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Orthotropic viscoelastic characterization of thin woven composites by a combination of
experimental and numerical methods

Gautier Girard∗, Marion Martiny, Sébastien Mercier

Université de Lorraine - CNRS - Arts et Métiers ParisTech, Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux, 7 rue Félix Savart 57070
Metz, France

Abstract

Electric mobility is the driving force for the development of power electronic devices embedded in printed circuit boards (PCBs).
Fast charge of batteries generates large increase of temperature in PCBs. Therefore, the characterization of the thermo-viscoelastic
behavior of laminates is a necessity. Tests have been conducted at elevated temperature, with a specific attention to minimize the
oxidation of the material. To model precisely the viscoelastic response of the laminate, since pure resin samples are usually not
available, an inverse method based on the comparison of experimental results and finite elements simulations is proposed. Periodic
boundary conditions allowing to apply uniaxial tension with an arbitrary orientation are developed. In order to validate this method,
resin samples are extracted from pre-impregnated material and tested under the same temperature conditions. In a last step, the
cyclic response of a buried hole in a PCB is simulated by finite element calculations, using the identified material data. For large
maximum temperature, substantial differences are highlighted between thermo-elastic and thermo-viscoelastic approaches in terms
of accumulated plastic strain in the copper barrel. The present work opens new possibilities to model the lifetime of electronic
devices facing temperature excursions ranging over the glass transition temperature.

Keywords: woven composite, viscoelasticity, orthotropic behavior, numerical homogenization, thermal cycles, printed circuit
boards

1. Introduction

As part of the energy transition, electronic devices play a
central role. Therefore, Printed Circuit Boards (PCBs), which
are the main carrier of electronic components, are at the heart
of many studies and new developments. In the fields of electric
mobility or aerospace, PCBs are subjected to significant ther-
mal loads and a precise characterization of the thermo-mechanical
behavior of the materials that constitute them is pivotal in order
to predict their lifetime. Most of the insulating materials used
in PCBs are composites made of glass fibers and a thermoset-
ting polymer matrix, whose mechanical behavior is highly de-
pendent of temperature and time. Consequently, the mechan-
ical behavior of the composite is itself time- and temperature-
dependent. The assessment of the mechanical response of the
composite is of interest for the simulation of PCB assemblies,
especially for plated through hole [1, 2] or embedded compo-
nents reliability [3].

These thin materials show an orthotropic mechanical re-
sponse due to their glass fiber reinforcement. Mechanical mea-
surements are only easily achievable in the plane of the weaving
pattern. Thus, an homogenization procedure is often adopted to
evaluate the orthotropic behavior of woven composite materi-
als, knowing the matrix and glass fiber behaviors and the inter-
nal microstructure of the composite. For linear elasticity, many
authors proposed a homogenization method (Barbero et al. [4],
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Green et al. [5], Chen et al. [6], Girard et al. [7]) in which the
behaviors of the yarns are obtained by a first homogenization
and used later for the homogenization at the woven composite
level.

The same method of two-scale homogenization is usually
applied to obtain the viscoelastic behavior at the woven com-
posite level. Zhu et al. [8] carried out the viscoelastic ho-
mogenization of a woven composite substrate for printed cir-
cuit boards. The viscoelastic behavior of the epoxy matrix was
taken from the literature and was modeled with a Prony series.
At the yarn level, micro-mechanical relations based on the self-
consistent scheme have been used to obtain the viscoelastic re-
sponse. At the woven composite level, a finite element model
was used. Kwok and Pellegrino [9] have identified the vis-
coelastic behavior of the epoxy matrix and then applied finite
element method (FE) at both homogenization stages in order
to find the macroscopic viscoelastic behavior of the composite.
Xu et al. [10] used a similar approach to predict the homog-
enized behavior of a woven composite for different fiber con-
tents. Courtois et al. [11] characterized an epoxy resin at vari-
ous temperatures and degrees of cure. Based on experiments, a
degree of cure- and temperature-dependent mechanical model
was proposed for the resin. The model was further adopted in
[12], where the 3D homogenization of the viscoelastic behav-
ior of a woven composite was presented. The same model was
used by Benavente et al. [13] to predict the geometrical de-
formation of a L-shaped composite part during its manufactur-
ing. By applying the Laplace-Carson (LC) transform to the vis-
coelastic material, a linear relation between strains and stresses
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in Laplace space was found. An elastic homogenization was
performed in the Laplace space and an inverse LC transform
led to the homogenized viscoelastic behavior in the time space.
The Laplace Carson transform is adopted to determine the vis-
coelastic response of composite materials since decades. One
can mention the pioneering work of Hashin [14] who proposed
the solution of the Eshelby problem (an inclusion embedded
into an infinite matrix) for incompressible linear viscoelastic
phases. When the relaxation stiffness is described by a Prony
series with N constituents, Hirsekorn et al. [15] finally needed
N + 3 elastic homogenizations to obtain the homogenized vis-
coelastic behavior. These three additional steps were necessary
to ensure a good conditioning of the inverse LC transform. Re-
cently, Hirsekorn et al. [16] extended their numerical model to
determine the effective time-dependent thermal expansion co-
efficients of the unit cell as the result of the time and tempera-
ture dependency of a viscoelastic matrix. In their approach, the
expansion coefficients of the local phase (glass fiber and resin)
were assumed time independent.

The present paper focuses on the characterization of the
thermo-viscoelastic behavior of a woven composite used in PCBs.
Relaxation tests are performed in the plane of the material and
the out of plane properties (that cannot be measured by exper-
iments) are obtained by numerical homogenization. The iden-
tified behavior is later used in the simulation of a buried via to
observe the effect of the thermal loading on the lifetime of the
PCB. The experimental measurements made on the composite
material are presented in section 2. Master curves are deduced
from these measurements and the corresponding shift functions
are determined. Section 3 recalls the viscoelastic constitutive
model, based on Prony series. Following the idea of Courtois
et al. [11], an original spectrum equation describing the relax-
ation moduli is proposed. The numerical model is presented in
section 4 with a precise geometrical characterization of the RVE
proposed through scanning electron microscope (SEM) images.
To model the viscoelastic behavior of a thin woven composite,
a two-scale homogenization method based on finite elements is
presented. While LC and inverse LC were needed in Hirsekorn
et al. [15], here the two-stage homogenization is performed di-
rectly in the time domain. In the present work, the behavior of
the resin is not known a priori, so an inverse method is needed.
As the main outcome of our work, the homogenized response
of the woven composite is obtained together with the viscoelas-
tic response of the resin. Resin samples could be extracted from
pre-impregnated material, allowing for an experimental valida-
tion. The main advantage of the inverse method lies in the fact
that it can be applied even when resin samples cannot be man-
ufactured. In a last section, the obtained behaviors of the wo-
ven composite and resin are introduced in a FE simulation of
a buried via in a PCB subjected to thermal loads. Viscoelastic
effects on the lifetime prediction of the structure are analyzed
by comparing the results to the elastic case.

2. Relaxation tests

The considered material is a laminate used in the PCB in-
dustry, made of a thermoset epoxy type resin with 180 ◦C Tg ,

reinforced by a 2116 plain weave glass fabric. In this section,
the experimental procedure is detailed. Relaxation tests are per-
formed with a specific attention paid to prevent oxidation of the
samples at elevated temperature.

2.1. Experimental procedure

Dogbone specimens of total length 84mm (gauge length
of 50mm) and width 15mm have been cut in the considered
laminate by contour milling performed by the PCB manufac-
turer CIMULEC, following the standards of PCB manufactur-
ing. Copper layers are present on both ends of the sample to
prevent it from slipping off the grips during the test, see the ge-
ometry presented on the left part of Figure 1. The thickness of
specimens has been measured precisely on SEM images, lead-
ing to a mean value of 99.5 µm with a standard deviation of
1.4 µm. A speckle pattern of paint is sprayed on the samples
and strain measurements are carried out by digital image cor-
relation (DIC). 3 megapixel images of the central area of the
sample are taken all along the test. They are divided in sub-
sets of size 51 pixels, with a step size of 17 pixels. The com-
puted strains are observed to be homogeneous and the overall
strain is computed by averaging over the whole central area of
the sample. The tensile machine Instron E3000 available at the
LEM3 platform is used, equipped with a thermal chamber (In-
stron 3119-605 Temperature controlled chamber) and a ±250N
load cell (Instron Dynacell 2527-131).

Figure 1: Sample used for relaxation tests: front view, side view and zoom on
the side view. Oil and glass slides avoid the occurrence of oxidation.

First, a preconditioning of the material is adopted with a
temperature excursion at 190 ◦C for 2 h. This stage has a three-
fold goal: ensuring that the cure of the resin is complete, drying
the sample and removing any internal stresses. The heating of
the chamber is then switched off for more than 3 h so that the
device and sample are steady at room temperature. The speci-
men is then subjected to a series of relaxation tests at different
temperatures; a constant strain is applied while the load evolu-
tion is recorded. The first temperature plateau is set to 40 ◦C.
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Figure 2: (a) Axial stress measured during a series of relaxation tests on one sample. (b) Relaxation modulus E(t) measured for each temperature plateau and
master curve obtained by shifting the original responses along the time axis.

A time period of 75min is dedicated to the temperature stabi-
lization of the whole system. Next, a displacement of 0.12mm
is applied to the specimen and held for 2 h, to measure the re-
laxation behavior. Afterwards, the load is released to 1N and
the temperature is raised to the new level. The procedure is re-
peated on each specimen for the nine selected temperatures :
40, 80, 100, 120, 140, 160, 170, 180 and 190 ◦C.

It has been observed that the mechanical response changes
when the complete relaxation tests is repeated several times on
the same sample without any protective layers. The sample
changes color: from originally yellow, it darkens with each test.
This change in color is therefore associated to a modification of
the physical state of the material due to oxidation.

In the PCB industry, all operations at large temperature are
made in an environment with a lack of oxygen. For instance,
during hot pressing, the laminates are pressed under low vac-
uum. In addition, when exposed to large temperature during
their lifetime, PCBs are protected from oxygen by a varnish.
In contrast, here the tests were executed in presence of air and
are not relevant from realistic situations. The oxidation of these
composite materials is well documented in the literature. Polan-
sky et al. [17, 18] and Lé-Magda et al. [19] worked on the
evolution of the glass transition temperature with oxidation and
material aging on FR4 materials. Gigliotti et al. [20] devel-
oped a material constitutive behavior integrating the thermo-
oxidation effect for this type of material. However, the aim is
here to eliminate this phenomenon since it is not observed dur-
ing the lifetime of PCBs that we are investigating. A simple ex-
perimental setup has therefore been developed, see Figure 1. A
thin film of sunflower oil is deposited on the sample surface to
protect it from any contact with oxygen. The sunflower oil has
been chosen because it has a smoke point above 200 ◦C. As the
sample is tested vertically, the oil would eventually flow out, so
two glass slides for use in microscopy are placed on both sides
of the sample. They stick by capillarity with the oil and are sup-
ported down by the shoulder made by the copper layers present
at the extremities of the sample (see Figure 1). The speckle

pattern is not affected by oil or heat and the transparency of
the oil and of the glass slides still enables the use of DIC for
strain measurements without any noticeable image distortion or
without affecting the speckle pattern. To ensure that the oil and
glass slides have no effect on the strain measurement, a tensile
test has been made with glass slides and oil only on some part
of the sample. The field of view was adjusted to observe the
sample with protection on half of the image and without pro-
tection on the other half. A displacement step was applied for a
duration of 75 s and 200 images were taken. The axial strain is
computed by DIC and the average value on the protected side
and on the bare side gave coincident strain measurements.

It has been checked that this setup prevents efficiently the
oxidation effects on the samples during relaxation tests up to
200 ◦C. Two consecutive tests on the same sample showed in-
deed repeatable results.

2.2. Experimental results

The strains in the plane are measured by DIC and confirm
the application of a constant longitudinal strain during each re-
laxation step. The strain step is applied in less than 10 s. The
amplitude of the strain applied is approximately 0.25%, the ex-
act value being measured continuously for each test. From the
load evolution, the stress is computed (Figure 2a) and the relax-
ation modulus is computed as E(t) = σ(t)/ε, where the longi-
tudinal strain ε represents the measured value over each loading
interval. The relaxation response is obtained for each tempera-
ture plateau, as seen on the right part of Figure 2b. These nine
curves (in the range [10; 7200]s) will be employed next to com-
pose the master curve.

Three samples have been tested for each of the three ori-
entations 0◦, 45◦ and 90◦, following the procedure presented
in section 2.1. The results obtained on one sample in the 45◦

direction are presented on Figure 2. Figure 2a shows that the
measured stress is reduced for higher temperature plateaus. The
relaxation modulus E(t) obtained for each temperature plateau
are shown in Figure 2b. The time-temperature superposition
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principle allows for obtaining a master curve by shifting the re-
laxation responses on the logarithmic time scale. The master
curve of the same experiment is shown on Figure 2b and cov-
ers a time range of more than 15 decades (between 10−10 s and
105 s). The glass transition temperature has been chosen as the
reference temperature here: Tref = Tg = 180 ◦C. The lin-
ear viscoelastic hypothesis was verified by testing 45◦ samples
under strain amplitudes of 0.125%, 0.25% and 0.5%, always
obtaining an identical response E(t).

Figure 3a presents all master curves for the nine tests. A
good repeatability of the experiments is depicted for the three
orientations. Indeed, for each direction, the three curves cor-
responding to three tests are almost superimposed. One can
notice a stiffer response in the 90◦ orientation as compared to
0◦, and a much softer response for 45◦.

The shift factors used to construct the 9 master curves of
Figure 3a are plotted on Figure 3b. Very close shift factors are
obtained for all samples for temperatures between 100 ◦C and
180 ◦C. Some discrepancy is observed below 100 ◦C and for
190 ◦C. It does not seem to be associated to the orientation, but
may rather be explained by experimental dispersion. The relax-
ation curve is rather flat at low temperatures and a small error on
the measured force or strain may lead to large variations on the
shift factor. At 190 ◦C, the relaxation curve also approaches
a plateau, moreover the oil is close to its smoke point and its
viscosity may start to change, thus affecting the results. Never-
theless, the consistency of the measurements for the nine tests
enforces the idea that the shift factor is not orientation depen-
dent.

3. Viscoelastic constitutive model

3.1. Model formulation

As observed in Figure 3a, the mechanical behavior of lami-
nates used in PCB is strongly dependent on time and tempera-
ture and is next modeled with the theory of linear viscoelastic-
ity. The Boltzmann superposition integral is adopted to model
the 3D viscoelastic response, as proposed elsewhere and re-
cently for laminates [9, 15]:

σ(t) =

∫ t

0

C(t− s) :
dε(s)

ds
ds (1)

with C(t) the time dependent relaxation stiffness tensor. Bold
notation indicates second order tensors, bold and underlined no-
tation, fourth order tensors. The double dot product denotes
contraction over two indices.

In this work, the viscoelastic model will be used to describe
the response of the resin (matrix assumed isotropic), the yarns
(assumed transversely isotropic) and the woven composite (as-
sumed orthotropic). In case of orthotropic behavior and using
Voigt notation, C(t) reads:

C(t) =


C11(t) C12(t) C13(t) 0 0 0
C12(t) C22(t) C23(t) 0 0 0
C13(t) C23(t) C33(t) 0 0 0

0 0 0 C44(t) 0 0
0 0 0 0 C55(t) 0
0 0 0 0 0 C66(t)


(2)

Nine independent components are necessary to describe C(t)
in the case of an orthotropic material. The number of inde-
pendent terms is reduced to five for materials with a transverse
isotropic behavior (e.g. the yarns of the studied composite), and
two in the isotropic case (e.g. the resin).

In the present work, C(t) is written in terms of a Prony
series :

C(t) = C∞ +

N∑
k=1

Cke
−t/τk (3)

Here, C∞ is the long-term relaxation stiffness tensor and Ck

are the Prony coefficients tensors associated to the relaxation
times τk. Note that the instantaneous stiffness tensor C0 is
given by :

C0 = C∞ +

N∑
k=1

Ck (4)

For an orthotropic behavior, there are 9(N+1) material param-
eters. The stress tensor can thus be written as:

σ(t) = C∞ : ε(t) +

N∑
k=1

Ck : qk(t) (5)

The tensorial internal variables qk(t) associated with each τk
called history variables [21], are written as :

qk(t) =

∫ t

0

e−(t−s)/τk
dε(s)

ds
ds (6)

3.2. Relaxation moduli distribution
The components of the relaxation stiffness tensor can be

expressed in a dimensionless form:

cij(t) =
Cij(t)

Cij
0

(7)

where Cij
0 are the components of the instantaneous stiffness

tensor. The Prony series expansion of the dimensionless relax-
ation stiffness tensor components writes:

cij(t) = 1−
N∑

k=1

cijk (1− e−t/τk) (8)

with cijk = Cij
k /Cij

0 the dimensionless Prony coefficients. Since
0 ≤ Cij

∞ ≤ Cij
0 , one can write:

0 ≤ Cij
∞

Cij
0

= 1−
N∑

k=1

cijk ≤ 1 (9)

4



G. Girard et al.

10 11 10 9 10 7 10 5 10 3 10 1 101 103 105

Reduced time t ′ [s]

0

5

10

15

20

Re
la

xa
tio

n 
m

od
ul

us
 E

 [G
Pa

]

0° s1
0° s2
0° s3

45° s1
45° s2
45° s3

90° s1
90° s2
90° s3

(a)

50 75 100 125 150 175
Temperature [°C]

10 1

101

103

105

107

109

1011

Sh
ift

 fa
ct

or
 a

T

0° s1
0° s2
0° s3
45° s1
45° s2
45° s3
90° s1
90° s2
90° s3

(b)

Figure 3: (a) Master curves obtained for each test on the studied composite at orientations 0◦, 45◦ and 90◦. Three tests have been performed for each orientation.
(b) Shift factors aT identified to obtain the master curve. The discontinuous black line represents the shift function (18) fitted to the data.

or equivalently,

0 ≤
N∑

k=1

cijk ≤ 1 (10)

It is often seen in the literature that one relaxation time per
decade is required to describe the relaxation functions correctly.
Over wide ranges of time and temperature, N can become large
and N + 1 Prony coefficients per components of C(t) have to
be identified. For that purpose, Courtois et al. [11] proposed a
continuous function, named spectrum equation, describing the
evolution of the Prony coefficients Cij

k with the relaxation times
τk. The continuous function they used consists of the sum of
a Gaussian and a sigmoid. However, depending on the func-
tion parameters, the inequality (10) may not always be satis-
fied. This can be problematic during the automatic optimization
stage, for certain sets of parameters.

In order to always satisfy the inequality (10), we propose to
define the dimensionless relaxation moduli cijk (indices ij will
be omitted in the following) from a probability density func-
tion H of log10(τk). Let us denote xk = log10(τk). As pre-
viously mentioned, all τk are evenly spaced with one value per
decade, so the distance between two relaxation times in loga-
rithmic scale is ∆ = xk+1 − xk = 1. Our goal is to evaluate
the ck coefficient from H as follows :

ck =

∫ xk+∆/2

xk−∆/2

H(x) dx (11)

To the authors’ point of view, this definition benefits from the
property of a pdf. The associated cumulative density over the
full range is one. To reproduce accurately the material response
over a large range of time period, the number of relaxation times
τk is large (N = 14 for Courtois et al. [11]). The number of re-
laxation times N has to be defined when identifying a material.
In our approach, we choose to consider N such that

∑
ck−1 is

vanishingly small. With this definition, the evolution of H(x)
is fully connected to the stiffness evolution. When N is large
enough, it is clear that

∑
ck becomes close to 1 (as H is a pdf).

Therefore, from equation (9), this leads to C∞
C0

= 0. In order
to keep a non vanishing value of C∞, we propose to replace H
by qH in equation (11), with q a scalar between 0 and 1. At
the limit (infinite number of τk), one gets a physical meaning
of this additional parameter: q = 1 − C∞

C0
. In our work, the

probability density function is built as the superposition of a
normal distribution (f(x), mean m, standard deviation s1) and
a skew normal distribution (ϕ(x), mean m, standard deviation
s2, shape parameter α), with w a parameter used to balance the
relative weight of both functions:

H(x) = q(wf(x) + (1− w)ϕ(x)), (12)

with

f(x,m, s1) =
1

s1
√
2π

e
− 1

2

(
x−m
s1

)2

, (13)

ϕ(x,m, s2, α) =
1

s2
√
2π

e
− 1

2

(
x−m
s2

)2
[
1 + erf

(
α
x−m

s2
√
2

)]
.

(14)
The expression of ck defined in equation (11) can be ex-

pressed in terms of cumulative density functions. Let
F (x,m, s1) be the cumulative distribution function of the nor-
mal distribution and Φ(x,m, s2, α) the cumulative distribution
function of the skew normal distribution. The dimensionless
relaxation moduli ck = c(τk) can thus be expressed as:

ck = q{w[F (xk +∆/2,m, s1)− F (xk −∆/2,m, s1)]

+ (1− w)[Φ(xk +∆/2,m, s2, α)

− Φ(xk −∆/2,m, s2, α)]}
(15)

with

F (x,m, s1) =
1

2

[
1 + erf

(
x−m

s1
√
2

)]
, (16)

Φ(x,m, s2, α) = F (x,m, s2)−
1

π

∫ α

0

e
− 1

2

(
x−m
s2

)2
(1+x2)

1 + x2
dx.

(17)
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Figure 4: (a) Schematic definition of the dimensionless relaxation moduli ck . The probability density function H (equation (12)) is plotted in solid line. The ck are
computed as the integral between xk − ∆/2 and xk + ∆/2 (equation (11)). They are plotted as a function of log10(τk) on the secondary axis of the graph. (b)
For illustration, the relaxation function corresponding to the ck is plotted as a function of time. The parameters used to describe the function are indicated on the
figure and have been selected only for illustration of the model.

The logarithmic relaxation time xk being fixed, only seven
parameters are necessary for the definition of the family
(ck)1≤k≤N . This strategy was already proposed by Courtois
et al. [11] with a different definition. The key ingredient of
our new proposition is the use of a pdf to determine ck. So by
construction, the condition (10) is always satisfied whatever the
values of the seven parameters or the number of Prony coeffi-
cients and without additional normalization step.

With the proposed method, the pdf is fully responsible for
the evolution of the relaxation function. In the present work, a
combination of a normal and a skew normal was found to well
describe the material behavior, but any pdf could be used to
describe other materials with a different relaxation function.

Figure 4a illustrates graphically the computation of the ck
coefficients. The dashed line curve represents the normal dis-
tribution, the dotted line the skew normal distribution and the
solid line the adopted probability density function H . For il-
lustrative purpose, the following material parameters have been
selected: C0 = 20GPa, m = 3, s1 = 1.5, s2 = 4, α = −8,
w = 0.7 and q = 0.8. We propose in this example to define the
material response on a time interval covering 17 decades. The
coefficients ck, evaluated based on equation (11), correspond to
the area below the solid line curve, with a width of ∆ = 1, see
Figure 4a. Figure 4b presents the evolution of one component
of C(t) defined by equation (3).

Note that a different relaxation function (and therefore a dif-
ferent spectrum equation) is necessary to describe each compo-
nent of C(t). In the case of an isotropic material with constant
Poisson’s ratio, only one relaxation function (and therefore one
spectrum) has to be defined. For orthotropic materials, nine
spectrum equations have to be determined.

3.3. Temperature effects

In Figure 3b, the shift factor aT = τ(T )
τ(Tref )

has been exper-
imentaly determined, assuming that the reference temperature

is Tref = Tg . The terms τ(T ) and τ(Tref ) are respectively the
relaxation times at temperatures T and Tref . In the literature,
the evolution of aT with temperature is described by various
functions. An inflection point is usually observed at the glass
transition temperature. Below the glass transition temperature
Tg , an Arrhenius relationship is often adopted [11]. Above Tg ,
the WLF equation usually shows accurate agreement with ex-
perimental data [22]. aT is sometimes described below Tg or
over the full temperature range by a linear relationship or by
an Arrhenius law with an activation energy varying with tem-
perature [23, 24]. There is no definitive answer in the literature
on a function that could suit all materials. Thorpe [25] stud-
ied the viscoelastic behavior of an epoxy resin on a tempera-
ture range including Tg . Three different functions were used to
describe the shift factor evolution over the whole temperature
range. Similar trends have been observed experimentally for
the shift factor of the studied material. Above the glass transi-
tion temperature Tg , few experiments have been conducted in
the present study, but an inflection point has been observed and
the WLF equation will be used. Below Tg , exponential func-
tions are adopted, such that the function is concave down, as
observed experimentally. Finally, we propose the following de-
scription:

log(aT ) =


Q1(1− eb1(T−Tref )) +Q2(1− eb2(T−Tref )),

if T < Tref

−D1(T − Tref )

D2 + T − Tref
, if Tref ≤ T .

(18)
Tref , Q1, b1, Q2, b2, D1, D2 are the parameters describing
the shift function. Tref is chosen here to be Tg . The function
(18) has been fitted to the experimental results and is plotted
on Figure 3b with a discontinuous black line. The identified
parameters are: Q1 = 10.49, b1 = 15.04 × 10−3 K−1, Q2 =
0.7236, b2 = 0.2250K−1, D1 = 9, D2 = 52K.

For time-dependent temperature loading, a reduced time t′
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Figure 5: Layout of the weaving pattern of the studied composite. Some of the
geometric parameters describing the weaving pattern are annotated.

is introduced to link time and temperature effects using aT :

t′ =

∫ t

0

ds

aT (T )
(19)

When temperature remains constant, the reduced time becomes
simply t′ = t/aT . The relaxation modulus at any time and
temperature E(t, T ) can therefore easily be computed from the
master curve E(t′, Tref ).

3.4. Numerical implementation

As described by Zobeiry et al. [26], Crochon et al. [27], or
Miana [28], two strategies have been adopted to implement vis-
coelastic models in finite element softwares. Recursive strate-
gies have been widely used [26, 29, 30] and solved numerically
the integral in equation (6). However, the convergence rate of
these strategies is only of first order. Poon and Ahmad [31] have
proposed to differentiate equation (6) and solved it using finite
difference schemes. The advantage of such strategy is the exis-
tence in the literature of difference schemes with higher order
convergence rates. Crochon et al. [27] proposed for example a
fourth order Runge-Kutta scheme, applied to a Schapery-type
constitutive theory.

By applying the method of Poon and Ahmad [31], the dif-
ferentiated equation (6) becomes:

dqk
dt

=
dε

dt
− 1

τk
qk (20)

This differential equation is solved based on the implicit Runge-
Kutta Radau IIA scheme, with a stage value of s = 3 (fifth
order accuracy). Finally, the material model presented above
has been implemented in a user subroutine UMAT for use in
the FE commercial code Abaqus. The main steps are presented
in Appendix A.

4. Numerical model

The homogenization of the laminate is based on a two-scale
model for the yarn and the woven composite. The geometric
model and associated measurements are presented first. It re-
lies mostly on SEM observations. Secondly, an inverse method
based on FE calculations proposed by Girard et al. [7] is ex-
tended to capture the viscoelastic response of laminates.

4.1. Internal structure of the composite

In this section, the internal structure of the material is accu-
rately defined by a combination of micro-tomography and SEM
observations. The identified geometry is later represented in a
3D FE model to obtain the homogenized orthotropic behavior
of the composite in the viscoelastic regime.

4.1.1. Geometric model
The considered material is composed of a glass fiber fabric

and a thermoset resin. From micro-tomography and SEM ob-
servations, it is shown that the fabric is plain weave and only
one layer of fabric is found in the thickness of the laminate
of interest. While SEM images provide high magnification on
cross-sections, the use of micro-tomography is helpful to en-
sure that a representative volume element (RVE) exists. In this
work, x and y directions denote respectively the warp and fill
directions of the composite, while z direction is the out-of-plane
direction.

The present work extends the composite homogenization of
Girard et al. [7] by modifying the geometric model. With the
new proposition, a perfect fit between the crossing yarns along
the whole surface of contact is ensured. Indeed, the fit was
perfect only along the center line with the description provided
in [7]. The main steps for building the RVE in ABAQUS are
recalled next.

As proposed by Naik and Ganesh [32], the undulations of
the yarns are described with a sinusoidal curve. From the micro-
tomography scans, it has been checked that the crimp is identi-
cal in warp and fill directions on the studied composite, follow-
ing indeed a sinusoidal curve. Figure 5 shows a layout of the
considered composite, where an undulating warp yarn is rep-
resented along the x direction. The transverse (fill) yarns are
observed in cross-section and their boundary coincide with the
crossing warp yarn boundary. The fill yarns are separated by a
distance gf (respectively gw for warp yarns). hw and hf are the
thicknesses of the warp and fill yarns at their center. bw and bf
describe respectively half an undulation period along the warp
and fill directions.

Since the boundaries of crossing yarns coincide and the sec-
tion of the yarns remains unchanged along their length (both
assumptions were confirmed from SEM observations), a sur-
face can describe the envelope of both warp and fill yarns. The
surface undulates in the x direction with a period bw and an
amplitude hf/2, and in the y direction with a period bf and
an amplitude hw/2. Thus, the mathematical definition of the
surface is:

z =
hw

2
sin

(
π
y

bf

)
+

hf

2
sin

(
π
x

bw

)
(21)

This surface (plotted on Figure 6a) describes the bottom sur-
face of one yarn as well as the top surface of one crossing yarn.
By shifting this surface of half a period along x and/or y (i.e.
by replacing x by x + bw and/or y by y + bf ), it is possible
to describe all four needed surfaces to represent the top and
bottom envelopes of all yarns. Figure 6b represents these four
surfaces, and by drawing them only where necessary, one can
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(a) (b)

Figure 6: (a) Surface described by equation (21). Particular contours are colored on the surface and projected on the walls of the graph (x =
{−bw,−bw/2, 0, bw/2, bw} and y = {−bf ,−bf/2, 0, bf/2, bf}). Note that the projections of x = {−bw, 0, bw} are coincident. A similar remark is ob-
served on y projections. (b) Yarns described by the four necessary surfaces. The surface described by equation (21) is drawn in black. The surface shifted on x by
an amount bw is in red. The surface shifted on y by an amount bf is in blue. The surface shifted on x by an amount bw and on y by an amount bf is in green. With
further boolean operations, the plain weave pattern of the RVE is obtained.

Figure 7: Scanning Electron Microscope (SEM) image of a warp yarn of the
studied composite.

describe the four yarns composing a unit cell of the weaving
pattern. With boolean operations in the FE software Abaqus, it
is possible to represent the geometry of the complete composite
with a perfect fit between crossing yarns and thus avoid small
or distorted elements at crossing regions.

4.1.2. Measurements of the geometric properties
The shape of the RVE (depicted in Figure 5) is determined

from micro-tomography. The average values of the geometri-
cal dimensions, bw and bf are obtained by observing the cross-
section of the composite under an optical microscope by con-
sidering ten consecutive unit cells. The values for hw, hf ,
gw and gf are obtained from SEM observations, following the
method described in Girard et al. [7]. One image of a warp
yarn is presented on Figure 7. One can notice that the inter
yarns resin contains a small volume fraction of reinforcement
(in comparison with Girard et al. [7]). Given the sparse distri-
bution of fillers, we consider here that a single resin is present
in the composite. More than 50 images have been taken in both
warp and fill directions.

The average shapes of warp and fill yarns (black line on
Figure 8) are determined by superimposition of all SEM obser-

Figure 8: Superposition of all fibers detected on SEM observations for warp
and fill yarns. 50 images are used for each direction. In total, more than 10 000
fibers are used to define the geometry of both yarns.

h hf bf gf hw bw gw
100.0 48.5 438.6 48.2 47.6 423.7 62.0

Table 1: Geometric dimensions describing the internal structure of the studied
laminate (in µm). One may refer to Figure 5 for illustration.

vations. The geometric quantities characterizing the unit cell
of the composite are summarized in Table 1. In addition, SEM
observations on yarns provide the positions and diameters of
all fibers for each yarn. The distribution of fiber diameters in
the warp and fill directions is displayed in Figure 9a. From this
information, the average volume fraction of fibers in each yarn
are: 67.49% and 67.79% respectively (see Figure 9b).

From the shape of the yarns (Figure 8), the volume frac-
tions of fibers (Figure 9b) and the overall geometric dimensions
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Figure 9: (a) Distribution of the measured fiber diameters in warp and fill directions. The mean is very close, but the distribution is noticeably different for both
directions. (b) Volume fraction of fibers in the yarns. For both plots, the vertical lines represent the mean in each direction.

(Table 1), it appears that the considered laminate is balanced.
Microtomography results also showed that the crimp is simi-
lar in both directions. However, relaxation tests in 0◦ and 90◦

directions showed a substantial difference in the mechanical re-
sponse. On Figure 9a, one can notice that the diameters of the
fibers in the fill direction follow a unimodal distribution with a
mean of 7.45 µm and a standard deviation of 0.78 µm. Along
the warp direction, the diameters of the fibers have a mean of
7.49 µm and a standard deviation of 0.61 µm. Though the fibers
along the warp or the fill directions have very similar means,
diameters follow clearly a different distribution. It has been
checked that the distribution does not vary from yarn to yarn,
showing that the observed bimodal distribution in the warp di-
rection is not the result of different unimodal distributions in
separate yarns. The diameters of around 10 000 fibers compose
each distribution. From the authors point of view, the differ-
ence in distribution may highlight the presence of two different
kinds of glass fibers in the warp and the fill directions, explain-
ing the different mechanical responses in both directions. In
the following, D-glass and E-glass will be considered to com-
pose respectively warp and fill yarns. This assumption will be
qualitatively validated based on nanoindentation tests, later in
Section 4.2.5.

4.2. Two-scale homogenization method

The visco-elastic orthotropic behavior of the woven com-
posite is captured in two steps: (i) aligned glass fibers embed-
ded into a resin are homogenized to get the behaviors of both
yarns (ii) the RVE of the woven composite, containing yarns
and resin is homogenized. The viscoelastic response obtained
at the yarn scale feeds therefore the numerical model at the scale
of the woven composite. In contrast to other works of the liter-
ature, [15] or [11], the resin response is initially unknown. An
inverse method is thus proposed for identification of the vis-
coelastic response of the resin, which is assumed to be identical
inside and around the yarns (see Figure 7). In Girard et al. [7],
dedicated to hyperfrequency applications, the volume fraction

of ceramic inclusions was large in the inter-yarn resin and two
different materials had to be considered to model the inter- and
the intra-yarn resins.

As in the works of Hirsekorn et al. [15], Courtois et al.
[11] and Martynenko and Lvov [33], one relaxation time per
decade will be adopted to describe the viscoelastic behaviors of
the resin, of the yarns and of the woven composite. The temper-
ature in simulations is considered uniform, constant in time, and
corresponds to the reference temperature Tref = Tg , adopted
to construct the master curve. The simulations at the level of
yarns or of the woven unit cell are run over the time range of
the measurements for this reference temperature. Hirsekorn et
al. [15] and Martynenko and Lvov [33] showed that the same
shift function can be used for the resin and for the composite,
so the shift function identified in Section 2.2 will be used to
describe the time-temperature equivalence for the behaviors of
the resin, the homogeneous yarns and the woven composite.

4.2.1. Yarn homogenization
Most studies consider a regular arrangement of the fibers in

the yarn microstructure, see for instance Atintoh et al. [34]. As
demonstrated in a previous work [7], this can lead to significant
errors on estimated transverse moduli, especially for high vol-
ume fraction of fibers. In Girard et al. [7], for a volume fraction
of 67%, the differences between a regular disposition of fibers
and a random 3D RVE were as large as 10% on ET , 48% on
νT and 18% on GT .

Here, as in [7], random RVEs are considered. 100 random
unit cells containing 10 fibers are generated (the radii of the
fibers follow the experimental distribution presented in Figure
9a) and the elastic behavior of all cells is homogenized. Then
the configuration which is the closest to the mean response of
all unit cells is selected to model the viscoelastic yarn. Dif-
ferent RVEs are generated to model warp and fill yarns so as
to account for the differences in volume fraction of fibers and
radii distribution. Since we were not able to develop analytical
models which could be as precise as FE simulations, we have
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Figure 10: Numerical RVE of the studied woven composite. A quarter of the
resin is hidden to present the fabric.

decided to keep this numerical step despite the higher numeri-
cal cost. More information about the duration of the simulation
will be provided in the next section. No delamination effects
between fibers are taken into account but the model could be
adapted if necessary.

In the present work, 3D unit cells with one element in the
fiber direction are tested. Periodic Boundary Conditions (PBCs)
are applied so this configuration is representative of infinitely
long fibers. More information on PBCs used in the finite ele-
ment simulations can be found elsewhere, see for instance Ap-
pendix B of Girard et al. [7].

Six computations (1D strain loading case) are performed in
order to obtain the mechanical behavior of the yarn. For each
loading case, a constant strain tensor containing only one non-
zero component is imposed to the yarn unit cell. In Voigt nota-
tion, with i, j ∈ {1, . . . , 6}, each loading case i (representative
of unidirectional strain loading) is defined as: εi = 0.005 and
εj(t) = 0 for all j ̸= i. The volume average of the stress is
computed in the whole model for each time step, allowing the
computation of the components of C(t): Cij(t) = σj(t)/εi.

For all calculations performed at the level of the yarns, it
has been checked that the relaxation tensor is representative of
a transversely isotropic material (equation (2)), i.e. C11 = C22,
C13 = C23, C55 = C66 and (C11 − C12)/2 = C66. Note that
fibers are aligned along direction 3.

The numerical implementation of the viscoelastic constitu-
tive law presented in section 3 requires a Prony series descrip-
tion of the relaxation tensor C(t) (equation (3)). In our ap-
proach, the relaxation times are fixed to one per decade and
therefore, the values for C∞ and Ck have to be determined. A
least squares regression is used to fit the spectra for each inde-
pendent component Cij(t) describing the yarns behaviors. The
homogenized behaviors of the yarns are later used for the ho-
mogenization at the level of the woven composite.

4.2.2. Woven composite homogenization
Similarly to the previous section on yarn homogenization,

PBCs are also applied to the unit cell of the woven composite.
The same procedure as for the yarns can be applied to assess

the relaxation tensor C(t) by applying six elementary 1D strain
loadings. It has been checked that the material exhibits an or-
thotropic behavior: the relaxation tensor is symmetric and has
the shape presented in equation (2).

The geometry of the woven composite is shown on Figure
10. A mesh convergence study has been run by homogenizing
the elastic behavior of the composite. The homogeneous prop-
erties are little sensitive to the mesh: a difference smaller than
0.2% on the estimated elastic moduli between models contain-
ing 4000 and 100 000 nodes was observed. The mesh with 4000
nodes presented in Figure 10 is therefore adopted for the fol-
lowing simulations, allowing faster computation times, which
make it convenient for the inverse method.

Note that in this phase of modeling, the yarns are considered
as homogeneous materials. This approximation is justified in
the present case, with 200 fibers composing each yarn and for
small strains, where localization effects are limited. However,
this assumption may not be so well suited for different glass
fabrics containing only tens of fibers or very spread yarns with
only one or two fibers in the thickness direction.

4.2.3. Inverse method for identifying the behavior of the resin
At this stage the response of the resin is still unknown, so

the viscoelastic behaviors of the yarns and of the composite
can not be obtained. To identify the resin response, an inverse
method is proposed, based on the experimental viscoelastic re-
sponse of the composite captured in uniaxial tension for the
three orientations tested (0◦, 45◦ and 90◦). In this case, only
one component of the strain tensor has to be imposed in the
loading direction while the other components are adjusted by
the FE software so as to obtain overall free surfaces in the trans-
verse directions.

In the present study, the PBCs are managed using refer-
ence points accounting for displacements between two opposite
faces in the reference coordinate system. Applying a uniaxial
tension in one direction of this coordinate system is easily done,
as explained in Appendix B of [7]. On the contrary, applying a
uniaxial tension in an arbitrary direction is not straightforward.
This is however necessary to compare numerical results to ex-
periments carried out for the 45◦ direction. A new method to
achieve this goal is presented next. The idea is to apply the
PBCs in the original coordinate system using three reference
points. Three additional reference points are responsible for
the description of the loading in a transformed frame. A set
of equations links the displacements of the three first reference
points to the three others. This set of equations is responsible
for the change of frame. By using this method, a uniaxial load-
ing can be applied in the transformed coordinate system, for
any rotation with respect to the original frame (where the PBCs
are defined). More details are given in Appendix B.

The three orientations tested experimentally (0◦, 45◦ and
90◦) can therefore be modeled. Experimental and numerical
results can be compared. Note that our method is general and
can be adopted for any arbitrary angle.

As explained in section 4.1.2, from the balanced geometry
of the composite (similar crimp, shape of yarns, volume frac-
tion of fibers), the difference in measured Young’s moduli in
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Figure 11: Time evolution of the relaxation modulus. The experimental and nu-
merical responses of the composite under uniaxial tension in directions 0◦, 45◦

and 90◦ are compared. The response of the identified resin is also compared to
the experimental measurements. More details on the resin will be provided in
section 4.2.5.

the 0◦ and the 90◦ directions can only be explained by different
elastic properties for the glass fibers in both directions. From
this observation, it has been deduced that the glass fibers in both
directions must have different elastic properties. The different
distributions of fibers radii may support this assumption. In the
PCB industry, E-glass is the most commonly employed, and
its elastic behavior is usually described by Ef = 72.3GPa,
νf = 0.22 [6]. D-glass is also used for its superior dielectric
constant, and presents a smaller Young’s modulus of 51.7GPa,
as presented by Li and Watson [35]. We assume that this dif-
ference in glass Young’s moduli could explain the differences
observed experimentally. The behavior of the glass fibers is
thus supposed to be known, linear elastic, temperature- and
time-independent, with D-glass in the warp (0◦) direction and
E-glass in the fill (90◦) direction.

For the studied composite, the same resin is assumed to be
present inside and between yarns. The unknown behavior of
the resin is expected to be isotropic linear viscoelastic, with a
constant Poisson’s ratio, as it is often the case in the literature
[9, 10, 33, 36]. Assuming a constant Poisson’s ratio for the
resin will not lead to a constant Poisson’s ratio for the compos-
ite, see later in Figure 14b. Note that some authors make the
hypothesis of a constant bulk modulus [37]. Therefore, only
one time-dependent relaxation modulus has to be determined
for the resin. The optimization method described below is used
to identify the parameters of the continuous function (15) de-
scribing the relaxation moduli:

1. estimation of the parameters describing the resin viscoelas-
tic behavior

2. homogenization of the yarns (warp and fill)
3. numerical tensions at the woven level in 0◦, 45◦ and 90◦

orientations
4. comparison between experimental and numerical results

E0 [GPa] ν m s1 s2 α w q

3.740 0.466 −1.447× 10−4 2.141 5.152 −6.386 0.304 0.947

Table 2: Parameters describing the mechanical response of the resin, obtained
from the optimization procedure at the composite level. The characteristic times
are chosen as one per decade, ranging from 1× 10−16 s to 1× 106 s.

and new estimate for the resin parameters (back to step
1.)

The comparison between experimental and numerical re-
sults is done through an error function:

fcost =

〈(
Eexp

0◦ (t)− Esim
0◦ (t)

Eexp
0◦ (t = 0)

)2
〉

+

〈(
Eexp

45◦ (t)− Esim
45◦ (t)

Eexp
45◦ (t = 0)

)2
〉

+

〈(
Eexp

90◦ (t)− Esim
90◦ (t)

Eexp
90◦ (t = 0)

)2
〉

(22)

where the angle brackets indicate the arithmetic mean over the
time interval. The subscripts refer to the orientation of the test
and the superscripts to the experimental or simulated nature of
the relaxation modulus. The Nelder-Mead optimization algo-
rithm is used to minimize the error function by finding the opti-
mal set of parameters for the resin behavior. The function pre-
sented in section 3.2 to describe the relaxation moduli allows a
full definition of the viscoelastic behavior of the resin over more
than 13 decades of time assessed experimentally see Figure 3a
with only eight parameters: E0, ν, m, s1, s2, a, w, q. This
model formulation is thus well suited for such an optimization
problem. For the considered material, the number of terms in
the Prony series is chosen to be N = 23. It has been checked
that for larger values of N , E∞ is not affected, meaning that
additional relaxation time will be weighted by negligible di-
mensionless relaxation moduli ck ≈ 0.

4.2.4. Homogenization results
Initial values for E0 = 3.05GPa and ν = 0.33 are taken

from the work of Chen et al. [6]. The initial values for m, s1, s2,
a, w, q are chosen arbitrarily. One homogenization at the meso-
scale over the whole relaxation spectrum takes about 14min
on a 24 cores computer. Less than 200 iterations were neces-
sary to minimize the cost function and identify the resin, yarns
and woven viscoelastic behaviors on the whole range of time
and temperature. This corresponds to approximately 2 days of
computation. After the optimization procedure, the numerical
results best fitting the experimental measurements (Figure 11)
and the estimated viscoelastic parameters of the resin are ob-
tained (presented in Table 2). Note that the results are insensi-
tive to the initial set of parameters. A very good agreement is
observed between the experimental responses in the three con-
sidered orientations and the corresponding numerical estimates.
One can therefore be confident in the mechanical behavior iden-
tified for the resin. Such a good fit could not be obtained using
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Figure 12: Evolution with time of the non-zero components of the relaxation stiffness tensor obtained by homogenization for (a) warp and (b) fill yarns, at the
reference temperature Tg . The viscoelastic behavior of the resin is described by the parameters in Table 2.
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Figure 13: Evolution with time of the non-zero components of the relaxation
stiffness tensor obtained by the two-scale FE homogenization for the considered
composite, at the reference temperature Tg .

the same E-glass behavior for fibers in both directions. In that
case, the responses in 0◦ and 90◦ directions were almost identi-
cal (20.5MPa and 20.8MPa respectively for the instantaneous
modulus).

Once the viscoelastic parameters of the resin have been as-
sessed through the inverse method, based on the two-scale ho-
mogenization procedure, it is interesting to note that the homog-
enized behaviors of the yarns are a direct outcome (Figure 12,
spectra parameters in Tables 3 and 4). At the woven composite
level, the time evolution of the nine independent components
of the stiffness matrix Cij are plotted on Figure 13. The cor-
responding parameters for the spectra are determined to model
each Cij(t) describing the orthotropic viscoelastic behavior of
the material (see Table 5).

From the relaxation stiffness tensor components Cij , it is

C0
ij [GPa] m s1 s2 α w q

C11(t) 35.94 0.3371 1.985 4.952 -13.26 0.5381 0.8826
C33(t) 47.96 0.2815 2.003 5.004 -11.33 0.5011 0.2180
C12(t) 22.91 0.3356 1.964 4.890 -17.69 0.5647 0.8780
C13(t) 17.40 0.3217 1.979 4.937 -13.93 0.5391 0.8841
C44(t) 6.498 0.2272 2.004 5.000 -10.47 0.4778 0.9041

Table 3: Parameters describing the transversely isotropic viscoelastic response
of the warp yarn, obtained by homogenization with the behavior of the resin
described in Table 2. The characteristic times are chosen as one per decade,
ranging from 10−16 s to 106 s.

C0
ij [GPa] m s1 s2 α w q

C11(t) 43.01 0.3071 1.998 4.969 -11.91 0.5168 0.8888
C33(t) 62.29 0.2350 2.013 5.012 -10.44 0.4792 0.1924
C12(t) 26.21 0.2706 1.981 4.922 -13.46 0.5203 0.8922
C13(t) 20.27 0.2745 1.994 4.956 -11.98 0.5081 0.8938
C44(t) 7.393 0.2460 2.021 5.031 -10.01 0.4729 0.9028

Table 4: Parameters describing the transversely isotropic viscoelastic response
of the fill yarn, obtained by homogenization with the behavior of the resin de-
scribed in Table 2. The characteristic times are chosen as one per decade, rang-
ing from 10−16 s to 106 s.

possible to compute tensile and shear relaxation moduli (Fig-
ure 14a) as well as Poisson’s ratios at the level of the composite
(Figure 14b). Note that E1 and E2 moduli correspond to direc-
tions 0◦ and 90◦ and are already presented on Figure 11. One
can notice that though the Poisson’s ratios of the resin and of the
glass fibers are assumed constant, it is not the case at the com-
posite level. The two Poisson’s ratios ν13 and ν23 have very
similar values, as the shear moduli G13 and G23.

As detailed by Tschoegl et al. [38], it is necessary to mea-
sure the time-dependency of the Poisson’s ratio to perfectly
assess the viscoelastic behavior of an isotropic material, such
as the resin in the present study. However, its measurement
over a long period of time is very complicated and often in-
accurate. Due to the small strain amplitudes applied and the
contactless strain measurement method, the signal to noise ra-
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Figure 14: Time evolution of (a) relaxation moduli and (b) Poisson’s ratios obtained from the homogenization of the considered composite at the reference
temperature. E1 and E2 correspond to the relaxation moduli for directions 0◦ and 90◦, already displayed in Figure 11.

C0
ij [GPa] m s1 s2 α w q

C11(t) 34.16 0.2632 2.241 5.342 −8.183 0.4815 0.7117
C22(t) 36.70 0.3225 2.312 5.451 −7.943 0.5082 0.6700
C33(t) 28.93 0.07679 2.040 5.080 −8.456 0.4076 0.9266
C12(t) 18.52 −0.5351 1.492 4.751 −4.579 0.3800 0.7772
C13(t) 19.54 0.05970 2.034 5.066 −8.358 0.4010 0.9242
C23(t) 19.68 0.06966 2.041 5.069 −8.525 0.4052 0.9221
C44(t) 3.919 0.05433 2.029 5.111 −8.754 0.4104 0.9279
C55(t) 2.728 0.02361 2.086 5.163 −7.332 0.3626 0.9361
C66(t) 2.760 0.02124 2.084 5.159 −7.345 0.3619 0.9365

Table 5: Parameters describing the orthotropic viscoelastic response of the wo-
ven composite, obtained from the FE homogenization of the composite with the
resin and both fill and warp yarns (parameters of Tables 2, 3 and 4). The char-
acteristic times are chosen as one per decade, ranging from 10−16 s to 106 s.

tio on the transverse strain was too small to be properly ana-
lyzed. Neither the Poisson’s ratio of the resin, nor the one of
the woven composite could be obtained and compared to the
numerical predictions. The so-obtained constitutive behaviors
for the resin and the composite material can therefore be em-
ployed with confidence for structural applications. In Section
5, a classic example for PCB is depicted.

4.2.5. Validation of the inverse method
Pure resin samples could not be obtained from the manu-

facturer. Thus, the following strategy is adopted to get sam-
ples of pure resin from pre-impregnated materials. First, cav-
ities are cut in B-stage laminates, slightly larger than a ten-
sile test sample (length 90mm and width 20mm). The pre-
impregnated layers are later subjected to the lamination process
recommended by the manufacturer, using the LPKF MultiPress
S machine available at UFR MIM, Université de Lorraine. Dur-
ing this process, the resin contained in the B-stage laminates
flows and fills the cavity. The cavity has to be cut with care
to avoid any glass fibers to flow with the resin. At the end of
the lamination process, the resin is cured. A tensile test sam-
ple of same size as those presented on Figure 1 (length 84mm,
width 15mm, thickness 300 µm) is finally cut from the lami-

nate sheet. Relaxation tests are performed on these samples,
following the procedure defined in section 2. The master curve
identified from these tests is presented on Figure 11 in compar-
ison with the numerically identified resin response (outcome of
the inverse method). A close match is found between those
curves. From the experimental measurements on the resin, the
assumption of identical shift function between the resin and the
woven composite is validated.

In the homogenization procedure, it is assumed that D- and
E-glass fibers compose yarns in warp and fill directions. To
confirm the observation of Figure 9a showing different distri-
butions, which could be a signature of different kinds of fibers,
nanoindentation experiments have been performed in LEM3.
With a Berkovich tip nanoindentor (CSM NHT2) and using the
Oliver and Pharr [39] method with a Poisson’s ratio of 0.22,
Young’s modulus is measured on three fibers in each direction.
The results show a Young’s modulus of (66 ± 2)GPa in the
warp direction and (77± 2)GPa in the fill direction. Although
the values found in the literature for D-glass and E-glass could
not be retrieved, a significant difference has been identified for
fibers along the warp and fill directions. This additional ex-
periment justifies the choice for different glass types in each
direction.

These tests made on fibers and on pure resin validate the
method presented in this work. The pure resin is seldomly avail-
able for mechanical testing. Manufacturers do not provide pre-
cise information because of confidentiality. In most cases, it is
not possible to extract it from the laminate because it does not
flow like the present resin. For other laminates, the intra-yarn
resin is highly different from the inter-yarn resin (with a large
volume content of inclusions, see [7]). In that case it would not
be possible to extract both resins separately or even any resin at
all, since a large amount of filler can prevent the resin to flow
properly. The inverse method presented here is applicable in
any case and has been validated with the particular composite
studied. The method relies only on conventional tensile tests
at 0◦, 45◦ and 90◦ on the composite material and FE compari-
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Figure 15: Model of the buried hole and FE mesh. The axis of symmetry is on the left of the figure. The far right side of the model is not presented. The model has
a length of L = 2mm and a total thickness of 900 µm.

son on RVEs subjected to specific PBCs (proposed in Appendix
B). It allows at the same time the evaluation of the constitutive
behavior of the resin, the yarns and the woven composite.

5. Application: Role of viscoelasticity in lifetime prediction
of printed circuit board

As an application of the identified viscoelastic behaviors,
we considered a buried hole in a PCB subjected to different
thermal loads. The effects of the heating rate and of the tem-
perature range on the plasticity development in copper are ana-
lyzed using FE simulations.

5.1. FE model

A buried hole in a ten layer PCB is considered, where the
hole is filled by the resin of the pre-impregnated material. In the
industry, the copper layers are numbered from one side of the
PCB to the other. In the present study, the buried via connects
layer 3 to layer 8. The geometry of the FE model is presented
on Figure 15. The model is axisymmetric and represents a small
portion of a real ten layer PCB. The considered PCB has a sym-
metric stack-up so only half of the thickness is modeled.

The mechanical behaviors of insulating layers and resin have
been identified in previous sections. Copper parts are modeled
with an elastic-plastic constitutive law, with combined isotropic
and kinematic hardening, identified using the method presented
in [40]. The thickness of copper is 17.5 µm for the commercial
grade and 10 µm for the electrodeposited grade. The copper
behavior is considered here as independent of time and tem-
perature in order to focus on the sole effect of the viscoelastic
behavior of the laminate and the resin. For comparison pur-
pose, a similar analysis where the insulating laminate and the
resin have a thermo-elastic behavior will be carried out.

The coefficients of thermal expansion (CTE) of all materi-
als have been measured with the Netzsch TMA 402 Hyperion
F3 equipment available at LEM3. The materials were tested in
the range [−70 ◦C ; 200 ◦C] with three successive heat ramps

at 4Kmin−1. The CTE of copper was observed to be con-
stant over the temperature range of interest, with a value of
17.6 × 10−6 K−1. The CTE of the resin is consistent with the
behavior of an epoxy, with a value around 50 × 10−6 K−1 be-
low Tg and 120 × 10−6 K−1 over Tg . For the laminate, the
measured in-plane expansion was observed to be almost con-
stant with a value around 13.5× 10−6 K−1 in 0◦ direction and
12.5 × 10−6 K−1 in 90◦ direction. The out-of-plane expan-
sion was measured in the range 40 to 60× 10−6 K−1 below Tg

and 270× 10−6 K−1 over Tg . These values are consistent with
the datasheet of the supplier. The measured curves (CTEs as
a function of temperature) are used in the simulation for resin
and laminate.

The PCB is initially at room temperature (here 20 ◦C), as-
sumed stress-free. During heating in a climate chamber, het-
erogeneity of the temperature field may exist in the PCB. The
characteristic time for heat diffusion T is L2

c/D, with Lc the
characteristic length and D = λ/ρc the diffusivity. λ denotes
the thermal conductivity, ρ the density and c the specific heat
capacity. Considering that the PCB is mostly made of insulat-
ing laminates, a value of T = 1.3 s is obtained. One can thus
conclude that for thermal loads applied in more than a few sec-
onds, the uniformity of the temperature is verified. Therefore,
in the present analysis, it is assumed that the temperature re-
mains uniform during all cycles.

In the present work, the temperature amplitude [−50 ◦C ;
150 ◦C] is adopted as a reference. This test condition is often
required in automotive PCB standards. Note that thermal cy-
cles with an amplitude of 200 ◦C are also often encountered in
standards for space applications. Three different thermal cycles
have been simulated for comparison:

• 1Kmin−1 heating and cooling rates, with 400min hold
times, tcycle = 72 000 s,

• 20Kmin−1 heating and cooling rates, with 20min hold
times, tcycle = 3600 s,

• 400Kmin−1 heating and cooling rates, with 1min hold
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Figure 16: Evolution of stress components in the center of the copper via (at the plane of symmetry) over normalized time for ten thermal cycles [−50 ◦C ; 150 ◦C].
The stress component σ12 is not presented on the figure, its value being always negligible.

times, tcycle = 180 s.

Note that the hold times are identical for the low and high tem-
perature plateaus. All phases of the 3 cycles are proportional.
For comparison of results on the same graph, the normalized
time t∗ is introduced: t∗ = t/tcycle (see Figure 16).

Next, relaxation effects are also investigated by varying the
heating rate while keeping the cycle duration constant, resulting
in different hold times. The effect of the maximum temperature
in the cycle is also assessed by applying different conditions:
[−50 ◦C; 150 ◦C], [−30 ◦C; 170 ◦C] and [−10 ◦C; 190 ◦C],
always keeping the same temperature amplitude ∆T = Tmax−
Tmin = 200 ◦C. For comparison, simulations have also been
performed by modeling the insulating laminates and resin with
a thermo-elastic constitutive behavior. The thermo-elastic be-
haviors have been obtained from the viscoelastic one by fixing
a response time of 1 s.

5.2. Stress relaxation and plasticity development in a buried
via

The buried via is subjected to ten thermal cycles [−50 ◦C ;
150 ◦C]. The resulting stresses in the center of the copper via,
at the plane of symmetry, are presented on Figure 16, where
the structure is expected to fail due to low-cycle fatigue (as ob-
served in experiments on PCBs). On the figure and in the fol-
lowing, σ11 designates the radial stress, σ22 the hoop stress and
σ33 the axial stress. The evolution of stresses is described in the
following paragraph for each phase of the temperature cycle.

(i) In the first stage of the simulation, the temperature in-
creases from 20 ◦C to 150 ◦C and the value of σ33 rises be-
cause of the difference of the coefficients of thermal expansion
(CTE) between copper, resin and laminates. The induced strain
ε33 in the copper via, combined with plastic incompressibility,
lead to a significant rise of σ22, which could not be explained
by CTE mismatch alone. In the 1 (radial) direction, the CTE
of the resin filling the hole is larger than the one of the copper
via or of the surrounding composite laminates. Therefore when
the temperature rises, compressive σ11 stresses develop in the
resin and in the copper via, which is sealed between resin and

laminates. Stress values at the end of the heating phase are little
affected by the heating rate. (ii) During the second phase, the
temperature is held constant at Tmax for a different time dura-
tion depending on the load case. Stresses relax in the case of
viscoelastic materials, and this effect is more pronounced when
the hold time is larger. (iii) The cooling phase is very similar
for all presented cases. Stresses σ22 and σ33 decrease and reach
negative values. This is again explained by the mismatch in
CTE and plastic incompressibility. σ11 rises and reaches posi-
tive values, for the same reason as during the first ramp (larger
CTE of the resin). (iv) In the last phase of the cycle, the tem-
perature is held constant at Tmin. No noticeable relaxation is
observed in this phase, since materials are in the glassy state.
Accommodation is observed after a few cycles, mainly due to
the kinematic hardening of copper.

When the resin filling the via and the insulating laminates
are described by a thermo-elastic constitutive behavior, results
are independent of the heating and cooling rates or of the hold
times. This is expected since in this case, all employed constitu-
tive behaviors are independent of time. Note that the maximum
stress for all conditions reach almost the same value.

The accumulated plastic strain p along ten cycles is shown
on Figure 17 for the point located at the plane of symmetry.
It presents a regularly increasing curve. It is observed that the
higher the heating rate is, the closer the response is to the elastic
case. Nevertheless, the value of p after 10 cycles is relatively
close for all three heating rates, and is also very close to the
elastic case. This can be explained by results on Figure 16.
Since the maximum stresses are similar for all conditions, the
plastic strain develops the same way and is not affected by the
later occurring relaxation. The fatigue response of the consid-
ered copper grade has also been studied in Girard et al. [40].
The Coffin-Manson relation has been identified to relate the ac-
cumulated plastic strain increment ∆p to the number of cycles
to failure Nf . From the accumulated plastic strain increment
∆p computed for each configuration, a corresponding number
of cycles to failure could be estimated:

• Nf = 4948 cycles for the viscoelastic case with a
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Figure 17: Accumulated plastic strain over normalized time in the center of the
copper via for ten thermal cycles [−50 ◦C ; 150 ◦C] and different durations of
the temperature cycle.

1Kmin−1 heating rate,

• Nf = 4686 cycles for the viscoelastic case with a
20Kmin−1 heating rate,

• Nf = 4542 cycles for the viscoelastic case with a
400Kmin−1 heating rate,

• Nf = 4388 cycles for the elastic case.

Next, the effect of the maximum temperature is investi-
gated, keeping similar heating rate (1Kmin−1), hold time
(400min) and temperature amplitude (200 ◦C). Stress evolu-
tion in the center of the copper via are presented on Figure 18
for the tenth thermal cycle. It can be observed that a larger max-
imum temperature leads to higher σ33 stress (for both elastic or
viscoelastic cases, even for identical ∆T ). In the out-of-plane
direction (3), the CTEs of the resin and laminates are signifi-
cantly larger than the CTE of copper. In addition, the CTEs of
resin and laminate rise with temperature. Close to Tg , the in-
crease of CTE is accompanied with a reduction of the stiffness.
However, as seen on Figure 18, these two counteracting effects
do not compensate and σ33 always rises with temperature. For
temperature close to or above Tg , the stress difference between
the elastic and the viscoelastic predictions becomes important.
This difference does not only come from the relaxation during
the hold time at large temperature. Indeed, it already exists
during the heating phase. Therefore when a PCB encounters
temperature excursions close to or over Tg , adopting an elastic
description for the constituents is too conservative and is not
adequate for lifetime predictions. Large differences in the ac-
cumulated plastic strain are observed in Figure 19, especially
when Tmax = 190 ◦C. The estimated number of cycles to fail-
ure is presented in Table 6 for the six different cases. Note that
in our approach, the copper behavior is temperature and rate
independent. It is expected that the yield stress of copper will
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Figure 18: Evolution of stress components in the center of the copper via (at
the plane of symmetry) over time for the tenth thermal cycle. Three different
temperature ranges are considered with identical ∆T = 200 ◦C. The heating
and cooling rate is 1Kmin−1 and the hold time is 400min. The stress σ12 is
not presented on the figure, its value being always negligible.
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Figure 19: Accumulated plastic strain over normalized time in the center of
the copper via for ten thermal cycles and three temperature ranges. The cycle
duration and the temperature amplitude ∆T are the same for all cases.

decrease at larger temperature. So the difference in accumu-
lated plastic strain (and also lifetime) between scenarios could
be even larger.

6. Conclusion

A coupled experimental and numerical approach is presented
to analyze the viscoelastic behavior of a woven composite used
in Printed Circuit Boards. Experimental observations have been
made on the composite in order to precisely describe its mi-
crostructure needed for the numerical model. Experimental ten-
sile relaxation tests have been performed on the material at dif-
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constitutive behavior [−50 ◦C ; 150 ◦C] [−30 ◦C ; 170 ◦C] [−10 ◦C ; 190 ◦C]

elastic 4388 2433 1502
viscoelastic 4948 2954 2207

Table 6: Estimated number of cycles to failure for the buried via subjected to
different temperature ranges. The heating rate is set to 1Kmin−1. The hold
time is 400min and the temperature amplitude 200 ◦C. The predictions based
on elastic and viscoelastic constitutive behaviors are compared.

ferent temperatures to characterize its viscoelastic response. A
new experimental setup has been proposed to avoid oxidation
effects at high temperature, while still being able to perform
DIC strain measurements. Strain measurements in the plane of
the woven composite are captured during tensile tests at 0◦, 45◦

and 90◦. Based on experiments, relaxation master curves us-
ing the time-temperature superposition principle are obtained.
However, the noise in transverse strain measurements prevent
the assessment of the Poisson’s ratio. This point concerning
the difficulty to measure Poisson’s ratio with time has been no-
ticed by Tscheogl [38] and constitutes a prospect for the present
study.

The constitutive material model employed to describe the
behavior of the composite is the generalized Maxwell model.
The model has been implemented in Abaqus with a UMAT
subroutine. A Runge-Kutta integration scheme is exposed in
Appendix A. A new spectrum equation is proposed to limit
the number of coefficients describing the viscoelastic behavior
of the resin. This new spectrum equation ensures by construc-
tion that the sum of all dimensionless Prony coefficients ck is
smaller than one (equation (10)), making the new proposition
better suited to the inverse identification method.

In all the works cited in the literature, the viscoelastic be-
havior of the resin is readily accessible. In the present work,
an inverse method is presented to identify simultaneously the
viscoelastic behavior of the resin, of the yarns and of the woven
composite from only in-plane measurements on the composite.
A two-stage finite element homogenization method has been
used, with Periodic Boundary Conditions (PBCs). In order to
apply a uniaxial tension along the 45◦ direction on the unit cell
of the composite, additional developments to the PBCs are nec-
essary and presented in Appendix B.

With the inverse method, a very good agreement is found
between experimental and numerical results for the three orien-
tations 0◦, 45◦ and 90◦, assuming that different types of glass
fibers are used in warp and fill directions. The difference in
glass material has been confirmed by nanoindentation measure-
ments on fibers. A second outcome of the inverse method is the
viscoelastic behavior of the resin. Resin samples are obtained
from B-stage pre-impregnated laminates and subjected to relax-
ation tests. The resin response captured by the inverse method
is consistent with the experimental one.

Finally, the identified behaviors of the resin and the com-
posite are employed in the simulation of a buried via in a PCB
configuration under temperature loads. The effects of differ-
ent heating rates, hold times and maximum temperature are as-
sessed. It has been shown that for a temperature excursion suf-

ficiently below Tg , considering a thermo-elastic behavior for
resin and laminate is a valid assumption. However, close to or
above the Tg , it is necessary to use a viscoelastic constitutive
behavior to expect predictive results in future works.

The identified viscoelastic response can be adopted to pre-
dict the stress distribution and reliability of PCBs in harsh en-
vironments. As an example, PCBs for e-mobility may contain
active components which can generate large temperature loads,
where important relaxation effects are expected. It is now also
possible to investigate in more details crucial process operations
accompanied with large temperature excursion like reflow sol-
dering, associated with fast temperature increase above Tg . For
all these conditions, the present work opens new possibilities,
which will be explored in subsequent work.
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Appendix A. Application of the Runge-Kutta method to the
incremental formulation of history variables

The implicit Runge-Kutta Radau IIA method possesses ex-
cellent stability and convergence properties [41]. It also presents
the advantage of only needing the function values at the previ-
ous time step (compared to other high order schemes requiring
several time steps storage). These reasons make it an appropri-
ate method for use in finite element schemes.

For implicit Runge-Kutta methods [42, 43, 44], the incre-
mental solution to the differential equation

dy

dt
= f(t, y) (A.1)

takes the form

yn+1 = yn + h

s∑
i=1

biki (A.2)

with

ki = f

tn + cih, yn + h

s∑
j=1

aijkj

 (A.3)

In the above relations, h is the step size (denoted dt next), s
the stage value. Values for aij , bi, ci for the Radau IIA method
with s = 3 are provided by the Butcher tableau, see Table A.7.
The index n corresponds to the current computation time step
and n+ 1 refers to the next step.

This method is applied to solve the differential equation for
qk, in equation (20) (the index k is omitted in the following for
the sake of simplicity):

dq

dt
=

dε

dt
− 1

τ
q (A.4)
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Table A.7: Butcher tableau. The weights bi are found on the bottom line, the
nodes ci are displayed in the left column and the coefficients aij fill the top
right part of the tableau.

For Runge-Kutta Radau IIA with s = 3, a system of three equa-
tions for the ki coefficients from equation (A.3) is obtained:

k1 =
dε

dt
− 1

τ
[qn + dt(a11k1 + a12k2 + a13k3)] (A.5)

k2 =
dε

dt
− 1

τ
[qn + dt(a21k1 + a22k2 + a23k3)] (A.6)

k3 =
dε

dt
− 1

τ
[qn + dt(a31k1 + a32k2 + a33k3)] (A.7)

After solving this system for k1, k2 and k3 and inserting them
into equation (A.2), we finally get:

qn+1 = aRKdε+ bRKqn (A.8)

with

aRK =
τ(dt2 + 6dtτ + 60τ2)

dt3 + 9dt2τ + 36dtτ2 + 60τ3
(A.9)

bRK =
τ(3dt2 − 24dtτ + 60τ2)

dt3 + 9dt2τ + 36dtτ2 + 60τ3
(A.10)

The history variables qk can thus be updated for the new
step (index n+ 1) from their previous values, the time step dt,
the strain increment dε and the relaxation times τk. Finally, the
stress tensor σ is computed with equation (5).

In the present paper, an anisotropic linear viscoelastic ma-
terial is considered. Such behavior is not available in the finite
element software Abaqus. Therefore a subroutine UMAT has
been written, implementing the above developments to update
the stress tensor σ and history variables q from a given strain
increment dε. It is also necessary to compute the Jacobian ma-
trix. From equation (5), the expression of dσ is found:

dσ = C∞ : dε+

N∑
k=1

Ck : dqk (A.11)

From equation (A.8), dqk is evaluated:

dqk = qn+1
k − qn

k = aRK
k dε+ (bRK

k − 1)qn
k (A.12)

The Jacobian matrix can be readily obtained:

∂dσ

∂dε
= C∞ +

N∑
k=1

Cka
RK
k (A.13)

The validity of the UMAT subroutine developed for the pre-
sent work has been checked in comparison with the Abaqus im-
plementation of the linear isotropic viscoelastic behavior with
Prony series. The material is described by E0 = 12GPa,
ν0 = 0.25, a dimensionless bulk relaxation modulus k = 0.4,
a dimensionless shear relaxation modulus g = 0.4, associated
to a unique relaxation time τ = 1000 s. Two loading cases are
considered: uniaxial tension (Figure A.20a) and shear (Figure
A.20b). In both cases, a constant strain of 1% is applied for
10 000 s followed by a zero load during 10 000 s. The response
obtained with the UMAT subroutine, using an isotropic behav-
ior is identical to the one provided by Abaqus.

Appendix B. Periodic boundary conditions applied to a RVE
subjected to uniaxial tension in an arbitrary
direction.

Appendix B.1. General principle in 2D case

In 2D, Periodic Boundary Conditions (PBCs) on a rectangu-
lar unit cell are applied by controlling the displacements on the
frontiers in a specific way [45, 46, 47]. The following relations
describe the displacements on opposite sides of the RVE:

ū(0, x2)− ū(l1, x2) = Ū1

ū(x1, 0)− ū(x1, l2) = Ū2
(B.1)

with l1 and l2 the dimensions of the unit cell, x1 and x2 are
the coordinates of any material point on the remote boundary
of the RVE. Ū1 and Ū2 describe the relative displacements be-
tween the two coincident points on opposite sides. The PBCs
can therefore be implemented in a FE software by using two
reference points to which the displacements Ū1 and Ū2 are as-
signed. The displacements of each pair of points on opposite
sides must satisfy equation (B.1). When the unit cell is sub-
jected to a 2D strain tensor ε, the displacements Ū1 and Ū2 are
expressed as:

Ū1 =

{
ε11 · l1
ε21 · l1

}
, Ū2 =

{
ε12 · l2
ε22 · l2

}
, (B.2)

where ε12 = ε21. Note that when the unit cell is subjected to
the displacement gradient (non symmetric tensor), one can also
adopt relations (B.2) replacing the strain tensor by the displace-
ment gradient.

By imposing the components of Ū1 and Ū2, it is possible
to apply any overall loading for which the strain tensor is fully
known. It is also possible to prescribe a uniaxial tension along
one of the axes of the coordinate system (x1, x2) by specifying
only one component of the strain tensor. The other components
will be computed to satisfy equilibrium.

However, imposing a uniaxial tension in any arbitrary di-
rection (different from the unit cell directions) is not straight-
forward. In the present work, it is necessary to impose uniax-
ial tension in a 45◦ direction for the inverse method of section
4.2.3. One could think to use a unit cell oriented in the chosen
direction, but in the general case (arbitrary values for l1 and l2)
or for an arbitrary direction, finding a periodic unit cell can be
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Figure A.20: Validation of the numerical implementation of the viscoelastic behavior via the UMAT subroutine. (a) Tensile and (b) shear response of an element
subjected to a constant strain followed by zero load.

impossible (see Figure B.21 for illustration). We propose there-
fore a methodology to keep the unit cell and the PBCs in the
original coordinate system (x1, x2), while uniaxial tension (or
any other strain loading) is applied in the transformed coordi-
nate system (x∗

1, x
∗
2), rotated by an angle θ.

Unit cell

Figure B.21: Illustration of a unit cell in a periodic medium. In general, rotating
the frame of the unit cell does not lead to a periodic unit cell, as seen on the
right of the figure. Finding a periodic unit cell in an arbitrary direction may
require a much larger unit cell or can even be impossible. Therefore the choice
is made to use the original unit cell and PBCs in the coordinate system of the
medium (x1, x2), while the loading is applied in the transformed coordinate
system (x∗

1, x
∗
2).

In the transformed basis, the strain tensor associated to a
uniaxial tension writes:

ε∗ =

[
ε∗,kn11 ε∗,un12

ε∗,un21 ε∗,un22

]
, (B.3)

where superscripts kn and un denote known and unknown quan-
tities. In the original coordinate system, the strain writes:

ε = Rε∗RT , (B.4)

With R the transformation matrix, expressed as (for a rotation
θ around the third axis):

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
. (B.5)

Finally, the RVE is subjected to the following strain tensor in
the original coordinate system:

ε =

[
c2ε∗,kn11 − csε∗,un12 − csε∗,un21 + s2ε∗,un22 csε∗,kn11 + c2ε∗,un12 − s2ε∗,un21 − csε∗,un22

csε∗,kn11 − s2ε∗,un12 + c2ε∗,un21 − csε∗,un22 s2ε∗,kn11 + csε∗,un12 + csε∗,un21 + c2ε∗,un22

]
(B.6)

where c and s denote respectively cos(θ) and sin(θ). Each
component of the strain tensor is unknown, resulting in the im-
possibility to apply the expected loading. The same reasoning
is applicable to any loading containing one or several unknowns
in a transformed coordinate system, in two or in three dimen-
sions.

To overcome the above difficulties, we propose to define
additional reference points which will enable to apply a uni-
axial loading in an arbitrary direction by keeping the PBCs in
the original coordinate system. The additional reference points
control the displacements applied to the unit cell in the trans-
formed coordinate system :

¯U1∗ =

{
ε∗11 · l1
ε∗21 · l1

}
, ¯U2∗ =

{
ε∗12 · l2
ε∗22 · l2

}
(B.7)

Equation (B.6) can be written in the form:
ε11
ε12
ε21
ε22

 =


c2 −cs −cs s2

cs c2 −s2 −cs
cs −s2 c2 −cs
s2 cs cs c2



ε∗11
ε∗12
ε∗21
ε∗22

 (B.8)

The displacements ¯U1∗ and ¯U2∗ can be related to Ū1 and
Ū2 by using equations (B.2), (B.7) and (B.8):

U11 = c2U1∗1 −
l1
l2
csU2∗1 − csU1∗2 +

l1
l2
s2U2∗2 (B.9)

U21 =
l2
l1
csU1∗1 + c2U2∗1 −

l2
l1
s2U1∗2 − csU2∗2 (B.10)

U12 = csU1∗1 −
l1
l2
s2U2∗1 + c2U1∗2 −

l1
l2
csU2∗2 (B.11)
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U22 =
l2
l1
s2U1∗1 + csU2∗1 +

l2
l1
csU1∗2 + c2U2∗2 (B.12)

The two additional reference points and the above four re-
lations allow for the application of any overall strain state in
any desired direction to the unit cell. For example, to apply a
uniaxial strain in the direction θ, only ¯U1∗1 is specified. The
other components of the displacement of the reference points
are computed by the solver to satisfy the equilibrium equations.

Appendix B.2. 3D generalization of PBCs for general loading

Applying the method in the 3D case can be achieved by
following the same steps as in 2D case. The number of compo-
nents is more important because of the additional degrees of
freedom. In 3D, three reference points are needed to apply
PBCs. The displacements assigned to the reference points are:

Ū1 =

ε11 · l1
ε21 · l1
ε31 · l1

 , Ū2 =

ε12 · l2
ε22 · l2
ε32 · l2

 , Ū3 =

ε13 · l3
ε23 · l3
ε33 · l3

 ,

(B.13)
with l1, l2 and l3 the dimensions of the unit cell in directions 1,
2 and 3 respectively. Three additional reference points are used
to carry the displacements in the transformed frame:

¯U1∗ =

ε∗11 · l1
ε∗21 · l1
ε∗31 · l1

 , ¯U2∗ =

ε∗12 · l2
ε∗22 · l2
ε∗32 · l2

 , ¯U3∗ =

ε∗13 · l3
ε∗23 · l3
ε∗33 · l3

 .

(B.14)
In 3D, the arbitrary direction of the rotated coordinate sys-

tem can be defined by the Euler angles: a first rotation of angle
α around the 3 axis (Rα), a second rotation of angle β around
the new 1 axis (Rβ), and a third rotation of angle γ around the
new 3 axis (Rγ). The corresponding transformation matrix is
computed as R = RαRβRγ .

The strain components in the original coordinate system are
expressed as a function of the strain components in the trans-
formed coordinate system: ε = Rε∗RT .

ε11
ε12
ε13
ε21
ε22
ε23
ε31
ε32
ε33


=



k11 k12 k13 k14 k15 k16 k17 k18 k19
k21 k22 k23 k24 k25 k26 k27 k28 k29
k31 k32 k33 k34 k35 k36 k37 k38 k39
k41 k42 k43 k44 k45 k46 k47 k48 k49
k51 k52 k53 k54 k55 k56 k57 k58 k59
k61 k62 k63 k64 k65 k66 k67 k68 k69
k71 k72 k73 k74 k75 k76 k77 k78 k79
k81 k82 k83 k84 k85 k86 k87 k88 k89
k91 k92 k93 k94 k95 k96 k97 k98 k99





ε∗11
ε∗12
ε∗13
ε∗21
ε∗22
ε∗23
ε∗31
ε∗32
ε∗33


(B.15)

Relation (B.15) is also valid for non symmetric tensor, when
displacement gradient is imposed to the unit cell, instead of a
strain tensor. Expressions of components kij can be derived by
simple algebra.

It is therefore possible to express the displacements Ū1, Ū2,
Ū3 of the three reference points in the original frame as a func-
tion of the displacements of the three reference points in the
transformed frame Ū1

∗, Ū2
∗, Ū3

∗ with nine equations:

U11 = k11U1∗1 +
l1
l2
k12U2∗1 +

l1
l3
k13U3∗1

+ k14U1∗2 +
l1
l2
k15U2∗2 +

l1
l3
k16U3∗2

+ k17U1∗3 +
l1
l2
k18U2∗3 +

l1
l3
k19U3∗3

U21 =
l2
l1
k21U1∗1 + k22U2∗1 +

l2
l3
k23U3∗1

+
l2
l1
k24U1∗2 + k25U2∗2 +

l2
l3
k26U3∗2

+
l2
l1
k27U1∗3 + k28U2∗3 +

l2
l3
k29U3∗3

U31 =
l3
l1
k31U1∗1 +

l3
l2
k32U2∗1 + k33U3∗1

+
l3
l1
k34U1∗2 +

l3
l2
k35U2∗2 + k36U3∗2

+
l3
l1
k37U1∗3 +

l3
l2
k38U2∗3 + k39U3∗3

U12 = k41U1∗1 +
l1
l2
k42U2∗1 +

l1
l3
k43U3∗1

+ k44U1∗2 +
l1
l2
k45U2∗2 +

l1
l3
k46U3∗2

+ k47U1∗3 +
l1
l2
k48U2∗3 +

l1
l3
k49U3∗3

U22 =
l2
l1
k51U1∗1 + k52U2∗1 +

l2
l3
k53U3∗1

+
l2
l1
k54U1∗2 + k55U2∗2 +

l2
l3
k56U3∗2

+
l2
l1
k57U1∗3 + k58U2∗3 +

l2
l3
k59U3∗3

U32 =
l3
l1
k61U1∗1 +

l3
l2
k62U2∗1 + k63U3∗1

+
l3
l1
k64U1∗2 +

l3
l2
k65U2∗2 + k66U3∗2

+
l3
l1
k67U1∗3 +

l3
l2
k68U2∗3 + k69U3∗3

U13 = k71U1∗1 +
l1
l2
k72U2∗1 +

l1
l3
k73U3∗1

+ k74U1∗2 +
l1
l2
k75U2∗2 +

l1
l3
k76U3∗2

+ k77U1∗3 +
l1
l2
k78U2∗3 +

l1
l3
k79U3∗3

U23 =
l2
l1
k81U1∗1 + k82U2∗1 +

l2
l3
k83U3∗1

+
l2
l1
k84U1∗2 + k85U2∗2 +

l2
l3
k86U3∗2

+
l2
l1
k87U1∗3 + k88U2∗3 +

l2
l3
k89U3∗3

U33 =
l3
l1
k91U1∗1 +

l3
l2
k92U2∗1 + k93U3∗1

+
l3
l1
k94U1∗2 +

l3
l2
k95U2∗2 + k96U3∗2

+
l3
l1
k97U1∗3 +

l3
l2
k98U2∗3 + k99U3∗3 (B.16)
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By specifying the orientation of the transformed coodinate
system and the desired strain components, it is possible to apply
any overall strain tensor to the unit cell by the means of three
additional reference points and nine equations connecting them
to the reference points responsible for the PBCs. The present
PBCs have been implemented in ABAQUS software and have
been used to determine the viscoelastic response of the resin
with recourse to the inverse method.
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ical multiscale homogenization approach for linearly viscoelastic 3d in-
terlock woven composites, International Journal of Solids and Structures
163 (2019) 61–74.

[13] M. Benavente, L. Marcin, A. Courtois, M. Lévesque, E. Ruiz, Numer-
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[19] M. Lé-Magda, E. Dargent, J. A. S. Puente, A. Guillet, E. Font, J.-M.
Saiter, Influence of very long aging on the relaxation behavior of flame-
retardant printed circuit board epoxy composites under mechatronic con-
ditions, Journal of Applied Polymer Science 130 (2) (2013) 786–792.

[20] M. Gigliotti, M. Minervino, M. Lafarie-Frenot, J. Grandidier, Effect of
thermo-oxidation on the local mechanical behaviour of epoxy polymer
materials for high temperature applications, Mechanics of Materials 101
(2016) 118–135.

[21] R. L. Taylor, K. S. Pister, G. L. Goudreau, Thermomechanical analysis of
viscoelastic solids, International Journal for Numerical Methods in Engi-
neering 2 (1) (1970) 45–59.

[22] H. F. Brinson, Mechanical and optical viscoelastic characterization of
hysol 4290, Experimental Mechanics 8 (12) (1968) 561–566.

[23] C. Popelar, C. Popelar, V. Kenner, Viscoelastic material characterization
and modeling for polyethylene, Polymer Engineering & Science 30 (10)
(1990) 577–586.

[24] E. Woo, J. Seferis, R. Schaffnit, Viscoelastic characterization of high per-
formance epoxy matrix composites, Polymer Composites 12 (4) (1991)
273–280.

[25] R. J. Thorpe, Experimental characterization of the viscoelastic behavior
of a curing epoxy matrix composite from pre-gelation to full cure, Ph.D.
thesis, University of British Columbia (2013).

[26] N. Zobeiry, R. Vaziri, A. Poursartip, Differential Implementation of the
Viscoelastic Response of a Curing Thermoset Matrix for Composites Pro-
cessing, Journal of Engineering Materials and Technology 128 (1) (2005)
90–95.

[27] T. Crochon, T. Schönherr, C. Li, M. Lévesque, On finite-element imple-
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[44] J. Büttner, B. Simeon, Runge–kutta methods in elastoplasticity, Applied
Numerical Mathematics 41 (4) (2002) 443–458.

[45] W. Tian, L. Qi, X. Chao, J. Liang, M. Fu, Periodic boundary condition and
its numerical implementation algorithm for the evaluation of effective me-

chanical properties of the composites with complicated micro-structures,
Composites Part B: Engineering 162 (2019) 1–10.

[46] O. Pierard, J. LLorca, J. Segurado, I. Doghri, Micromechanics of particle-
reinforced elasto-viscoplastic composites: Finite element simulations ver-
sus affine homogenization, International Journal of Plasticity 23 (2007)
1041–1060.
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