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Abstract. Flash floods have dramatic economic and so-
cial consequences, and efficient adaptation policies are re-
quired to reduce their impacts, especially in the context of
global change. Developing more efficient flash flood fore-
casting systems can largely contribute to these adaptation
requirements. The aim of this study was to assess the abil-
ity of a new seamless short-range ensemble quantitative pre-
cipitation forecast (QPF) product, called PIAF-EPS (Prévi-
sion Immédiate Agrégée Fusionnée ensemble prediction sys-
tem) and recently developed by Météo-France, to predict
flash floods when used as input to an operational hydro-
logical forecasting chain. For this purpose, eight flash flood
events that occurred in the French Mediterranean region be-
tween 2019 and 2021 were reanalysed, using a hydrological-
modelling chain similar to the one implemented in the French
Vigicrues Flash operational flash flood monitoring system.
The hydrological forecasts obtained from PIAF-EPS were
compared to the forecasts obtained with different determinis-
tic QPFs from which PIAF-EPS is directly derived. The ver-
ification method applied in this work uses scores calculated
on contingency tables and combines the forecasts issued on
each 1 km2 pixel of the territory. This offers a detailed view
of the forecast performances, covering the whole river net-
work and including the small ungauged rivers. The results
confirm the added value of the ensemble PIAF-EPS approach
for flash flood forecasting, in comparison to the different de-
terministic scenarios considered.

1 Introduction

The year 2022, particularly the summer season, was marked
by several deadly and catastrophic flash floods in Pakistan,
Kentucky (USA), Iran, Sierra Leone, Bangladesh, Australia,
and unfortunately many other countries. Very few parts of
the world seem to be spared from flash floods. According
to the World Meteorological Organization (WMO, 2020),
floods are the deadliest natural hazards, and flash floods ac-
count for 85 % of the flooding events and have the highest
mortality rate within the category (5000 victims annually).
In France, the Mediterranean region is particularly prone to
severe flash floods. Even though an intensification of extreme
rainfall events in response to anthropogenic influence was
diagnosed (Ribes et al., 2019), the consequences of climate
change on flash floods remain unclear in this region, particu-
larly because of the compensating effect of the expected de-
crease in soil moisture (Tramblay et al., 2019). However, the
increase in the vulnerability to these episodes may lead to an
increase in the global risk associated with flash floods in the
future years.

In this context, developing flash flood forecasting is of cru-
cial interest to limit the death toll and optimize the emer-
gency response. Several operational flash flood warning sys-
tems have recently been developed worldwide, and they gen-
erally have similar features. The observed or forecasted rain-
fall can be directly compared to reference thresholds to es-
timate the flash flood likelihood. This is the case for in-
stance in the Flash Flood Guidance system in the US (Clark
et al., 2014) or the ERIC–ERICHA system in Europe (Ray-
naud et al., 2015; Corral et al., 2019). Rainfall data can also
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be used as input to highly distributed hydrological mod-
els, which may bring additional information about the in-
tensity and temporal dynamics of the floods and may be
particularly interesting for decision-making (Zanchetta and
Coulibaly, 2020). The FLASH system in the USA (Gour-
ley et al., 2017) and the Vigicrues Flash service in France
(Javelle et al., 2016; Piotte et al., 2020) follow this second
principle. The operational systems using hydrological mod-
els are still often based on radar quantitative precipitation es-
timates (QPEs), without involving quantitative precipitation
forecasts (QPFs). This choice not only increases the qual-
ity of detection and limits the risks of false alarms but also
highly limits the anticipation that cannot exceed the (limited)
response times of the small catchments where flash floods do
occur.

The development of convection-permitting numerical
weather prediction (NWP) models has paved the way for the
use of QPFs as input to flash flood warning systems, with
the objective of extending anticipation lead times up to 24–
48 h (Collier, 2007; Hapuarachchi et al., 2011; Zanchetta and
Coulibaly, 2020). Convection-permitting models offer an in-
teresting capacity to describe heavy precipitation events and
offer space and time resolutions which are suited to the hy-
drological models used in flash flood warning systems. How-
ever, the current QPF products still show spatial and tempo-
ral uncertainties in the description of intense rainfall cells
that may significantly exceed the typical scales of small river
basins (Roberts and Lean, 2008; Clark et al., 2016; Armon
et al., 2020). This may highly limit the capacity to issue
relevant flash flood warnings, without appropriate strategies
to represent or reduce uncertainties (Silvestro et al., 2011;
Vincendon et al., 2011; Furnari et al., 2020). Even if en-
semble approaches have been widely used as input to flash
flood forecasting chains (Vié et al., 2012; Alfieri and Thie-
len, 2012; Davolio et al., 2013, 2015; Hally et al., 2015;
Nuissier et al., 2016; Amengual et al., 2017; Furnari et al.,
2020; Sayama et al., 2020; Amengual et al., 2021), uncer-
tainties in QPFs can still hardly be reduced for lead times
exceeding 6–8 h, even with enhanced assimilation schemes
in NWP models (Davolio et al., 2017; Lagasio et al., 2019).

Efficient flash flood forecasting strategies can also be
developed for short lead times (< 6 h, i.e. the nowcast-
ing range), with a high update frequency (typically 5 min
to 1 h between two runs of forecasts) to regularly benefit
from the last available observations (Lovat et al., 2022). For
such applications, the QPF products can be derived either
from adapted versions of convection-permitting NWP mod-
els (Auger et al., 2015; Benjamin et al., 2016) or by extrap-
olating the last radar observations (Berenguer et al., 2011;
Silvestro and Rebora, 2012; Imhoff et al., 2022). Simple La-
grangian radar extrapolations can easily outperform NWP
models for lead times up to 2–3 h (Mandapaka et al., 2012);
however they are not suited to larger lead times because they
cannot reproduce the physical changes occurring in the at-
mosphere. For that reason, up-to-date short-range QPF ap-

proaches now combine both information sources through
blending techniques to offer a seamless transition between
observed and forecasted rainfall fields (Poletti et al., 2019;
Lovat et al., 2022; Scheufele et al., 2014). However, despite
all these efforts to create seamless short-range QPFs prod-
ucts, the forecast uncertainties still remain significant and
need to be quantified through ensemble approaches (Bowler
et al., 2006; Seed et al., 2013; Descamps et al., 2015; Osinski
and Bouttier, 2018; Bouttier and Raynaud, 2018).

The objective of this paper is to assess the potential of
a new seamless short-range ensemble QPF product called
PIAF-EPS (“PIAF” meaning Prévision Immédiate Agrégée
Fusionnée and “EPS” meaning ensemble prediction system)
and recently developed by Météo-France for flash flood fore-
casting purposes. This ensemble aims to represent very short-
range forecast uncertainties. It can be frequently updated at a
very small numerical cost, in order to keep it consistent with
the latest nowcasting data based on radar images. The aim is
to confirm the benefits of using such an ensemble seamless
product as input to flash flood nowcasting chains, compared
to other short-range deterministic QPF products from which
PIAF-EPS is directly derived. For this purpose, a reanalysis
of eight flash flood events observed in the French Mediter-
ranean region between 2019 and 2021 is proposed, using
a similar hydrological-modelling chain as the one imple-
mented in the French Vigicrues Flash operational flash flood
monitoring system. Since the selected flash floods mainly oc-
curred on small rivers, the proposed evaluation framework
not only focuses on a couple of gauged outlets but also offers
comprehensive coverage of the small rivers hit by the studied
rainfall events. This is achieved by comparing the hydrologi-
cal forecasts obtained using QPFs with simulated discharges
(i.e. based on QPEs) at each pixel of the hydrological-model
grid (1 km resolution) and following a methodology adapted
from Charpentier-Noyer et al. (2023).

The paper is organized as follows: Sect. 2 describes the hy-
drometeorological forecasting chains compared in the study;
Sect. 3 provides details about the case studies used for the
evaluation as well as the chosen verification method; and, fi-
nally, Sect. 4 presents and discusses the verification results.

2 The short-range hydrometeorological forecasting
chains

2.1 General structure of the chains

The forecasting chains applied in this study are directly in-
spired by the French Vigicrues Flash operational flash flood
monitoring service (Javelle et al., 2016; Piotte et al., 2020).
They are presented in Fig. 1. The chains evaluate the sever-
ity of the floods by comparing the simulated and forecasted
hydrographs to reference discharge quantiles. These hydro-
logical data are obtained using a fully distributed rainfall
runoff model, detailed in Sect. 2.4. This hydrological model
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Figure 1. General structure of the forecasting chains.

Figure 2. Illustration of the generation of the PIAF-EPS ensembles.

is forced with the PANTHERE (Projet Aramis Nouvelles
Technologies en Hydrométéorologie Extension et Renou-
vellement) rainfall QPEs, derived from a network of about 30
radars over mainland France and its vicinity. (Tabary et al.,
2013). As mentioned in the Introduction, the choice of us-
ing radar QPEs without QPFs would tend to limit the false
alarms emitted by the chain but would also drastically limit
its anticipation capacity.

In this paper, we thus combined QPEs with different QPFs
products as input of the chain, with the objective of increas-
ing the current anticipation levels. The common time step
for QPE–QPF and the hydrological model is 15 min. All the
QPFs mentioned are available up to 6 h forecast lengths, but
their refresh times depend on the considered product. For the
present study, we decided to consider QPFs only for 0–3 h
forecast ranges and with a common refresh time of 1 h. The
QPF products include the new PIAF-EPS ensemble prod-
uct, and three deterministic products are used as a reference.
Two of these reference QPFs are directly involved in the
generation of the PIAF-EPS ensemble (see Fig. 2), i.e. the
deterministic version of PIAF, and the AROME-NWC nu-
merical weather prediction model (AROME, Applications de
la Recherche à l’Opérationnel à Méso-Echelle; NWC, now-
casting). The third reference QPF corresponds to a naive
constant-rain scenario.

The next sections present each of the components involved
in the forecasting chains applied in this study.

2.2 The three deterministic QPFs: AROME-NWC,
deterministic PIAF, and naive constant-rain
scenario

The first QPF product used as input to the chain corre-
sponds to the AROME-NWC system documented in Auger
et al. (2015). It is a rapid-refresh version of the AROME
convection-permitting numerical weather prediction system.
It is updated every hour by a 3D-Var (3D variational) data
assimilation system with a 10 min observation cutoff (i.e. the
initial state of each forecast is prepared using observations
collected up to 10 min after its validity time), from which
6 h forecasts are produced at 1.3 km resolution with a 20 min
delivery time. Each 3D-Var analysis updates the model state
by multivariately blending tens of thousands of observations
from various meteorological networks (radar winds and re-
flectivities, satellite radiances, GPS data, in situ surface and
aircraft reports, etc.). More information about the AROME-
NWC 3D-Var can be found in Auger et al. (2015).

The second QPF product involved is the deterministic
rain nowcasting system called PIAF (Prévision Immédiate
Agrégée Fusionnée in French) (Moisselin et al., 2019). Each
PIAF forecast blends rainfall fields of radar QPF products
and AROME-NWC numerical predictions as explained here-
after. The radar QPF product is derived from the PAN-
THERE radar QPEs. Rainfall accumulations are estimated
every 5 min at 1 km resolution and extrapolated in time us-
ing an optical-flow technique that maintains the apparent mo-
tion of reflectivity from recent radar images. The blending of
radar extrapolations and AROME-NWC follows the equation
PIAF= α×radar QPF+(1−α)×Arome-NWC, where α is a
forecast range-dependent weighting factor. At short forecast
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ranges, α is equal to 1 so that PIAF is equivalent to the ex-
trapolated radar QPF, which tends to be better than AROME-
NWC. At longer forecast ranges, typically beyond 1 to 2 h,
α smoothly decreases towards 0 so that the PIAF converges
to the latest available AROME-NWC precipitation forecast,
which consistently outperforms radar QPF at longer forecast
ranges. The speed at which α decreases is case-dependent: it
is determined by a simple online machine learning procedure
(Auer et al., 2002; Devaine et al., 2013) that minimizes the
average forecasting errors over the past 6 h, as measured by a
Gerrity score over large subdomains. In a nutshell, this algo-
rithm produces a smooth transition (as a function of forecast
range) between the latest available radar extrapolation and
AROME-NWC forecast; compared to climatologically opti-
mal weights, this transition occurs earlier if AROME-NWC
performed better than average during the 6 preceding hours
(relative to radar extrapolation). Evaluations of the determin-
istic PIAF precipitation forecasts (Moisselin et al., 2019; Lo-
vat et al., 2022) indicate that they statistically outperform
both radar QPF products and AROME-NWC forecasts for
forecast ranges between 0 and 3 h.

Finally, we considered a third “naive” QPF scenario, cor-
responding to a constant future rain. Despite its very sim-
plistic principle, this scenario may give valuable information
since flash floods are often caused by quasi-stationary storm
systems (Gaume et al., 2009).

2.3 The new PIAF-EPS ensemble QPF product

PIAF-EPS is a new experimental short-range ensemble rain-
fall product, which is built by adding perturbations to the de-
terministic PIAF nowcast. The ensemble generation is origi-
nal and inspired by previously proposed stochastic nowcast-
ing schemes, e.g. those of Bowler et al. (2006) and Seed et al.
(2013). The perturbation tuning parameters have been kept to
a minimum, in order to facilitate future operational deploy-
ment and maintenance of the proposed system. The pertur-
bation technique is an adaptation to nowcasting ranges of
the “pertDpepi” method used by Peredo et al. (2021) and
Charpentier-Noyer et al. (2023). It is illustrated in Fig. 2.
Each PIAF forecast (available every 5 min) is used to gener-
ate 16 perturbed members using equiprobable perturbations
of the precipitation field: spatial perturbations and amplitude
perturbations.

The 16 spatial perturbations are pseudorandom shifts that
approximate (together with the unperturbed forecast) a 17-
member, isotropic Gaussian sample in the 2D space. The
shifting vectors are computed following the recommenda-
tions and dataset of Wang et al. (2019), which include a Dirac
mixture algorithm involving the Cramér–von Mises method.
It is a deterministic 2D distribution that is on average a bet-
ter approximation of a Gaussian than a Monte Carlo sample,
given the small ensemble size. The vector directions are con-
stant in time for each ensemble member. The vector ampli-
tudes are scaled as a function of lead time so that the ampli-

tude of the spatial shifts grows linearly from 0 to 30 km over
3 h, after which it is kept constant. This setting was based
on a visual examination of spatial prediction errors for a set
of high-impact precipitation events (independent of the ones
used for the evaluations in this study).

The 16 amplitude perturbations are multiplications of
2D patterns by the spatially shifted fields. Each pattern is an
independent realization of a 2D random field that has Gaus-
sian autocorrelations in space and a serial time autocorrela-
tion from a clipped AR(1) autoregressive process. The au-
tocorrelation scales are set to approximately 40 km and 6 h,
respectively. Thus, the amplitude perturbations are indepen-
dent between members, and they slowly evolve in time. The
standard deviation of the perturbation amplitude grows lin-
early in time for the first forecast hour, after which it is kept
constant; it has been tuned to produce reliable average stan-
dard deviations of the precipitation spread (as measured by
the spread–skill ratio of the whole ensemble) over a large
forecast tuning sample (1 month, independent of the cases
evaluated in this study). Likewise, a small bias correction
(amplification of the highest precipitation intensities) of the
forecasts with respect to precipitation observations has been
applied using the same tuning sample. An example of the
perturbations is given in Fig. 3.

The unperturbed PIAF forecast is used as a 17th en-
semble member, which makes the ensemble slightly non-
equiprobable but minimizes the risk of corrupting a good de-
terministic forecast by applying ensemble perturbations that
are too large. The justification is that, in a few high-impact
cases, experience shows that intense Mediterranean precipi-
tation can be predicted quite precisely by numerical models
thanks to the influence of local orographic features. Further
improvement to our (purely statistical) ensemble generation
technique would be needed to automatically reduce the per-
turbation amplitudes in such cases, which is left for a future
study.

2.4 The SMASH hydrological model and the Vigicrues
Flash method

The rainfall-runoff part of the forecasting chains is based
on SMASH (Spatially distributed Modelling and ASsimila-
tion for Hydrology models). SMASH is a highly distributed,
continuous, and conceptual hydrological model developed at
INRAE (Institut national de la recherche pour l’agriculture,
l’alimentation et l’environnement) and Hydris Hydrologie
(Jay-Allemand et al., 2020). The general principle of the
model is presented in Fig. 4. SMASH is inspired by the GR
(Génie Rural) reservoir-based family of models (Perrin et al.,
2003). For each pixel of the territory, the model includes a
production reservoir (capacity cp); a transfer reservoir (ca-
pacity ctr); and an adapted cell-to-cell routing model, repre-
sented by a routing reservoir (capacity cr).

The version of SMASH used in this study is the one that is
currently operational in the Vigicrues Flash system. This ver-
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Figure 3. Example of PIAF-EPS ensemble forecast perturbations. (a) Deterministic PIAF forecast of 15 min rainfall accumulation (forecast
start: 19 September 2020 at 06:00 UTC, forecast range: 2 h). This is used as member 0 of the ensemble. (b) Same field in members 1 to 16;
the shading represents rainfall areas above 5 mm, with one colour for each member.

Figure 4. General outlines of SMASH (Jay-Allemand, 2020). P represents the local rainfall over one cell; E is the potential evapotranspira-
tion; Pr is the effective rainfall; q is the elementary discharge; and Q is the total routed discharge.

sion is working on a 1 km grid, at a 15 min time resolution. It
is a “lag-0” version, which means that there is no cell-to-cell
routing scheme (or, in other words, that the routing velocity
is infinite): the discharge on a cell is the sum of the instanta-
neous discharges of all the upstream cells. This method does
not provide realistic hydrographs, but this is not considered
a problem, since the warning thresholds are defined based on

a “climatological” run of the same model (see the next para-
graph).

According to the Vigicrues Flash method, the forecasted
hydrographs obtained with SMASH are compared with ref-
erence discharge quantiles corresponding to defined return
periods. These reference values are obtained by running the
SMASH model for a long and continuous period and by ad-
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Figure 5. (a) Study area and French departments affected by the events, (b) specific discharge quantiles of T = 2-year return period estimated
for the study area based on a 15-year SMASH simulation.

justing a Gumbel distribution to the corresponding annual
maximum series. For this study, a 15-year-long simulation
period was used, which is the longest period that can be sim-
ulated based on an homogeneous PANTHERE QPE product.
Discharge quantiles of T = 2, 5, and 10 years were obtained
for each 1 km2 pixel of the studied area (see Sect. 3.1). Fig-
ure 5b illustrates the discharge quantiles obtained for the re-
turn period of T = 2 years. In the west zone, the effect of re-
lief in the Cévennes mountainous area is clearly distinguish-
able, logically resulting in higher rainfall amounts and higher

flood quantiles. However, the results appear less consistent
in the east zone, firstly because several very intense events
occurred in the 2006–2021 simulation time window (sensi-
bility to sampling) and secondly because the quality of the
radar rainfall is questionable in this area. Indeed, a V-shaped
band can be clearly observed, which is probably the result of
bad calibration of the Collobrières radar. However this does
not alter the methodology and results proposed in this study,
since only simulated (and not observed) discharges are used
to assess the quality of the forecast results.

Nat. Hazards Earth Syst. Sci., 23, 3355–3377, 2023 https://doi.org/10.5194/nhess-23-3355-2023
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Figure 6. Maps of rainfall accumulations for each of the selected events. These maps were drawn using the ANTILOPE QPE (Champeaux
et al., 2009), i.e. the best reanalysed QPE merging radar estimations and rain gauge observations.

3 Case studies and verification method

3.1 Study area and selected events

The south of France, particularly the Mediterranean region,
has experienced a large number of catastrophic flash flood
events this last decade, both in terms of economical damage
and casualties. The study has been focused on the most re-
cent events that hit this area, since the ensemble PIAF-EPS
forecasts can be released only from February 2019 (it would
be labour intensive to process older cases because of tech-

nical constraints in the archiving system, and they would be
less and less relevant to current operational forecasting sys-
tems because the AROME and PIAF systems are frequently
upgraded, typically once a year). Eight heavy precipitation
events which occurred between 2019 and 2021 in the south-
eastern region of France (see Fig. 5a) were selected. Figure 6
shows the maps of rainfall accumulations for each event, and
Table 1 provides additional information including the dura-
tion, the maximum rainfall accumulation (spatial maximum),
and the intensity and geographical extent of the hydrological
responses simulated by the SMASH model.

https://doi.org/10.5194/nhess-23-3355-2023 Nat. Hazards Earth Syst. Sci., 23, 3355–3377, 2023
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Table 1. Description of the flash flood events: date; maximum rainfall accumulation (spatial maximum); percentages of the study area where
the SMASH simulated peak discharge exceeds the 2-, 5-, and 10-year discharge thresholds; affected zone (by reference to Fig. 5); and
assigned label.

Date Max
SQ≥QT=2 years

SZone
× 100

SQ≥QT=5
SZone

× 100
SQ≥QT=10 years

SZone
× 100 Zone Label

cumulative
rainfall

22–25 Nov 2019 380 mm 22.06 7.92 3.86 East A
1 Dec 2019 360 mm 11.92 6.53 4.77 East B
2–3 Oct 2020 600 mm 2.42 1.28 0.97 East C
3–4 Oct 2021 370 mm 4.31 2.00 1.33 East D
21–24 Oct 2019 300 mm 11.03 6.91 5.39 West E
18–20 Sep 2020 590 mm 1.35 0.77 0.53 West F
13–14 Sep 2021 330 mm 0.36 0.27 0.25 West G
3–4 Oct 2021 540 mm 3.94 1.76 1.38 West H

The rainfall accumulations presented in Fig. 6 show that
the selected events have very different features. Some events,
such as events A and E, show a wide spread of rainfall. For
these events, the larger rainfall accumulations appear homo-
geneous over areas covering one or several departments. The
other events are much more localized and have a larger vari-
ability in rainfall accumulations. Some of them show locally
very intense rainfall cells (events C, D, and F). The rainfall
accumulation map for the October 2021 event shows that two
separated zones were affected by the heavy rains, and the
study of the QPE over time revealed that both zones were not
affected at the same time: the heavy rainfall hit the depart-
ment of Lozère first, on 3 October, and then the departments
of Bouches-du-Rhône and Var, on 4 October. It was there-
fore decided to separate this event into two distinct events,
labelled D and H.

For most of the eight selected events, the larger hydro-
logical responses occurred in small ungauged catchments.
However, for events A, B, and C, post-event studies could
estimate the maximum peak discharge values (Lebouc and
Payrastre, 2020; Brigode et al., 2021; Payrastre et al., 2022).
For events A and B, it was estimated that peak discharges lo-
cally reached a 5–15 m3 s−1 km−2 range in the small basins
hit by the larger rainfall accumulations. These two events
are hydrologically interesting because they happened close
in time and in the same area: the maximum peak discharges
were probably observed during event B because of larger soil
saturation and higher rainfall intensities observed on short
time steps (Brigode et al., 2021). For event C (Storm Alex)
which hit the same department (Alpes-Maritimes), Payrastre
et al. (2022) estimated that despite significantly higher rain-
fall accumulations, the peak discharges were globally simi-
lar to those observed during the November–December 2019
flash flood events, except on some upstream basins where
the estimated peak discharges reached values in the 15–
20 m3 s−1 km−2 range. Considering these discharge values,
events B and C are among the most intense floods which

have been observed in the departments of Var and Alpes-
Maritimes.

Because of the limited information about the actual inten-
sity and location of the flood responses during the eight se-
lected events, it is difficult to more thoroughly compare the
characteristics of the flood events. The comparison of simula-
tion results obtained with the SMASH model can, neverthe-
less, bring additional information. Table 1 gives the percent-
age of the surface where several discharge thresholds (2-, 5-,
and 10-year return periods) were exceeded by the reference
simulation. It refers to Fig. A1, which gives an idea of the
extent of the flood responses exceeding these thresholds for
each event. Again, we can see here that the considered flood
events show very different characteristics in terms of spatial
extent: from very localized events (F and G) up to more gen-
eralized flood responses (events A, B and E), according to
the SMASH simulations.

3.2 Verification method

As mentioned in the Introduction, the objective is to as-
sess the benefits of forcing the flash flood nowcasting chain
with the PIAF-EPS forecasts. The whole river network of the
study area, including small ungauged rivers, should be con-
sidered. As a consequence, the verification process has been
applied at each 1 km2 pixel of the SMASH model to pro-
vide as detailed an evaluation as possible. Since no discharge
observation is generally available at this 1 km2 scale, the dis-
charge simulated by the SMASH hydrological model forced
with the observed PANTHERE QPE was used as a reference.
This reference also allows for ignoring the errors due to the
hydrological model, the performance of which have not been
assessed in this study. Therefore, in the following, Qsim is
assigned to the discharge calculated by the SMASH model
forced with PANTHERE QPE, while Qfor is assigned to the
discharge forecasts obtained by forcing the model with the
different rainfall forecasts.
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Table 2. Content of a contingency table. Labels a, b, c, and d corre-
spond to the number of forecasts in each category.

Qfor ≥Qt Qfor <Qt

Qsim ≥Qt Hit (a) Miss (c)
Qsim <Qt False alarm (b) Correct rejection (d)

The verification process aims to evaluate if the ex-
ceedances byQsim of discharge thresholdsQt are well antic-
ipated by Qfor, i.e. when rainfall forecasts are used as input
to the chain, instead of the PANTHERE QPEs. Since Qfor
may correspond either to ensemble forecasts (as in the case
of PIAF-EPS QPF) or to deterministic forecasts (as in the
case of other QPFs), we selected verification scores that can
be applied on both deterministic and probabilistic forecasts.

The verification is based on the filling of contingency ta-
bles, which are commonly used for assessing the ability of
forecasting systems to detect binary events (Mason, 1982).
The contingency tables are filled by comparing the reference
(Qsim) and forecasted (Qfor) discharges to a threshold (Qt),
resulting in the four outcomes presented in Table 2. Then,
the probability of detection (POD= a

a+c
) and the probabil-

ity of false detection (POFD= b
b+d

) can be calculated. In the
case of ensemble forecasts, they can be plotted for different
forecast probabilities for creating a ROC (receiver operating
characteristic) curve (Mason, 1982).

Contingency tables are usually filled by combining a con-
tinuous temporal sequence of forecasts, at one single site and
for one unique lead time. However, we followed the princi-
ple proposed by Charpentier-Noyer et al. (2023) of building
the contingency tables by aggregating the forecasts issued
during the most critical phase of the event (i.e. the forecasts
issued during the flood rising limb, just before the thresh-
old exceedance by Qsim, independently of the lead time).
The detailed methodology is explained in Appendix B1. It
includes a selection process of the forecasts considered to
fill the contingency table, called stratification. Some adapta-
tions have been introduced in this process in order to cre-
ate a forecast-based stratification, rather than an observation-
based stratification, following the recommendations of Bel-
lier et al. (2017). The details are provided in Appendix B2.

Here we considered the forecasts obtained for each pixel
of the SMASH model to build the contingency tables. Three
discharge thresholds were considered at each pixel: Qt =

{QT=2 years, QT=5 years, and QT=10 years} (see Sect. 2.4 and
Appendix A). The contingency tables obtained for each
threshold may be visualized directly on a map (see Fig. 7)
or summarized using synthetic scores such as the POD or
POFD. However, the POFD score is sensitive to the extent of
the verification area, which directly determines the number
of correct rejections (see Fig. 7). The choice of the verifi-
cation area was already identified as an important issue by
Charpentier-Noyer et al. (2023), who suggested paying par-

ticular attention to the choice of the HFA (hydrological focus
area). For that reason, we chose to summary the contingency
tables based on the critical success index (CSI= a

a+b+c
) in-

stead of POD/POFDs. The CSI score does not take into ac-
count the correct rejections and is thus much less sensitive
to the choice of the spatial verification window. This choice
avoided the issue of defining an appropriate verification zone
for each of the considered events.

It is important to mention that although the verification
method is based on classical statistical scores, it cannot char-
acterize the performances of the QPFs for long temporal se-
ries. We are only assessing the ability of the different QPFs
to correctly predict several specific events of high intensity
here. The obtained results, even if they provide interesting
information, cannot be extrapolated to future events because
of the limited number of events considered in this study.

4 Results and discussion

4.1 Maps of contingency tables: presentation of a result
sample

As explained in Sect. 3.2, the contingency tables filled for
each event can be represented on maps. One map can be
extracted for each discharge threshold of Qt = {QT=2 years,
QT=5 years, QT=10 years} and each QPF product. In the case
of the PIAF-EPS ensemble forecast, one map is obtained for
each percentile of the forecast ensemble.

These maps allow for observing and comparing the per-
formance of the forecasts. For example, Fig. 7 shows the
maps obtained in the case of event F and a threshold of
Qt =QT=2 years. For this event, the constant rain and the
AROME-NWC forecasts showed poor performance, with the
first one correctly emitting warnings on the affected region
but emitting many false alarms elsewhere and the other one
missing most of the area affected by the event. The CSI
scores summarize the content of the contingency tables (see
Sect. 3.2) are 0.12 and 0.13, respectively, for these two fore-
casts. The improvements observed for the deterministic PIAF
forecast (CSI= 0.21) confirm that, in this case, the blending
of radar QPFs and AROME-NWC was effective. Moreover,
the 60th percentile of the PIAF-EPS forecast, which has the
highest CSI score among the other percentiles, shows even
better results than the PIAF forecast (CSI= 0.27) by notably
reducing the area affected by false alarms.

Figure 8 shows the maps of the contingency tables ob-
tained for another single event (event B) and for the differ-
ent PIAF-EPS percentiles. This figure illustrates the evolu-
tion of the forecast performance depending on the considered
percentile of the ensemble forecast. Logically, for low per-
centiles, the number of correct detections is very small and
much lower than the number of missed warnings, resulting in
low values of CSI. For intermediate percentiles, the number
of correct detections increases with respect to the number of
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Figure 7. Maps of contingency tables for each forecast product, for the T = 2-year threshold (event F).

Figure 8. Map results of contingency tables for the T = 5-year threshold (event B).
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missed warnings and false alarms, resulting in an increase in
the CSI values. However, for larger percentiles, the number
of false alarms increases up to the point that it outweighs the
increase in correct detections, resulting in a decrease in the
CSI scores.

This evolution of detection performance depending on the
percentile of the ensemble forecasts directly explains the ex-
pected “hill” shape of the CSI curves presented in Fig. 9.
The “best” ensemble percentiles can be identified by select-
ing the maximum on these curves. In the case of event B,
Figs. 8 and 9 show an optimal hit–miss–false alarm balance
for percentiles around 50 %–60 %.

4.2 Analysis of CSI scores at the event scale

Figure 9 summarizes the CSI scores obtained for each event,
each discharge threshold, and each considered forecast prod-
uct. One unique CSI score is computed for the reference de-
terministic forecasts, whereas a CSI curve is obtained in the
case of the ensemble PIAF-EPS forecast. These CSI scores
provide a synthetic view, enabling the comparison of the re-
spective performances of the different forecast approaches.
For a more detailed analysis, the corresponding maps of con-
tingency tables are presented in Fig. D1: the best-performing
(i.e. maximal CSI) reference deterministic forecast is com-
pared to the best-performing PIAF-EPS percentile, for the
QT=10 years threshold and for each event. These maps are
complementary to the CSI values presented in Fig. 9, since
they allow for visualizing the geographical differences be-
tween the different QPF products, resulting in CSI differen-
tials.

Before comparing the different forecast approaches, two
generic observations can be made in Fig. 9. First, the per-
formance of all forecasts tends to decrease as the discharge
thresholds increase. This is in agreement with the theory de-
veloped by Schaefer (1990), according to which the CSI is
biased by the frequency of the forecast event. Typically, the
rarer an event is, the higher its return period is and the lower
the CSI is. Here it leads to a CSI decrease of 0.1 to 0.2, when
comparing the 2- and 10-year discharge thresholds. Second,
the CSI curves for the PIAF-EPS forecasts do not always
have the expected hill shape with a maximum at intermedi-
ate percentiles. In particular, for events D, E, G, and H, the
maximum CSI is reached at low percentiles. It means that,
for those events, PIAF-EPS had a tendency to overestimate
the discharge probabilities. This is consistent with the rank
diagrams plotted for each event in Appendix C (Fig. C1),
which generally show a slight positive discharge bias for the
same events (D, E, G, H). A larger bias can even be observed
for the forecast discharges exceeding the 2-year return pe-
riod threshold, even if in this specific case the bias can be
increased by the stratification process (see Appendix C).

Furthermore, Fig. 9 shows that the intermediate per-
centiles of PIAF-EPS (i.e. 40 % to 60 %) almost system-
atically outperform the naive forecast approach (constant

rain) and the deterministic PIAF forecast. This confirms
that adding spatial and amplitude perturbations to the PIAF
QPFs, in order to obtain the PIAF-EPS ensemble QPF prod-
uct, resulted in better performances of the flash flood fore-
casts, at least for the eight intense flash floods considered in
this study. The results are more mixed concerning AROME-
NWC. For five out of eight events, AROME-NWC shows
CSI values equivalent to or lower than the deterministic
PIAF, and it is outperformed by the PIAF-EPS forecasts in
these cases, at least for intermediate percentiles. Conversely,
there are three events for which AROME-NWC leads to
significantly higher CSI values than deterministic PIAF re-
sults (events E, G and H). For two of these three events
(events E and G), PIAF-EPS largely compensates the poor
performance of deterministic PIAF, leading to CSI values
that are similar to AROME-NWC (events E and G). Lo-
vat et al. (2022) have already shown that, depending on
the lead time, AROME-NWC can outperform determinis-
tic PIAF forecasts. The relationship between the CSI values
and the lead times can hardly be investigated in this work, as
the verification method applied looks at all the forecast runs
emitted in a specific time window, regardless of their respec-
tive lead times. An explanation for the poor performance of
deterministic PIAF in these events could be a sudden station-
arization of the rain cells. In such a situation, the Lagrangian
radar QPE extrapolation becomes a very poor rain predic-
tor because it cannot account for rapid changes in speed in
high-precipitation areas. The results obtained here suggest
that PIAF-EPS can at least partly handle the inherent uncer-
tainty in these situations, where the blending with radar QPE
extrapolations limits the quality of the deterministic PIAF
forecast.

4.3 Averaged CSI scores

Averaged CSI scores were also calculated in order to provide
a more synthetic view of the forecast performance by aggre-
gating them over all studied events. There are two possible
ways of calculating global CSI scores:

CSI1 =
1
Nevt

Nevt∑
n=1

an

an+ bn+ cn
(1)

and

CSI2 =

Nevt∑
n=1

an

Nevt∑
n=1

an+ bn+ cn

. (2)

Since the studied events have very different spatial extents
(see Fig. A1 and Table 1), we chose to use the CSI1 formula,
where the averaging implies that all the events have the same
weight. CSI2 would have given much more relative weight to
the large-scale events.
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Figure 9. CSI curves of each event for the various forecast products and thresholds.

The global CSI curves obtained from CSI1 are presented in
Fig. 10 and indicate that, globally, PIAF-EPS 30th–60th per-
centiles outperform all the deterministic reference forecasts.
This identification of best percentiles can be useful for end
users (WMO, 2012), particularly if they remain relatively sta-
ble depending on the considered events. In this paper, we as-
sess the value of these best percentiles in a slightly overopti-
mistic way, since we use all events to derive the optimum CSI
values (i.e. it is not an “out-of-sample” optimization) because
our sample is very small. This methodological weakness
does not invalidate our conclusions, however, since the CSI

curves are rather stable from case to case in our sample. The
global CSI1 scores also confirm that AROME-NWC globally
performs better than PIAF for the eight studied events. How-
ever, this conclusion is largely influenced by events G and H,
for which the CSI differences between AROME-NWC and
deterministic PIAF results are the largest.

Finally, the averaged CSI values obtained with the inter-
mediate percentiles (40 %–50 %) of PIAF-EPS are in the
0.3–0.4 range, depending on the return period of the dis-
charge threshold considered. The CSI scores can reach up
to 0.6 for some specific events. These CSI values may appear
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Figure 10. Averaged CSI scores calculated for the eight flood events.

Figure 11. Anticipation times aggregated for all events and for each QPF (50th percentile for PIAF-EPS) for the 5-year threshold.

relatively low from the perspective of operational decision-
making. However, the real added value of these forecasts for
decision-making can only be evaluated by considering the
balance between the gains associated with the hits and the
costs related to false alarms. Moreover, other studies dealing
with flash flood nowcasting found similar CSI values of 0.20
(Clark et al., 2014) and 0.38 (Gourley et al., 2017), even
though these CSI values were obtained in very different con-
texts (using observations over the whole US) and thus cannot
be directly compared with the values of this paper.

4.4 Anticipation lead times

The CSI scores presented above assess the ability of the rain-
fall products to predict discharge threshold exceedances, re-
gardless of anticipation. However, maximizing the anticipa-
tion times of good forecasts is another desirable property in
an operational forecasting context. An estimation of the an-
ticipation times associated with the hits in contingency tables
was proposed by Charpentier-Noyer et al. (2023) by com-
puting the difference of tsim−trun, where tsim represents the
first threshold exceedance by the reference simulation and
trun corresponds to the starting time of the first forecast that
identifies this threshold exceedance event. Anticipation times
for each QPF (50th percentile for PIAF-EPS, as intermediate
percentiles were identified as optimal in the previous section)

and for the 5-year threshold are presented in Fig. 11. Firstly,
the results show that the anticipation times can reach up to
6 h. This is due to the choice of counting a hit when tsim falls
within the interval ]trun; trun+ T + 3 h] (see Appendix B2),
with T being the forecast range (0< T ≤ 3 h). Anticipation
times exceeding the forecast length of 3 h, even if helpful
in anticipating threshold exceedances, result from unrealis-
tic forecasts where the threshold crossing is forecasted too
early. It is thus logical to observe that the constant-rain sce-
nario has the highest number of anticipation times exceeding
3 h, and it is rather satisfying to note that PIAF-EPS has the
least occurrences in this anticipation range. The comparison
of histograms in the 0–3 h range of anticipation times con-
firms that PIAF and PIAF-EPS yield a larger number of hits
globally. Additionally, it shows that this increase of hits is
primarily obtained in the 0–2 h range of anticipation times
compared to AROME-NWC. This logic is clear as it corre-
sponds to the forecast range where radar extrapolations are
involved in building PIAF and PIAF-EPS. Furthermore, it
suggests that PIAF-EPS brings additional hits mainly in the
0–1 h range of anticipation times when compared to PIAF.
However, drawing systematic conclusions is complicated, as
we are only examining one ensemble percentile here, and we
are considering all events, while important differences may
exist within each event.
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5 Conclusions

The development of efficient tools and methods for flash
flood forecasting is of crucial importance to limit the often
catastrophic consequences of flood hazards. The objective
of verifying newly developed forecasting methods and prod-
ucts is a key step before their integration into operational
forecasting suites. In the current study, the potential of the
experimental PIAF-EPS short-range ensemble rainfall prod-
uct for flash flood forecasting purposes has been assessed.
Eight heavy precipitation events that occurred between 2019
and 2021 in the south-eastern region of France were reanal-
ysed using a hydrological forecasting suite similar to the
one that is currently operational in the French national flash
flood warning system, Vigicrues Flash. An original verifica-
tion process, directly derived from Charpentier-Noyer et al.
(2023), was performed on each 1 km2 pixel of the area. This
allowed us to plot maps to precisely visualize the forecast
performance and to summarize it as CSI scores.

The hydrological forecasts based on PIAF-EPS have been
compared to those obtained with deterministic PIAF and
AROME-NWC rainfall forecasts, since PIAF-EPS is directly
obtained from these two deterministic products. A naive
constant-rainfall scenario was also used as a reference. The
results showed that PIAF-EPS systematically outperformed
the constant-rainfall and the deterministic PIAF forecasts.
As indicated in previous studies, it was also observed that
PIAF does not always outperform AROME-NWC because
the forecast quality depends on the lead time and on the per-
formance of radar QPE extrapolations. Over the eight events
considered in this study, it was observed that the PIAF-EPS
performance is generally similar to, or better than, AROME-
NWC.

In a nutshell, the results obtained confirm the added value
of using the PIAF-EPS products for anticipating flash floods
in the Mediterranean area. We argue that statistical scores
such as the CSI provide valuable indications of performance
despite being applied not on long data series but rather on
only eight particularly intense flash floods. Indeed, when as-
sessing the performance of such a new forecasting product,
it is essential to carefully check its behaviour on some high-
impact events, as a complement to more generic statistical
evaluations. The results presented here should nevertheless
be complemented with more robust statistical evaluations
over longer periods of time and on a larger number of high
precipitation events, bringing a more generic overview of the
quality of the forecast ensembles.
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Appendix A: Hydrological presentation of the studied
events

Figure A1. Discharge quantiles exceeded by the PANTHERE simulation (Qsim) during each event.
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Appendix B: Methodology for filling the contingency
tables

The contingency tables are filled for each pixel of the zones.
For an ensemble forecast product, each percentile is consid-
ered separately to be treated as a deterministic product. For
each pixel, we look at the hydrograph of Qsim(t) simulated
by SMASH with the PANTHERE QPE as input and at the
hydrographs of Qfor(t) forecasted by SMASH when forced
with a QPF product (constant-rain scenario, AROME-NWC,
PIAF, or PIAF-EPS percentiles). Let trun be the forecast start
time, T be the forecast range (0< T ≤ 3 h), and Qt be the
considered discharge threshold.

B1 Detailed method of Charpentier-Noyer et al. (2023):
observation-based stratification

The method, applied on each spatial entity and for each fore-
cast probability, is as follows.

1. If there exists t such that Qsim(t)≥Qt, then the date
tsim corresponding to the first threshold exceedance by
Qsim is selected. A sample S consists of all the pairs
(trun, T ) such that trun < tsim ≤ trun+ T is constructed.

– If there exists (trun, T ) ∈ S such thatQfor(trun,T )≥

Qt, a hit is counted. The trun corresponding to the
first threshold exceedance is selected to calculate
the anticipation time: tsim− trun.

– If Qfor(trun,T ) < Qt∀(trun,T ) ∈ S, a miss is
counted.

2. If Qsim(t) < Qt∀t , the date tsim corresponding to the
global maximum of Qsim is selected and a sample S
consisting of all the pairs (trun, T ) such that trun < tsim ≤

trun+ T is constructed.

– If there is (trun,T ) ∈ S such thatQfor(trun,T )≥Qt,
a false alarm is counted.

– If Qfor(trun,T ) < Qt∀(trun,T ) ∈ E, a correct rejec-
tion is counted.

B2 Adapted method: forecast-based stratification

The detailed process used to build the contingency table is as
follows.

1. If there exists (trun, T ) such that Qfor(trun,T )≥Qt, the
pair (trun, T ) corresponding to the first threshold ex-
ceedance by Qfor is selected.

a. If Qsim(t) < Qt∀t , a false alarm is counted. See
Fig. B1a.

b. If there is t such that Qsim(t)≥Qt, the first thresh-
old exceedance occurs at tsim.

– If tsim ∈]trun, trun+ T + 3h], a hit is counted.
The anticipation time is equal to tsim− trun. The
time interval ]trun, trun+T+3h], particularly the
+3 h part, was chosen in order to create a toler-
ant window for the hit counting. It seemed co-
herent to use a time tolerance equal to the max-
imum lead time. See Fig. B1b.

– If tsim > trun+T +3 h, a false alarm is counted.
See Fig. B1c.

– If tsim ≤ trun, a miss is counted. See Fig. B1d.

2. Qfor(trun,T ) < Qt∀(trun,T ) is as follows.

– If Qsim(t) < Qt∀t , a correct rejection is counted.
See Fig. B1e.

– If there exists t such that Qsim(t)≥Qt, the first
threshold exceedance occurring at tsim, a miss is
counted. See Fig. B1f.
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Figure B1. Six possible cases in the new methodology (inspired by Charpentier-Noyer et al., 2022): (a) forecasted threshold exceedance not
present in the simulated hydrograph (false alarm), (b) threshold exceedance correctly forecasted (hit), (c) threshold exceedance anticipated
but with anticipation largely exceeding the forecast lead time (false alarm), (d) threshold exceedance detected by one forecast but right
after the simulation (miss), (e) absence of threshold exceedance in the simulation and in the forecasts (correct rejection), and (f) threshold
exceedance undetected by all the forecasts (miss).

Appendix C: Rank diagrams

Rank diagrams, also called Talagrand diagrams (Candille and
Talagrand, 2005), are one of the most common tools for as-
sessing the reliability of meteorological ensemble forecasts.
The general idea of this tool is to count the number of times
the observation value is included in a given interval of the
ensemble forecast quantiles. As a consequence, if the obser-
vation value is often close to low quantiles, it means that the
forecast model has a tendency to overestimate. On the other
hand, if the observation is more often close to high quan-
tiles, then the model tends to underestimate. Logically, a per-
fect diagram would be perfectly flat, which would mean that
the observation is uniformly distributed among the ensemble
forecast quantiles. However this never happens in reality. The
rank diagram is useful to quickly detect biases in an ensemble

forecast. It can detect not only positive or negative biases
but also under- and overdispersion of the ensemble fore-
casts. Traditionally, the rank diagram is applied to rainfall
ensemble forecasts. However, in this study it was applied to
discharge ensemble forecasts, at each pixel of the SMASH
model computation grid. The rank diagrams presented here
combine all the forecasts issued during each event and are
computed for a fixed lead time (1 h).

In order to distinguish the roles of high and low discharges
in the rank diagram form, it was decided to build separate
rank diagrams for each category. However it is necessary to
take precautions concerning the criteria that distinguish those
categories. Indeed, Bellier et al. (2017) have shown that a
sample stratification based on the observations can introduce
bias. A sample stratification based on forecasts is recom-
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mended in most of the cases. Therefore, the following cat-
egories were chosen:

– Qmed ≤
1
2QT=2 years for low discharges,

– 1
2QT=2 years <Qmed ≤QT=2 years for medium dis-
charges,

– Qmed >QT=2 years for high discharges,

where Qmed is the median discharge of the hydrological
ensemble forecasts and QT=2 years is the 2-year return pe-
riod quantile, according to the historical run of the SMASH
model.

Note that, even if based on forecast discharges, this strat-
ification can still cause bias: when only the areas and time
steps with high forecast discharges are considered, the over-
all probability that the considered forecasts exceed the ob-
served discharges tends logically to be higher and vice versa.
However, this stratification effect does not affect the global
rank diagrams.
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Figure C1. Rank diagrams obtained for each event: 1 h lead time.
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Appendix D: Maps of contingency tables for each event

Figure D1. (a–d) Best deterministic forecast and (e–h) best PIAF-EPS percentile in terms of CSI, for the T = 10-year threshold for each
event.
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Data availability. All hydrological data are provided in an open-
access format on the French public data platform Data gouv
(https://doi.org/10.57745/IHKGRE, Godet, 2023): discharges ob-
tained from the SMASH model forced with PANTHERE QPE,
PIAF, PIAF-EPS, AROME-NWC, and constant future rain, for each
of the eight events. The discharge quantiles corresponding to the 2-,
5-, and 10-year return periods are also provided.
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M., Dekić, L., van Verseveld, W., Nuissier, O., Ducrocq, V.,
D’Agostino, D., Galizia, A., Danovaro, E., and Clematis, A.:
Hydrometeorological multi-model ensemble simulations of the
4 November 2011 flash flood event in Genoa, Italy, in the frame-
work of the DRIHM project, Nat. Hazards Earth Syst. Sci., 15,
537–555, https://doi.org/10.5194/nhess-15-537-2015, 2015.

Hapuarachchi, H. A. P., Wang, Q. J., and Pagano, T. C.: A review of
advances in flash flood forecasting, Hydrol. Process., 25, 2771–
2784, https://doi.org/10.1002/hyp.8040, 2011.

Imhoff, R. O., Brauer, C. C., van Heeringen, K. J., Uijlenhoet,
R., and Weerts, A. H.: Large-Sample Evaluation of Radar Rain-
fall Nowcasting for Flood Early Warning, Water Resour. Res.,
58, e2021WR031591, https://doi.org/10.1029/2021WR031591,
2022.

Javelle, P., Organde, D., Demargne, J., Saint-Martin, C., Saint-
Aubin, C. d., Garandeau, L., and Janet, B.: Setting up a
French national flash flood warning system for ungauged catch-
ments based on the AIGA method, E3S Web Conf., 7, 18010,
https://doi.org/10.1051/e3sconf/20160718010, 2016.

Jay-Allemand, M.: Estimation variationnelle des paramètres
d’un modèle hydrologique distribué, These de doctorat, Aix-
Marseille, https://www.theses.fr/2020AIXM0400 (last access:
30 October 2023), 2020.

Jay-Allemand, M., Javelle, P., Gejadze, I., Arnaud, P., Malaterre, P.-
O., Fine, J.-A., and Organde, D.: On the potential of variational
calibration for a fully distributed hydrological model: applica-
tion on a Mediterranean catchment, Hydrol. Earth Syst. Sci., 24,
5519–5538, https://doi.org/10.5194/hess-24-5519-2020, 2020.

Lagasio, M., Silvestro, F., Campo, L., and Parodi, A.: Predictive Ca-
pability of a High-Resolution Hydrometeorological Forecasting
Framework Coupling WRF Cycling 3DVAR and Continuum, J.
Hydrometeorol., 20, 1307–1337, https://doi.org/10.1175/JHM-
D-18-0219.1, 2019.

Lebouc, L. and Payrastre, O.: Reconstitution des débits de pointe
des crues des 23–24 novembre et 1er décembre 2019 dans
les départements du Var et les Alpes-Maritimes, Research Re-
port, IFSTTAR – Institut Français des Sciences et Technolo-
gies des Transports, de l’Aménagement et des Réseaux, https:
//hal.archives-ouvertes.fr/hal-02933695 (last access: 30 Octo-
ber 2023), 2020.

Lovat, A., Vincendon, B., and Ducrocq, V.: Hydrometeorological
evaluation of two nowcasting systems for Mediterranean heavy
precipitation events with operational considerations, Hydrol.
Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-
2697-2022, 2022.

Mandapaka, P. V., Germann, U., Panziera, L., and Hering, A.:
Can Lagrangian Extrapolation of Radar Fields Be Used for
Precipitation Nowcasting over Complex Alpine Orography?,
Weather Forecast., 27, 28–49, https://doi.org/10.1175/WAF-D-
11-00050.1, 2012.

Mason, I.: A Model for Assessment of Weather Forecasts, Aust.
Meteorol. Mag., 30, 291–303, 1982.

Moisselin, J.-M., Cau, P., Jauffret, C., Bouissières, I., and Tzanos,
R.: Seamless approach for precipitations within the 0–3 hours
forecast-interval, Agencia Estatal de Meteorología, http://hdl.

Nat. Hazards Earth Syst. Sci., 23, 3355–3377, 2023 https://doi.org/10.5194/nhess-23-3355-2023

https://doi.org/10.5194/nhess-23-2001-2023
https://doi.org/10.1002/met.1538
https://doi.org/10.1175/WAF-D-12-00124.1
https://doi.org/10.1002/qj.29
https://doi.org/10.1016/j.jhydrol.2019.03.026
https://doi.org/10.5194/hess-17-2107-2013
https://doi.org/10.1175/JHM-D-14-0094.1
https://doi.org/10.1175/JHM-D-14-0094.1
https://doi.org/10.1175/JHM-D-17-0073.1
https://doi.org/10.1002/qj.2469
https://doi.org/10.1007/s10994-012-5314-7
https://doi.org/10.1007/s10994-012-5314-7
https://doi.org/10.3390/w12061545
https://doi.org/10.1016/j.jhydrol.2008.12.028
https://doi.org/10.57745/IHKGRE
https://doi.org/10.1175/BAMS-D-15-00247.1
https://doi.org/10.5194/nhess-15-537-2015
https://doi.org/10.1002/hyp.8040
https://doi.org/10.1029/2021WR031591
https://doi.org/10.1051/e3sconf/20160718010
https://www.theses.fr/2020AIXM0400
https://doi.org/10.5194/hess-24-5519-2020
https://doi.org/10.1175/JHM-D-18-0219.1
https://doi.org/10.1175/JHM-D-18-0219.1
https://hal.archives-ouvertes.fr/hal-02933695
https://hal.archives-ouvertes.fr/hal-02933695
https://doi.org/10.5194/hess-26-2697-2022
https://doi.org/10.5194/hess-26-2697-2022
https://doi.org/10.1175/WAF-D-11-00050.1
https://doi.org/10.1175/WAF-D-11-00050.1
http://hdl.handle.net/20.500.11765/10588


J. Godet et al.: Assessing the ability of a new seamless short-range ensemble rainfall product 3377

handle.net/20.500.11765/10588 (last access: 30 October 2023),
2019.

Nuissier, O., Marsigli, C., Vincendon, B., Hally, A., Bouttier, F.,
Montani, A., and Paccagnella, T.: Evaluation of two convection-
permitting ensemble systems in the HyMeX Special Observation
Period (SOP1) framework, Q. J. Roy. Meteorol. Soc., 142, 404–
418, https://doi.org/10.1002/qj.2859, 2016.

Osinski, R. and Bouttier, F.: Short-range probabilistic forecast-
ing of convective risks for aviation based on a lagged-average-
forecast ensemble approach, Meteorol. Appl., 25, 105–118,
https://doi.org/10.1002/met.1674, 2018.

Payrastre, O., Nicolle, P., Bonnifait, L., Brigode, P., Astagneau, P.,
Baise, A., Belleville, A., Bouamara, N., Bourgin, F., Breil, P.,
Brunet, P., Cerbelaud, A., Courapied, F., Devreux, L., Dreyfus,
R., Gaume, E., Nomis, S., Poggio, J., Pons, F., Rabab, Y., and
Sevrez, D.: Tempête Alex du 2 octobre 2020 dans les Alpes-
Maritimes: une contribution de la communauté scientifique à
l’estimation des débits de pointe des crues, LHB Hydrosci. J.,
108, 2082891, https://doi.org/10.1080/27678490.2022.2082891,
2022.

Peredo, D., Ramos, M.-H., Marchal, H., and Bouttier, F.: Chal-
lenges of event-based evaluation of flash floods: example
of the October 2018 flood event in the Aude catchment in
France, https://events.ecmwf.int/event/222/contributions/2255/
attachments/1291/2358/Hydrological-WS-Peredo.pdf (last
access: 30 October 2023), 2021.

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsi-
monious model for streamflow simulation, J. Hydrol., 279, 275–
289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.

Piotte, O., Montmerle, T., Fouchier, C., Belleudy, A., Garandeau,
L., Janet, B., Jauffret, C., Demargne, J., and Organde, D.: Les
évolutions du service d’avertissement sur les pluies intenses et
les crues soudaines en France, La Houille Blanche, 6, 75–84,
https://doi.org/10.1051/lhb/2020055, 2020.

Poletti, M. L., Silvestro, F., Davolio, S., Pignone, F., and Reb-
ora, N.: Using nowcasting technique and data assimilation in
a meteorological model to improve very short range hydro-
logical forecasts, Hydrol. Earth Syst. Sci., 23, 3823–3841,
https://doi.org/10.5194/hess-23-3823-2019, 2019.

Raynaud, D., Thielen, J., Salamon, P., Burek, P., Anquetin, S.,
and Alfieri, L.: A dynamic runoff co-efficient to improve flash
flood early warning in Europe: evaluation on the 2013 central
European floods in Germany, Meteorol. Appl., 22, 410–418,
https://doi.org/10.1002/met.1469, 2015.

Ribes, A., Thao, S., Vautard, R., Dubuisson, B., Somot, S., Colin,
J., Planton, S., and Soubeyroux, J.-M.: Observed increase in
extreme daily rainfall in the French Mediterranean, Clim. Dy-
nam., 52, 1095–1114, https://doi.org/10.1007/s00382-018-4179-
2, 2019.

Roberts, N. M. and Lean, H. W.: Scale-Selective Verification
of Rainfall Accumulations from High-Resolution Forecasts
of Convective Events, Mon. Weather Review, 136, 78–97,
https://doi.org/10.1175/2007MWR2123.1, 2008.

Sayama, T., Yamada, M., Sugawara, Y., and Yamazaki, D.: Ensem-
ble flash flood predictions using a high-resolution nationwide
distributed rainfall-runoff model: case study of the heavy rain
event of July 2018 and Typhoon Hagibis in 2019, Prog. Earth
Planet. Sci., 7, 75, https://doi.org/10.1186/s40645-020-00391-
7,2020.

Schaefer, J. T.: The Critical Success Index as
an Indicator of Warning Skill, Weather Fore-
cast., 5, 570–575, https://doi.org/10.1175/1520-
0434(1990)005<0570:TCSIAA>2.0.CO;2,1990.

Scheufele, K., Kober, K., Craig, G. C., and Keil, C.: Combining
probabilistic precipitation forecasts from a nowcasting technique
with a time-lagged ensemble, Meteorol. Appl., 21, 230–240,
https://doi.org/10.1002/met.1381, 2014.

Seed, A. W., Pierce, C. E., and Norman, K.: Formulation and
evaluation of a scale decomposition-based stochastic precipi-
tation nowcast scheme, Water Resour. Res., 49, 6624–6641,
https://doi.org/10.1002/wrcr.20536, 2013.

Silvestro, F. and Rebora, N.: Operational verification of a frame-
work for the probabilistic nowcasting of river discharge in small
and medium size basins, Nat. Hazards Earth Syst. Sci., 12, 763–
776, https://doi.org/10.5194/nhess-12-763-2012, 2012.

Silvestro, F., Rebora, N., and Ferraris, L.: Quantitative Flood Fore-
casting on Small- and Medium-Sized Basins: A Probabilistic Ap-
proach for Operational Purposes, J. Hydrometeorol., 12, 1432–
1446, https://doi.org/10.1175/JHM-D-10-05022.1, 2011.

Tabary, P., Augros, C., Champeaux, J.-L., Chèze, J.-L., Faure, D.,
Idziorek, D., Lorandel, R., Urban, B., and Vogt, V.: Le réseau et
les produits radars de Météo-France, La Météorologie, 8, 15–27,
https://doi.org/10.4267/2042/52050, 2013.

Tramblay, Y., Mimeau, L., Neppel, L., Vinet, F., and Sauquet,
E.: Detection and attribution of flood trends in Mediter-
ranean basins, Hydrol. Earth Syst. Sci., 23, 4419–4431,
https://doi.org/10.5194/hess-23-4419-2019, 2019.

Vié, B., Molinié, G., Nuissier, O., Vincendon, B., Ducrocq, V.,
Bouttier, F., and Richard, E.: Hydro-meteorological evalua-
tion of a convection-permitting ensemble prediction system
for Mediterranean heavy precipitating events, Nat. Hazards
Earth Syst. Sci., 12, 2631–2645, https://doi.org/10.5194/nhess-
12-2631-2012, 2012.

Vincendon, B., Ducrocq, V., Nuissier, O., and Vié, B.: Perturbation
of convection-permitting NWP forecasts for flash-flood ensem-
ble forecasting, Nat. Hazards Earth Syst. Sci., 11, 1529–1544,
https://doi.org/10.5194/nhess-11-1529-2011, 2011.

Wang, D., Stapor, P., and Hasenauer, J.: Dirac mix-
ture distributions for the approximation of mixed
effects models, IFAC-PapersOnLine, 52, 200–206,
https://doi.org/10.1016/j.ifacol.2019.12.258, 2019.

WMO: Guidelines on Ensemble Prediction Systems and Fore-
casting, WMO, Geneva, https://library.wmo.int/index.php?lvl=
notice_display&id=21911#.YPEgbegzZPZ (last access: 30 Oc-
tober 2023), 2012.

WMO: Climate and water (2020) – Floods, https:
//public.wmo.int/en/resources/world-meteorological-day/
previous-world-meteorological-days/climate-and-water/floods
(last access: 30 October 2023), 2020.

Zanchetta, A. D. L. and Coulibaly, P.: Recent Advances in
Real-Time Pluvial Flash Flood Forecasting, Water, 12, 570,
https://doi.org/10.3390/w12020570, 2020.

https://doi.org/10.5194/nhess-23-3355-2023 Nat. Hazards Earth Syst. Sci., 23, 3355–3377, 2023

http://hdl.handle.net/20.500.11765/10588
https://doi.org/10.1002/qj.2859
https://doi.org/10.1002/met.1674
https://doi.org/10.1080/27678490.2022.2082891
https://events.ecmwf.int/event/222/contributions/2255/attachments/1291/2358/Hydrological-WS-Peredo.pdf
https://events.ecmwf.int/event/222/contributions/2255/attachments/1291/2358/Hydrological-WS-Peredo.pdf
https://doi.org/10.1016/S0022-1694(03)00225-7
https://doi.org/10.1051/lhb/2020055
https://doi.org/10.5194/hess-23-3823-2019
https://doi.org/10.1002/met.1469
https://doi.org/10.1007/s00382-018-4179-2
https://doi.org/10.1007/s00382-018-4179-2
https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1186/s40645-020-00391-7
https://doi.org/10.1186/s40645-020-00391-7
https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
https://doi.org/10.1002/met.1381
https://doi.org/10.1002/wrcr.20536
https://doi.org/10.5194/nhess-12-763-2012
https://doi.org/10.1175/JHM-D-10-05022.1
https://doi.org/10.4267/2042/52050
https://doi.org/10.5194/hess-23-4419-2019
https://doi.org/10.5194/nhess-12-2631-2012
https://doi.org/10.5194/nhess-12-2631-2012
https://doi.org/10.5194/nhess-11-1529-2011
https://doi.org/10.1016/j.ifacol.2019.12.258
https://library.wmo.int/index.php?lvl=notice_display&id=21911#.YPEgbegzZPZ
https://library.wmo.int/index.php?lvl=notice_display&id=21911#.YPEgbegzZPZ
https://public.wmo.int/en/resources/world-meteorological-day/previous-world-meteorological-days/climate-and-water/floods
https://public.wmo.int/en/resources/world-meteorological-day/previous-world-meteorological-days/climate-and-water/floods
https://public.wmo.int/en/resources/world-meteorological-day/previous-world-meteorological-days/climate-and-water/floods
https://doi.org/10.3390/w12020570

	Abstract
	Introduction
	The short-range hydrometeorological forecasting chains
	General structure of the chains
	The three deterministic QPFs: AROME-NWC, deterministic PIAF, and naive constant-rain scenario
	The new PIAF-EPS ensemble QPF product
	The SMASH hydrological model and the Vigicrues Flash method

	Case studies and verification method
	Study area and selected events
	Verification method

	Results and discussion
	Maps of contingency tables: presentation of a result sample
	Analysis of CSI scores at the event scale
	Averaged CSI scores
	Anticipation lead times

	Conclusions
	Appendix A: Hydrological presentation of the studied events
	Appendix B: Methodology for filling the contingency tables
	Appendix B1: Detailed method of Charpentier-Noyer et al. (2023): observation-based stratification
	Appendix B2: Adapted method: forecast-based stratification

	Appendix C: Rank diagrams
	Appendix D: Maps of contingency tables for each event
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

