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Abstract—We propose a new performance model for transport
of time-critical Ultra Reliable Low Latency Communications
(URLLC) traffic in 5G networks and Beyond and apply it to
dimensioning of such systems. The Quality of Service (QoS)
requirement is formulated in terms of an outage probability
which is defined as the probability that the latency exceeds a
maximal allowed budget, and which should be kept very low.
We develop a generic queuing model to compute this outage
probability and adapt it to integrate the specificity of the 5G
radio interface, taking into account the heterogeneity of users
radio conditions and thus their Modulation and Coding Schemes
(MCS) as well as retransmissions due to errors on the radio link.
We also propose a low complexity method to calculate it using a
geometric tail approach to approximate the tail distribution of the
queue, for relevant arrival distributions: Poisson and Binomial.
We show numerically the performance of our exact model and
approximation and that they yield very accurate performance
against simulations, and in comparison with other models from
the state of the art. We also show the system dimensioning in
terms of required resources to satisfy the outage constraint.

I. INTRODUCTION

Ultra-Reliable Low Latency Communications (URLLC) ser-
vice was introduced in 5G standardization [1] to tackle critical
services such as autonomous driving, industry 4.0, smart grid,
etc. A typical performance target is 1ms delay and 99, 999%
reliability constraints [2]. Several features were introduced in
3GPP standardization to help reach URLLC low latency and
high reliability constraints. For instance, short Transmission
Time Interval (TTI) can be combined with blind repetitions
for reaching reliability in case of harsh radio environments.
These techniques enable that the radio latency (i.e., the time
between the packet generation and its decoding by the base
station) is very low (e.g. between 0.5 and 1 ms). However, the
underlying assumption is that resources are always available
and latency is only due to packet alignment, scheduling grant
reception, over-the-air transmission and packet decoding.

When resources are scarce or traffic load is high, an
additional component is added that is the queuing delay, i.e.,
the delay before a resource is available for the packet to
be scheduled. When URLLC service is in competition with
enhanced Mobile Broadband (eMBB) service, the problem of
queuing is solved by preemptive scheduling, where URLLC
packets are served immediately upon arrival by preempting
some eMBB resources [3], [4]. However, when URLLC pack-
ets compete with other URLLC packets, preemption is not
possible and over-reservation of resources may be needed. For
URLLC periodic traffic scenarios, semi-persistent scheduling

(SPS) is proposed and resources are pre-reserved for each user
[5]. However, for sporadic traffic scenarios, SPS is inefficient
and mastering the queuing delay is still an open problem.
Solving this problem requires efficient performance models
for resource dimensioning, and is the objective of this paper.

Many works tackled this dimensioning issue and proposed
performance models for URLLC based on queuing theory.
They however often make strong assumptions on arrival pro-
cess, typically Poisson, and service distribution. The work in
[6] proposed an M/M/1 model that is based on the assumption
of Poisson arrivals of packets and an exponential model for
the variation of packet sizes due to different radio conditions.
[7] relaxed the exponential assumption for the service rate and
adopted an M/G/1 model with vacations (to account for the
presence of other users), but with two restrictive assumptions.
First, the ”General” service model is due to different packet
sizes and not different radio conditions, and second, packets
are supposed to be served by one server in continuous time,
while packets in 5G are multiplexed in the spectrum dimension
(several servers) and time is slotted. [8] makes use of an
M/GI/∞ model in order to study resource allocation for
URLLC. [9] considers a M/M/m/K queue to model the system
reliability for a worst case scenario where users are assumed to
be at the cell edge. The work in [10] derives generic end-to-end
latency distribution of any network topology which enables
to determine percentiles, and applies it to the cases of ex-
ponential and deterministic service distributions. The work in
[11] considers a risk-resistant approach (risk is delay outage)
to minimize the latter based on an M/G/1 queuing model.
The work in [12] considers a definition of delay violation
probability which includes two components: a packet delay
exceeding a given constraint and that errors are undetected,
at the ARQ level. The arrival process is assumed to follow a
Geometric distribution with bulk arrivals (Geo[X]/G/1 model).

Some works make use of different analytical tools, such as
Extreme Value Theory [13] and stochastic network calculus
( [14] and [12] in the case of perfect error detection), but
we adopt queuing theory in our present work as it has the
advantage of avoiding over-dimensioning that is inherent to
approaches such as extreme value theory and network calculus.

We develop in this paper a queuing model for computing
the outage probability (i.e., the probability that the packet
delay is larger than a given target). We formulate the equations
describing the evolution of the number of packets waiting in
the queue and show how to derive the outage probability. We



extend our model to integrate heterogeneous radio conditions
leading to different modulation and coding schemes (MCS)
and retransmissions due to radio errors (fast fading). We also
propose a low complexity method to calculate the outage
probability using a geometric tail approach to approximate
the tail distribution of the queue, for Poisson and Binomial
arrival distributions. For the numerical experimentations, we
develop a discrete-time simulator of the system and show that
the developed queuing models, both exact and approximate,
are very accurate. In the basic case (homogeneous MCS,
no retransmissions), we also compare our exact model to a
continuous-time M/D/c model and to the M/M/c/K model
of [9] and show its superiority. We eventually illustrate the
dimensioning of the system in terms of the number of required
resources so as to satisfy the outage constraint.

The remainder of this paper is organized as follows. In
section II, we develop a discrete time queuing model for
the outage probability and apply it in section III to different
5G URLLC scenarios, in the presence of radio errors and
retransmissions. Section IV illustrates the performance and
accuracy of the proposed queuing model against classical
models and simulations and its usage for system dimensioning.
Section V eventually concludes the paper.

II. LATENCY OUTAGE MODEL

In the following, we will use the notation X for sets, |X |
for the cardinality of sets, x for line vectors and xT their
transpose, and X for matrices with elements Xij .

A. System and traffic model
We consider a 5G cell where resources are organized into

Resource Blocs (RB) and (mini-)slots. The slot is of size T
ms and there are some reserved RBs for URLLC. Let R be
the amount of resources reserved per slot for URLLC. In each
slot, packets are generated following some stochastic process,
and packet arrivals in different slots are independent. Packets
might be of equal or variable sizes. We make no assumptions
on the distributions of the arrival process and packet sizes.
The number for resources required for serving new arriving
packets during slot t is a discrete random variable a(t), defined
in some subset A of N, the set of positive integers. As of the
delay budget, a packet may stay for δ ≥ 1 slots in the system
before its delay budget expires, otherwise it is in outage.

B. Outage probability formulation
As the queue follows a First Come First Serve (FCFS)

discipline, a packet generated in a slot sees other packets
generated within the same slot and those generated in previous
slots that are still in the queue waiting for service, if any.

In slot t, knowing that there are R reserved resources, we
define the queue duration B(t) as the amount of resources
that will be needed in the future slots to serve the backlogged
traffic after using all the resources of slot t, and is given by:

B(t) = (a(t) +B(t− 1)−R)
+
, (1)

where (x)+ = max(0, x), a(t) is, as stated above, the amount
of resources needed for serving new packets arriving in slot t,

B(t− 1) is the queue duration in the previous slot and a(t)+
B(t − 1) is the total amount of resources needed for serving
all the backlogged packets from previous slots plus the new
packets at slot t. As there are R resources available in each
slot, at most R among the required resources are consumed,
and the remaining packets overflow to the next slot.

We define the probability of overflow as the probability that
some packets that are present in slot t will be still not served
in slot t+ δ − 1. This is computed by:

O = lim
t→∞

Pr[B(t) > (δ − 1)R] (2)

as packets constituting B(t) have been in the system at least
during slot t, and some of them will be surely in outage if
the resources in the next (δ − 1) slots are not sufficient to
serve all of them. The limit in (2) exists as the associated
Markov chain described next fulfills both the ergodicity and
irreducibility conditions.

Note that the overflow probability of equation (2), which
refers to all packets present in slot t being still not served in
slot t+ δ−1, is slightly different from the outage probability,
defined as the probability that a packet stays more than δ slots.
Indeed, when an overflow occurs, it does not necessarily imply
that all packets of slot t are lost, but that at least one of them
is lost. Overflow is thus an upper bound on outage. We show
next how the outage can be derived using the overflow.

C. Overflow and outage probabilities computation
In order to compute the outage probability, we need to first

determine the distribution of the overflow in steady-state. Eqn.
(1) involves three random variables:

• B(t), a discrete integer random variable that takes its
values in [0,∞[. Let qb(t) be the probability that B(t)
takes the value b ∈ [0,∞[.

• B(t− 1) has the same limiting distribution as B(t)
• and a(t), that is the amount of resources needed for

serving the new packet arrivals. a(t) is independent from
B(t−1) and takes its values in some set [0, amax], where
amax is a positive integer (that might be infinite). Let zj
be the limiting probability that a(t) = j, j ≤ amax.

In steady-state, let q = (qb, b ≥ 0) is the vector of duration
probabilities. Setting a maximal queue duration Bmax >> R
and defining B = [0, Bmax] ⊂ N as the space of possible
values, we write the following set of linear equations:

q = qQ (3)

Q is the transition matrix (Qjb, j and b ∈ B, is the transition
probability from queue duration j at t to b at t+ 1):

Qjb =


zb+R−j , if b ∈]0, Bmax[∑

i≥b+R−j zi, if b = Bmax∑
i≤R−j zi, if b = 0

0, otherwise

This set of equations can be solved by adding the normal-
izing equation: ∑

b≥0

qb = 1 (4)



The overflow probability (2) is obtained by:

O(δ) = 1−
(δ−1)R∑
b=0

qb (5)

We now compute the outage probability defined, again, as
the probability that a particular packet stays more than δ slots
in the system. It can be approximated using the overflow
probability by:

θ(a, δ) =

R−1∑
r=1

r

R
q(δ−1)R+r +O(δ + 1) (6)

where the term qδR+r indicates that exactly r < R resources
are missing for serving all the traffic present in slot i during
the δ subsequent slots, it is weighed by r

R to indicate that the
outage in this case occurs for a fraction of the slot. O(δ +
1) is the overflow probability, computed as in equation (5)
but supposing that there is an additional slot within the delay
budget, this term indicates that more than R resources are
lacking, and there is at least a whole slot in outage.

III. MODEL ADAPTATION TO URLLC SCENARIOS

We now show how to apply the developed discrete queuing
model to URLLC scenarios. We first show the traffic and radio
characterises for URLLC, and then develop a low complexity
queuing model that fits well this URLLC system. We then
show how to integrate retransmissions due to radio errors.

A. URLLC traffic model

1) Arrival process: We consider the most common case in
industrial applications where U URLLC users (e.g., machines)
are connected to an access point. If the probability of generat-
ing a packet during a slot is f , the probability that the newly
generated packets require i resources is thus Binomial(U, f),
and the probability of having i packets arriving in a time slot
is:

ζi = (Ui )f
i(1− f)U−i. (7)

Note that, if the number of users is large and f is small,
this distribution can be approximated by a Poisson of intensity
λ = Uf .

2) Service process: We consider the general case when
different users are subject to different radio conditions and
each packet uses an MCS that is drawn from some known
distribution. Our assumption here is that the statistics of the
radio channel are known. Once a packet is generated, it uses
MCS k with probability βk, with

∑K
k=1 βk = 1, K being

the number of available MCS. When a packet uses MCS k,
it consumes an amount of RBs equal to αk. The amount of
resources consumed by a user u in slot i is thus a random
variable with distribution:

Xu,i =

{
0, with prob. (1− f)

αk with prob. fβk

(8)

Without loss of generality, we assume that the MCS are
sorted in increasing order of spectral efficiency, meaning that

α1 > ... > αK . The total number of resources requested by
new packets generated in slot i is then given by:

a(i) =

U∑
u=1

Xu,i (9)

Equations (3)-(4) allow the computation of the overflow
probability. In these equations, zj describes the probabil-
ity that new arrivals in a slot require j resources (RBs),
and ca be computed using the multinomial distribution. Let
m(u0, u1, ..., uK) be the probability of having, in a given slot,
a vector of generated packets u⃗ = (u0, u1, ..., uK), where uk,
k > 0 is the number of packets with MCS k, and u0 is the
number of users that did not generate any packet. Let U be
the space of all possible vectors u⃗ such that

∑K
k=0 uk = U ,

m(u⃗) =
U !∏K

k=0 uk

(1− f)u0fU−u0

K∏
k=1

βuk

k (10)

Let Uj , j ∈ [0, α1U ], be the subset of U such that∑K
k=0 ukαk = j. The probability of consuming j resources is

thus computed by:

zj =
∑
u⃗∈Uj

m(u⃗) (11)

Note that in the case of homogeneous MCS, e.g. the
operator uses a robust MCS for all users to ensure a very
high reliability, all packets consume exactly α1 RBs. Defining
a resource unit equal to α1 RBs, one packet consumes one
resource unit and zj becomes equal to the probability of i
packets arriving (zi = ζi), in this case, the outage proba-
bility is calculated as in equation (6), While in the case of
heterogeneous radio conditions, where different users may be
subject to different radio conditions and each packet may use
an MCS that is drawn from some distribution that assumed to
be known, the outage probability is then given by:

θ(δ) =

R′∑
r′=1

r′

R′

[M(r′+1)−1∑
j=Mr′

q(δ−1)R+j

]
+O(δ + 1) (12)

where M is the mean number of RB’s consumed by a packet
and R′ = R

M .

B. A low complexity model

We have seen above that Binomial and Poisson arrivals
are two particularity interesting cases. The following lemma
shows that, under such traffic arrivals, the complexity of the
model in (3)-(4) can be drastically decreased. Indeed, both the
outage and overflow probabilities depend on the probability
distribution of the queue length in the steady-state, and as we
are tracking a very rare event (packet loss probability smaller
than 10−5), the Markov chain should be truncated at a high
value of the queue length Bmax, where Bmax depends on the
arrival rate, R (resources Blocks), and δ delay budget. Instead
of solving Bmax equations, we show in the following lemma
that a small number of equations is sufficient.



Lemma 1. For binomial and Poisson arrivals, the equilibrium
probabilities pj , exhibit the geometric tail behavior:

qj ∼ γηj as j → ∞ (13)

for some constant γ > 0 and 0 < η < 1. For sufficiently large
M , we have:

qj = qMηj−M , j ≥ M. (14)

Proof. We here provide a sketch of the proof. In [15], Theorem
C.1 (Appendix C) states that the geometric tail approach
applies under the following conditions:
(a) The generating function

∑∞
j=0 qjx

j for |x| < 1 has
the form N(x)

D(x) , where N(x) and D(x) are two analytic
functions whose domains of definition can be extended
to a region |x| > L > 1.

(b) D(x) = 0 has real root x0 on the interval (1, L)
(c) The zero x = x0 of D(x) is of multiplicity 1.

We then compute the PGF of the queue length as follows:

P (x) =

∞∑
j=0

(
zj

R∑
k=0

qk +

R+j∑
k=R+1

qkzj−k+R

)
xj (15)

=
x−R

[∑∞
j=0 zjx

j
][∑R−1

k=0 qk(x
R − xk)

]
1− x−R

∑∞
j=0 zjx

j

Poisson arrivals: In the Poisson arrival case with rate λ (R >
λ) the probability generating function (15) is:

P (x) =
x−Re−λ(1−x)

∑R−1
k=0 qk(x

R − xk)

1− x−Re−λ(1−x)
(16)

Binomial arrivals: If packets arrive in a binomial distribution,
let n be the number of users, each being active with a
probability f (R > nf ), we have:

P (x) =
xR(fx+ 1− f)n

∑R−1
k=0 qk(x

R − xk)

1− x−R(fx+ 1− f)n
(17)

It is easy to see that condition (a) is valid in both cases. For
conditions (b) and (c), below is a sketch of the proof:

1) D′(x) > 0 for 0 < x < 1 < x1, and D(1) = 0,
2) D′(x) < 0 for x > x1,
3) limx→∞ D(x) = −∞,
4) D′(x) = 0 has only root at x1,
Taking x1 = R

λ for the Poisson arrival case and x1 =
R(1−f)
fn−Rf for the Binomial case, leads to the proof that the
geometric tail approach is applicable, and η = 1

x0
in this case.

C. Integrating radio errors and retransmissions

URLLC users usually use a robust MCS so that packets
are lost with a small probability ϵ1. This radio loss cannot be
neglected when a very high reliability is sought. In case of
packet loss, it is retransmitted until it is decoded by the base
station, but each retransmission generates an additional delay

1The MCS is usually selected based on a pessimistic Signal to Interference
and Noise Ratio (SINR), by subtracting a margin on the estimated SINR.

and outage occurs if the packet is not well received before
the budget of δ slots expires. In order to model the impact
of retransmissions, we introduce to the overflow model two
modifications, as follows:

• The activity factor of users is increased by a factor of
1/(1− ϵ) to account for the fact that a packet is repeated
for a geometric number of times. The probability of
generating a packet during a slot becomes: f ′ = f

1−ϵ
• The overflow probability is computed accounting for the

multiple retransmissions.
Knowing that the error probability is low as URLLC packets

use robust MCS, and that the outage probability is low for the
targeted traffic regimes, we consider only one transmission and
one retransmission when computing the outage. The outage
probability integrating radio errors becomes:

θ′(a, δ) = ϵ

δ−1∑
δ1=1

[
(

δ1R∑
b1=(δ1−1)R+1

qb1)(1−
(δ−δ1)R∑
b2=0

qb2)
]

+(1− ϵ)θ(a, δ) (18)

where θ(a, δ) is the outage probability with no radio errors
obtained by replacing f with f ′. The second term accounts
for the retransmission delay in case of radio loss. In this case,
the first transmission consumes exactly δ1 < δ slots (the term
(
∑δ1R

b1=(δ1−1)R qb1)), and outage occurs if the second transmis-

sion takes more than δ−δ1 slots (the term (1−
∑(δ−δ1)R

b2=0 qb2)).

IV. NUMERICAL EXPERIMENTS

We now consider two sets of numerical experiments. The
first set (section IV-A1) aims at model validation and compares
the model to a simulator that corresponds to a limited system
(only the scheduler is modeled, MCS distribution is taken as
input). The second set of experiments (section IV-B) aims to
show how the model can be used for dimensioning of real
URLLC systems, and makes use of a complete system level
simulator with link adaptation and user generation.

A. Model validation and comparison to state of the art

1) Simulator description for the benchmark: In this section
(figures 1 and 2), we make use of the mathematical models
and a Markov chain simulator based on theoretical MCS
distributions, issued from a large scale system level simulator
and illustrated in Table I. In case of a fixed MCS, all users use
MCS 1. When an MCS with a spectral efficiency of y bit/s/Hz
is used, and knowing that the RB size is h Hz, a packet of
size s = 96 bits occupies a number of RBs equal to ⌈ s

Thy ⌉,
where ⌈x⌉ is the largest integer greater than or equal to x.

In the Markov chain simulator, time is divided into slots of
size T = 0.144 ms and there are R reserved RBs for URLLC.
Packets are all of equal size. In each slot, each user generates
a packet following a Bernoulli law with parameter f , and if a
packet is generated, it chooses at random an MCS following
the input distribution. Packets are served following a FCFS
discipline. When a packet is generated (following some arrival



process), it is put at the end of the queue. A time slot is filled
with the packets at the head of the queue until all of the R
RBs are occupied or the queue is empty. When a packet cannot
be scheduled on one slot as the remaining resources are not
sufficient, it can be scheduled on two consecutive slots. A
packet is lost with probability ϵ. It is then regenerated and
placed at the end of the queue for retransmission. A packet
is considered in outage if it stays in the system more than δ
slots. In our numerical applications, we take δ = 4 mini-slots.

TABLE I: MCS distribution and resource consumption

k 1 2 3 4 5 6 7
βk .027 .009 .002 .003 .057 .032 .09
αk 27 18 11 7 5 4 3

k 8 9 10 11 12 13 14
βk .112 .039 .0136 .010 .074 .137 .014
αk 3 2 2 2 2 1 1

2) Comparison with the state of the art: For the comparison
with the state of the art, we consider a system where all users
use a common MCS, as this corresponds to an interesting
practical case (no link adaptation due to stringent latency
requirements), and as the state of the art does not allow to
model heterogeneous MCS. The case with link adaptation
will be presented in the next section. The arrival process is
considered as Poisson for fitting with the queuing literature.

We first compare our model to the Monte Carlo simulation
for validation. Figure 1 plots the outage probability obtained
from the analytical model (equation (6)) and from simulations.
We observe a very good fit between both results. We also plot
the outage obtained from the geometric tail approach (section
III-B), and the approximation shows to be very good, with a
low coomplexity (solving only a set of 15 equations, instead
of Bmax = 100 equations for the original model.

We now move to the comparison with the literature. As
all packets consume the same amount of resources, a natural
model is a continuous time queue with c = R servers. A
model exists for M/D/c queues, since the work of Crommelin
in 1932 [16]. We apply the algorithm of [15] (pages 378-
379) and plot in figure 1 the outage probability of the M/D/c
model (c = R servers, Poisson arrival rate of Uf packets per
slot, deterministic service time of 1 slot). Figure 1 shows also
that the M/D/c model overestimates the outage probability. For
further comparison with the state of the art, we also consider
the M/M/c/K loss model proposed in [9] for URLLC, where
the service is approximated as exponential, c is the number
of servers, and K is the maximum number of packets the
system can hold, computed in [9] as the number of packets
upon arrival that discourages a packet from being queued as
it corresponds to an outage (K = cδ in our case). Figure 1
shows that this model is not adequate, as it largely overesti-
mates the outage for small loads (our region of interest), and
underestimates it for high loads (due to blocking).

3) Model validation for more realistic scenarios: We now
move to the general case where link adaptation makes different
packets consume different amounts of resources. Binomial
traffic model is used, for modeling a fixed number of URLLC

Fig. 1: Outage for the homogeneous MCS case (R = 5, δ = 4).

Fig. 2: Outage for common MCS (R = 24, U = 20, δ = 4).

users generating sporadic traffic. We use the MCS distribution
of Table I. Figure 2 compares the outage probabilities of our
model with simulations, varying the activity factor f for users.
We simulate two scenarios: the first where we neglect losses
due to fast fading (packets are in outage only due to queuing
delay), and the other where fast fading may lead to a loss and
the packet is retransmitted (the delay being considered from
the packet generation to its correct decoding). We observe a
perfect fit with simulations, meaning that equations (18) and
(6) give tight approximations of the packet outage, with and
without retransmissions due to radio errors.

B. Resource dimensioning

We now show how to use our model for resource dimension-
ing. For this purpose, we make use of our performance model,
and apply it on a live network modeled by a system level
simulator. Note that this simulator, described in the following,
is different from the Markov chain simulator used above that
considered only the scheduler, without considering neither user
arrivals/departures, nor link adaptation.



Fig. 3: Resource dimensioning for the URLLC service.

A BS serves a set of URLLC users. At the start of each
run, the positions of the users are drawn randomly in the
cell, and their path loss is computed. For each slot, a fast
fading is generated and the resulting Channel Quality Indicator
(CQI) is computed. The corresponding packet is then sent
using the adequate MCS, corresponding to the computed CQI.
A RAN management entity is then responsible of collecting
information about the traffic and radio conditions statistics.
This entity, located for instance within the NSSMF (Network
Slice Subnet Management Function), computes the average
arrival rate of packets and the aggregated MCS distribution
(probability for a packet of using a given MCS).

These information are then sent to a URLLC slice dimen-
sioning entity that implements the performance evaluation
model. In particular, the packet arrival rate and the MCS
distribution are combined with the service-related information
(target delay) and the amount of URLLC reserved resources
R to compute the packet outage. R is then adjusted in the
model until reaching the target outage of 10−5.

Figure 3 shows the resulting dimensioning in terms of
resource blocks for different arrival rates. Three methods are
implemented for computing the required amount of resources:

1) The proposed discrete time model,
2) the M/D/c model, making the assumption that all packets

consume the same amount of resources, as if they were
using a common MCS. This amount of resources is
computed as the average over all MCSs.

3) a pure simulation method, based on trial and success,
where different values of R are tested on the live network
on a sufficiently long time, and then the minimal value
of R where an acceptable outage is observed is selected.
This method is not acceptable in practice and is only
shown for validation purposes.

We observe that our model and simulations give the same
system dimensioning. However, the M/D/c model underes-
timates the required resources and results in practice in an
unacceptable outage.

V. CONCLUSION

In this paper, we developed a performance model and
dimensioning for latency-critical traffic in 5G networks. We
considered devices that transmit packets with stringent de-
lay constraints and formulated the equations describing the
evolution of the queue duration. We computed the outage
probability, i.e., the probability that the delay in the system ex-
ceeds a maximal threshold, and proposed a low computational
complexity approximation based on geometric tail approach.
We accounted for cases where users use different MCS, and in-
cluded the impact of retransmission due to errors. We showed
numerically the accuracy of the developed models against
simulations, and their better performance in comparison with
models from the state of the art. We also illustrated the system
dimensioning in terms of required resources for URLLC so as
to meet the stringent outage probability.
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