effect

+ j 2 <j 3 k 2 ,k 3 x (j 2 ),k 2 i x (j 3 ),k 3 i ϑ (j 2 ,j 3 ) k 2 ,k 3 Double effect + j 2 <j 3 <j 4 k 2 ,k 3 ,k 4 x (j 2 ),k 2 i x (j 3 ),k 3 i x (j 4 ),k 4 i ϑ (j 2 ,j 3 ,j 4 ) k 2 ,k 3 ,k 4 Triple effect + . . . . . . + k 2 ,...,k m+1 x (2),k 2 i . . . x (m+1),k m+1 i ϑ (2,...,m+1) k 2 ,...,k m+1 , All crossed effect ( 10 
)
where g is the link function and indexes j i are in {2, . . . , m + 1} and k j are in {1, . . . , d j } for j = 2, . . . , m + 1. The linear predictor η = (η i ) i=1...,n can be rewritten as η = Xϑ, with m+1) x (2,3) . . . x (m,m+1) x (2,3,4) . . . x (m-1,m,m+1) . . . x (2,...,m+1) , and with for 2 ≤ j 2 < j 3 < . . . ,

X = 1 n x (2) . . . x (
x (j 2 ,j 3 ,...) =    x (j 2 ,j 3 ,...,),1 1 . . . x (j 2 ,j 3 ,...),d j 2 d j 2 ... 1 . . . . . . x (j 2 ,j 3 ,...),1 n . . . x (j 2 ,j 3 ,...),d j 2 d j 2 ... n    , x (j 2 ,j 3 ,...,),k 1 k 2 ,... i = x (j 2 ),k 1 i x (j 3 ),k 2 i . . .
The unknown parameter vector is ϑ = ϑ 1 , (ϑ (j) ) j , (ϑ (j 2 ,j 3 ) ) j 2 <j 3 , (ϑ (j 2 ,j 3 ,j 4 ) ) j 2 <j 3 <j 4 , . . . , (ϑ (2,...,m+1) ) T , with ϑ (j) = (ϑ

(j) k ) k , ϑ (j 2 ,j 3 ) = (ϑ (j 2 ,j 3 ) k 2 ,k 3 ) k 2 ,k 3 ,. . . , ϑ (2,...,m+1) = (ϑ (2,...,m+1) k 2 ,...,k m+1 ) k 2 ,...,k m+1
). The total number of parameters of the model in ( 10) is

p = 1 + m+1 j=2 d j + j 2 <j 3 d j 2 d j 3 + • • • + m+1 j=2 d j .
Because the model in ( 10) is not identifiable, we need to impose at least p -m+1 j=2 d j linear conditions. Here, we propose to reduce the dimension of the parameters. name parameter size of the restricted param. contrast number Intercept

ϑ 1 1 0 single effect ϑ (j) d j -1 d j -(d j -1) double effect ϑ (j 2 ,j 3 ) (d j 3 -1)(d j 2 -1) d j 3 d j 2 -(d j 3 -1)(d j 2 -1) triple effect ϑ (j 2 ,j 3 ,j 4 ) (d j 4 -1)(d j 3 -1)(d j 2 -1) d j 4 d j 3 d j 2 -(d j 4 -1)(d j 3 -1)(d j 2 -1) . . . . . . . . . all crossed-effect ϑ (2,...,m+1) m+1 j=2 (d j -1) m+1 j=2 d j - m+1 j=2 (d j -1)
Table 2: size of the restricted parameters and contrast numbers

In Table 2, the number of considered linear contrasts and the size of the restricted parameter θ(j) are given for each elements of the parameter vector. Note that this decomposition is not unique. For example in the single-effect part, one could impose a null intercept or a zero-condition on one of the parameter.

Let R j , R j 2 ,j 3 , . . . , R j 2 ,j 3 ,...,j m+1 , 2 ≤ j 2 < j 3 < . . . < j m+1 ≤ m + 1, matrices such that R T j ϑ (j) = 0, R T j 2 ,j 3 ϑ (j 2 ,j 3 ) , . . . , R T 2,...,m+1 ϑ (2,...,m+1) = 0. That is to say, Rϑ -1 = 0, with R the diagonal block matrix R = diag ((R j ) j , (R j 2 ,j 3 ) j 2 ,j 3 , . . . , R 2,...,m+1 ) , and ϑ -1 the parameter vector without the intercept ϑ 1 .

For all m-effect parts of the model, we can define a restricted parameter θ(j) , θ(j 2 ,j 3 ) , . . ., θ(2,...,m+1) of respective size dj = d j -1, dj 2 ,j 3 = (d j 3 -1)(d j 2 -1), . . ., d2,...,m+1 = m+1 j=2 (d j -1) and the corresponding coding matrix B j , B j 2 ,j 3 , . . ., B 2,...,m+1 respectively of size d j × dj , d j 2 d j 3 × dj 2 ,j 3 , . . . , m+1 j=2 d j × d2,...,m+1 such that ϑ (j) = B j θ(j) , ϑ (j 2 ,j 3 ) = B j 2 j 3 θ(j 2 ,j 3 ) , . . . , ϑ (2,...,m+1) = B 2,...,m+1 θ(2,...,m+1) .

The coding matrices can be rewritten in terms of the Kronecker product. Consider B 2 , B 3 and

B 4 of respective dimension d 2 × (d 2 -1), d 3 × (d 3 -1) and d 4 × (d 4 -1). Then the Kronecker product B 2,3 = B 3 ⊗ B 2 has dimension d 3 d 2 × (d 3 -1)(d 2 -1). In the same way, B 2,3,4 = B 4 ⊗ B 2,3 has dimension d 4 d 3 d 2 × (d 4 -1)(d 3 -1)(d 2 -1). More generally, for B j of dimension d j × (d j -1), 2 j=m+1 B j has dimension 2 j=m+1 d j × 2 j=m+1 (d j -1
). Using the restricted parameters and the coding matrices B j , B j 2 j 3 , . . . , B 2,...,m the linear predictor can be rewritten as

η = X θ, ( 12 
)
with the new regressor matrix

X = 1 n x (2) B 1 . . . x (m+1) B m x (2,3) B 2,3 . . . x (m,m+1) B m,m+1 . . . x (2,...,m+1) B 2,...,m+1
Note that the linear predictor η i in ( 12) is identical whether we use ϑ or θ, leading to the same expectation µ i , henceforth the same matrices W (.) and Z(.).

Asymptotic properties of the MLE and the closed-form estimator

Since the covariates are supposed to be categorical in this paper, the vector of linear predictors η defined in (12) takes d = j d j distinct values namely h 1 , . . . , h d . We consider the unique d × p matrix Q composed of binary dummies such that η = Qϑ, η = (h j ) j=1,...,d .

For example, in the single-effect model ( 6

), Q = (M () m , M (2) m , . . . , M (m+1) m ) with M () m = 1 d m+1 ...d 2 ,
and for 2 < j < m + 1

M (2) m = 1 d m+1 ...d 3 ⊗ I d 2 , M (m+1) m = I d m+1 ⊗ 1 dm...d 2 , M (j) m = 1 d m+1 ⊗ I d j ⊗ 1 d j-1 ...d 2 .
The general form of Q for the model ( 10) is given in [START_REF] Brouste | A closed-form alternative estimator for GLM with categorical explanatory variables[END_REF].

Using the same restricted parameter as (11), and considering vectors R j of size d j+1 such that R j ϑ (j+1) = 0, the restricted linear predictors η can be rewritten as previously as

η = Q θ.
For example in the single-effect model

Q = M () m M (2) m B 1 . . . M (m+1) m B m , θ = (ϑ 1 , θ(2) , . . . , θ(m+1) ).
Note the the score S and the information matrix Ĩn (ϑ) can be rewritten in term of the Q matrix as following a(φ)

S(ϑ) = n QT Σ n (ϑ)Z (ϑ), a(φ) Ĩn (ϑ) = n QT Σ n (ϑ) Q,
with Σ n is the diagonal matrix whose the diagonal elements are

Σ n,j,j (ϑ) = m j n (g (µ j )) 2 V (µ j ) -1 , µ j = g -1 (h j ), j = 1, . . . , d, (13) 
and

Z (ϑ) = ((ȳ (j) n -µ j )g (µ j )) j=1,...,d , (14) 
see Appendix A.3. Hence, when p j satisfies m j n → p j as n → ∞, the asymptotic distribution of the MLE converges in distribution

√ n( θn -θ) L -→ n→+∞ N p 0 p , Ĩ-1 (ϑ) , (15) 
with p the dimension of the restricted parameter and the information matrix expressed as

Ĩ(ϑ) = QΣ QT a(φ) , Σ(ϑ) = diag(v 1 , . . . , v d ), (16) 
with diagonal elements are asymptotic variances v j = p j ((g (µ j )) 2 V (µ j )) -1 . Because the MLE can be time-consuming for large datasets or for a large number of explanatory variables or modalities for each variables, as soon as Q T Q + R T R is definite positive, an alternative closed-form estimator (CFE) which avoids the using of a time-consuming IWLS algorithm has been defined in [START_REF] Brouste | A closed-form alternative estimator for GLM with categorical explanatory variables[END_REF].

The closed-form estimator of the restricted parameter is

θCFE n = ( QT Q) -1 QT g(Y n ), where g(Y n ) =         g(Y 1 n ) . . . g(Y k n ) . . . g(Y d n )         , Y k n = n i=1;η i =h k Y i m k , m k = #{i ∈ {1, . . . , n}; η i = h k }. (17) 
From Theorem 1 in [START_REF] Brouste | A closed-form alternative estimator for GLM with categorical explanatory variables[END_REF], we know the asymptotic distribution of θCFE

n : √ n( θCFE n -θ) L -→ n→+∞ N p 0 p , a (φ) ( QT Q) -1 QT Σ -1 ( θ) Q( QT Q) -1 , (18) 
with Σ(ϑ) -1 the diagonal matrix whose diagonal elements are 1/v j and p j satisfies

m j n → p j as n → ∞.
As mentioned in [START_REF] Brouste | A closed-form alternative estimator for GLM with categorical explanatory variables[END_REF], as soon as the closed-form estimator coincides with the MLE (in this case the Q is a square matrix), θCFE n = Q-1 g( Ȳn ), and consequently using the delta method we get

√ n( θCFE n -θ) L -→ n→+∞ N p 0 p , a (φ) Q-1 Σ -1 (ϑ)( Q-1 ) T . (19) 
That is the asymptotic variance of √ n( θCFE n -θ) coincides with Ĩ-1 (ϑ) defined in (15). In general, for instance in single effect models, the CFE is not the MLE and is not asymptotically efficient. For this reason, it is desirable to add a single step of the gradient descent method in order to reach asymptotic efficiency. Hence we consider a one-step version of θCFE n in the next subsection.

One-Step Closed-form Estimator

The One-Step Closed-form Estimator (OS-CFE) of θ is defined as

θOS-CFE n = θCFE n + Ĩn ( θCFE n ) -1 S( θCFE n ) = ( Q Q) -1 QT g(Y n ) + ( QT Σ n ( θCFE n ) Q) -1 QT Σ n ( θCFE n )Z ( θCFE n ),
where Z is defined in (14). It is worth emphasizing that the OS-CFE of θ does not depend on the dispersion parameter φ by simplification. The main result is that the OS-CFE of the restricted parameter θ is asymptotically equivalent in probability to the MLE. The proof of Theorem 1 is postponed in Appendix B.

Theorem 1. Under some regular conditions, as soon as for all j = 1, . . . , d the frequencies

m j n → p j as n → ∞, √ n( θOS-CFE n -θn ) P -→ n→+∞ 0.
It also means that the OS-CFE is asymptotically normal with an optimal asymptotic variance, i.e.

√ n( θOS-CFE

n -θ) L -→ n→+∞ N p 0 p , Ĩ-1 (ϑ) ( 20 
)
where Ĩ(ϑ) is defined in ( 16).

Monte Carlo illustrations

The performances on finite size samples of the aforementioned estimators (MLE, CFE, OS-CFE), in terms of computation times and asymptotic variances, are assessed with numerical examples. Monte Carlo simulations of samples for Poisson and Gamma GLMs are done. All computations are carried out with the R statistical software (R Core Team 2023). More precisely, for the Poisson GLMs, the sample Y = (Y 1 , . . . , Y n ) is composed of independent Poisson-distributed random variables with respective distributions

f (y i , µ i ) = µ y i i y i ! exp(-µ i y i ), µ i > 0, y i ∈ N, i = 1, . . . , n.
In other words, Y i is characterized in Equation ( 1) by

λ i = µ i , a(φ) = 1, b(λ) = exp(λ) and c(y i , φ) = -log(y i !).
For the Gamma GLMs, the sample Y = (Y 1 , . . . , Y n ) is composed of independent Gammadistributed random variables with respective distributions

f (y i , (α, β i )) = y α-1 i Γ(α) β α i exp(-β i y i ), α > 0, β i > 0, y i > 0, i = 1, . . . , n.
In other words, Y i is characterized in Equation ( 1) by

λ i = - β i α , a(φ) = φ = 1 α , b(λ) = -log(-λ) and c(y i , φ) = 1 φ -1 log(y i ) -log Γ 1 φ + 1 φ log 1 φ .
In this numerical example the canonical setting is used ( is the identity function) leading to a log link function for the Poisson distribution (g(x) = log(x)) and the inverse link function for the Gamma distribution (g(x) = 1/x).

Simulations with a fixed sample size and a modality number

In our simulations, we consider two explanatory variables x

(2) i , x

(3) i and d 2 , d 3 modalities. As a starting point d 2 and d 3 have respectively been taken equal to 2 and 3, and the true parameters are chosen arbitrarily for each case as represented in Table 3. For the Gamma distribution, the dispersion parameter φ is also chosen arbitrary: φ = 8. We consider B = 10 4 Monte Carlo simulations of samples with the size of n = 10 4 .

Distribution Link function intercept Variable 2

Variable 3 g

(x) ϑ 1 ϑ (2) 1 ϑ (2) 2 ϑ (3) 1 ϑ (3) 2 ϑ (3) 3 Gamma 1/x 10 1 -1 2 3 -5 Poisson log(x) 0.05 1 -1 0.5 0.5 -1
Table 3: True parameter values Further, for the sake of ease, histograms for Poisson and Gamma GLMs are drawn for only ϑ 1 and ϑ

(2) 2 parameters. The sequence of OS-CFE naturaly overcomes the performance of CFE in terms of asymptotic variance (see Figures 1 and2). According to the other comparison in terms of computation time which is highlighted in Table 4, OS-CFE is almost 50 times faster than MLE to be computed for the dataset with the size of n = 10 4 . 

Simulations with an increasing sample size

In this section for both Poisson and Gamma GLMs keeping the number of modalities constant (d 2 = 2 and d 3 = 3), the sample sizes are increasing from n = 10 3 to n = 10 7 . The number of Monte Carlo simulations are set to B = 100. The total computation time of the three estimators are computed. The comparative gain of the OS-CFE over the MLE is increasing with the sample size for both distributions, from 4 to 80 times faster as shown in Tables 5 and6. 

Dataset

Simulations with an increasing number of modalities

Table 7 summarizes the results of the Monte Carlo simulations with an increasing number of modalities when the number of simulations are fixed to B = 100 and sample size is n = 10 5 . Simulations have been done for 2 categorical variables with equal number of modalities d 2 = d 3 = d varying from d = 5 to 40. In this particular case, the true parameter value for Gamma distribution are chosen by simply taking the ϑ 1 = 3d + 1, the ϑ In addition, for the Poisson distribution case, ϑ 1 has been chosen to be equal to 0.5, ϑ

1 to ϑ (j) d-1 are 1, 2, . . . , 1 or 2 each divided by the sum of all 1 and 2's, and the ϑ (j) d is the minus sum of all modalities for each of the two variables.

The data presented in Table 7 demonstrates that as the number of modalities increases, the computation time for all estimators also increases for both Poisson and Gamma GLMs. The OS-CFE method demonstrates faster computation times when compared to the MLE method, even at the highest number of modalities. For confidentiality reasons, the modality values are not revealed. The single effect models

g (E ϑ Y i ) = ϑ 1 + m+1 j=2 d j k=1 x (j),k i ϑ (j) k ,
is generally used by the insurers to model the claim amounts with (non-canonical) Gamma GLMs with a log link function (g(x) = log(x)). The "reference category" linear contrast has been used. It is worth recalling that in this setting the MLE has no closed-form and the closed-form estimator is not efficient. In order to compute the log-likelihood, we use Equation (3) to fit the dispersion parameter.

The one-step estimator has been applied to the Covea dataset: 

Conclusion

Generalized linear models with single effects and sole categorical explanatory variables are widely used in different applications (e.g., insurance, agriculture, biology). On the one hand, the classical iteratively re-weighted least-square calibration algorithm is asymptotically efficient but can be time consuming for large datasets and/or large number of variables. On the other hand, closed-form estimators proposed in [START_REF] Brouste | A closed-form alternative estimator for GLM with categorical explanatory variables[END_REF] are fast to be computed but are not asymptotically efficient.

In this paper, we proposed a fast and asymptotically efficient method for the calibration of GLMs with categorical explanatory variables based on the one-step procedure that can also be applied to single effect models. It is 30 times faster than the classical method on both simulated and real datasets.

The proposed estimator could be further used for variable and/or model selection. For instance, the model selection with fastly computable Akaike Information Criterion could be treated in a further work. The one-step procedure can be extended in many directions: e.g., for multivariate regression models. R Core Team ( 2023 A Gradient and Hessian of the log-likelihood

Let b = (b ) -1 . We recall that X =    x (1) 1 . . . x (p) 1 . . . x (1) n . . . x (p) n    , Y =    Y 1 . . . Y n    .

A.1 Gradient and Hessian of a single observation

For ease of notation, we consider a single observation in (1). We recall that µ i = g -1 (η i ) and

V (µ i ) = b (λ i (ϑ)). The ith contribution is l i (ϑ) = λ i (ϑ)y i -b (λ i (ϑ)) a(φ) + c(y i , φ). (21) 
To derive the first and second order derivatives, we first compute

∂λ i ∂ϑ j = ( b) (g -1 (η i )) × (g -1 ) (η i ) × x (j) i = 1 b ( b(g -1 (η i )) × x (j) i g (g -1 (η i )) = x (j) i g (µ i )V (µ i ) . Hence ∂l i (ϑ) ∂ϑ j = y i -b (λ i (ϑ)) a(φ) ∂λ i ∂ϑ j = x (j) i y i -µ i a(φ)g (µ i )V (µ i ) . ( 22 
) Furthermore, ∂ 2 l i (ϑ) ∂ϑ j ∂ϑ l = ∂ ∂ϑ l y i -b (λ i ) a(φ i ) 1 b (λ i ) x (j) i g (µ i ) + ∂ ∂ϑ l 1 b (λ i ) y i -b (λ i ) a(φ) x (j) i g (µ i ) + ∂ ∂ϑ l x (j) i g (µ i ) y i -b (λ i ) a(φ) 1 b (λ i ) .
The first derivative term is

∂ ∂ϑ l y i -b (λ i ) a(φ) = -b (λ i ) a(φ) × ∂λ i ∂ϑ l = -b (λ i ) a(φ) × 1 b (λ i ) x (l) i g (µ i ) = -x (l) i a(φ)g (µ i ) .
The second derivative term is

∂ ∂ϑ l 1 b (λ i ) = - b (λ i ) (b (λ i )) 2 ∂λ i ∂ϑ l = - b (λ i ) (b (λ i )) 3 x (l) i g (µ i ) = - b (λ i ) (V (µ i )) 3 x (l) i g (µ i ) .
The third derivative term is

∂ ∂ϑ l x (j) i g (µ i ) = - x (j) i (g (µ i )) 2 ∂(g (µ i )) ∂ϑ l = - x (j) i g (µ i ) (g (µ i )) 2 ∂µ i ∂ϑ l = - x (j) i x (l) i g (µ i ) (g (µ i )) 3 , since ∂µ i ∂ϑ l = ∂(b (λ i )) ∂ϑ l = b (λ i ) ∂λ i ∂ϑ l = b (λ i ) × 1 b (λ i ) x (l) i g (µ i ) = x (l) i g (µ i ) .
This leads to

∂ 2 l i (ϑ) ∂ϑ j ∂ϑ l = - x (l) i x (j) i a(φ i )V (µ i )g (µ i ) 2 - y i -b (λ i ) a(φ i ) x (j) i x (l) i b (λ i ) g (µ i ) 2 (V (µ i )) 3 - y i -b (λ i ) a(φ i ) x (j) i x (l) i g (µ i ) (g (µ i )) 3 V (µ i ) . (23) 

A.2 Score and Fisher information

The score component is obtained by summing ( 22) over observations

S j (ϑ) = ∂l i (ϑ) ∂ϑ j = 1 a(φ) n i=1 x (j) i y i -µ i g (µ i )V (µ i ) . (24) 
Using the matrices of weights, covariables (4), and the mean deviation vector (5), the score is obtained by

S(ϑ) = 1 a(φ) X T W (ϑ)Z(ϑ). ( 25 
)
Therefore, the information matrix is obtained by summing (23) over observations and taking the expectation with respect to Y i (using E(Y i ) -µ i = 0)

I n,l,j (ϑ) = -E i ∂ 2 l i (ϑ) ∂ϑ j ∂ϑ l = n i=1 x (l) i x (j) i a(φ)V (µ i )g (µ i ) 2 . ( 26 
)
So that the Fisher information matrix is

I n (ϑ) = (I n,l,j (ϑ)) l,j = X T W (ϑ)X a(φ) . (27) 
A.3 Information matrix and score in term of Q Define q(k) j the element of the jth row and kth column of Q. Note that the ith row of X is equal to the jth row of Q for all i such that η i = h j . Using (26), the information matrix is Ĩn (ϑ) = ( Ĩn,k,l (ϑ)) k,l=1,...,p with Ĩn,k,l (ϑ) = 1 a(φ)

n i=1 x(k) i x(l) i V (µ i )(g (µ i )) 2 = 1 a(φ) d j=1 n i=1;η i =h j x(k) i x(l) i V (µ i )(g (µ i )) 2 = 1 a(φ) d j=1 1 V (µ j )(g (µ j )) 2 n i=1;η i =h j x(k) i x(l) i = 1 a(φ) d j=1
m j V (µ j )(g (µ j )) 2 q(k) j q(l) j .

Hence the information matrix rewrites similarly to the non-restricted case Ĩn (ϑ) = n QT Σ n (ϑ) Q a(φ) . Now, using ( 22) the score component is

Ũk (ϑ) = n i=1 x(k) i (y i -µ i ) V (µ i )g (µ i ) = d j=1 1 V (µ j )g (µ j ) n i=1;η i =h j q(k) j (y i -µ j ) = d j=1 m j q(k) j (ȳ (j) 
n -µ j ) V (µ j )g (µ j ) .

This yields to Ũ (ϑ) = n QT Σ n (ϑ)Z (ϑ).

B Proof of Theorem 1

Let us recall that the One-Step Closed-form Estimator (OS-CFE) is defined as θOS-CFE where I p is the p × p identity matrix.

In our setting, since the sequence of initial guess estimators is √ n-consistent (see Equation ( 19)), we get the asymptotic equivalence by showing that the quantity

  where a : R → R, b : Λ → R and c : Y × R → R are fixed real-valued measurable functions and φ is the dispersion parameter, e.g. McCullagh & Nelder (1989, Section 2.2).

Figure 1 :

 1 Figure 1: Histograms for the B = 10 4 simulations of the renormalized statistical errors of MLE, CFE, OS-CFE for the Poisson distribution with 2 categorical variables with d 2 = 2, d 3 = 3 for θ 1 = ϑ 1 and θ 2 = ϑ (2) 2 . Red and blue lines are the theoretical Gaussian asymptotic densities respectively of the MLE (in red) and CFE (in blue).

k

  are equal to k/d for k = 1, . . . , d -1, and the ϑ

  n (ϑ) = log L(ϑ | Y ). The mean-value theorem gives, for the initial sequence of guess estimators

Table 4 :

 4 Total computation time (s) based on B = 10 4 runs for Poisson and Gamma distributions

	Computation time	MLE	CFE OS-CFE
	Poisson	848.07 9.05	17.73
	Gamma	1601.44 10.65	31.61

Table 5 :

 5 Total computation time (s) based on B = 100 runs for Poisson distribution.

	size 10 3 10 4	10 5	10 6	10 7
	MLE	0.33 2.35 24.86 257.15 2678.38
	CFE	0.07 0.06 0.26	2.50	26.77
	OS-CFE	0.08 0.11 0.50	5.14	56.10
	Dataset size 10 3 10 4	10 5	10 6	10 7
	MLE	0.41 3.64 30.63 389.88 5120.97
	CFE	0.06 0.06 0.29	2.96	38.29
	OS-CFE	0.07 0.11 0.52	5.30	64.98

Table 6 :

 6 Total computation time (s) based on B = 100 runs for Gamma distribution.

Table 7 :

 7 Total computation times based on B = 100 runs for Poisson (canonical link) and Gamma (canonical link) GLMs.5 Application to claim amounts in car insuranceThe Covea Affinity dataset under study is composed of 76,446 claim amounts ranging from 4 to 33,531 EUR. Three covariates have been selected from the 124 available for the pricing of the guarantee

	d	Poisson		Gamma
		MLE CFE OS-CFE MLE CFE OS-CFE
	5 36.49 0.31	0.71	50.59 0.41	0.67
	10 71.95 0.58	0.92	109.39 0.60	0.91
	15 135.12 0.97	1.56	175.90 0.79	1.67
	20 150.19 1.15	2.42	181.79 0.92	1.92
	25 173.01 1.42	3.97	346.64 2.23	5.50
	30 264.51 2.61	10.27	429.85 2.51	9.58
	35 254.86 3.23	14.10	618.42 3.97	19.96
	40 343.16 3.85	25.74	675.58 4.60	28.12
	vehicle brand with d 2 = 2 modalities,	
	pricing segment with d 3 = 6 modalities,	
	age class with d 4 = 8 modalities.		

Table 8 :

 8 Table 8 give parameter estimates for MLE, CFE and OS-CFE. The CFE and OS-CFE were almost 30 times faster to obtain than the MLE, with similar estimate and similar fitted log-likelihood. Values of ϑ n , log-likelihood and total computation time (s) for CFE, OS-CFE and MLE

		CFE OS-CFE	MLE
	ϑ 1	6.23	6.04	6.03
	ϑ (2) 2	0.24	0.08	0.03
	ϑ (3) 2	0.18	0.22	0.22
	ϑ (3) 3	-0.48	0.04	-0.01
	ϑ (3) 4	-0.07	0.08	0.09
	ϑ (3) 5	0.06	0.18	0.19
	ϑ (3) 6	0.20	0.21	0.22
	ϑ (4) 2	-0.07	0.00	0.01
	ϑ (4) 3	0.06	0.16	0.16
	ϑ (4) 4	0.17	0.18	0.18
	ϑ (4) 5	0.34	0.41	0.40
	ϑ (4) 6	0.11	0.44	0.42
	ϑ (4) 7	0.16	0.25	0.26
	ϑ (4) 8	-0.01	0.34	0.33
	log L -554,868 -553,708 -553,685
	Time (s)	0.01	0.01	0.30
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converges to zero as n → ∞.

For the quantity (B), we get from ( 15) and ( 18)

is bounded in probability.

For the quantity (A), by Markov's law of large number and Equation ( 23) we have

Using the consistency of the initial guess estimator and the uniform continuity of the Fisher information matrix ( 16), we get the convergence to zero of the quantity (A).