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Cancer characterization using 
light backscattering spectroscopy 
and quantitative ultrasound: 
an ex vivo study on sarcoma 
subtypes
Cyril Malinet 1*, Bruno Montcel 1, Aurélie Dutour 2, Iveta Fajnorova 2, Hervé Liebgott 1 & 
Pauline Muleki‑Seya 1

Histological analysis is the gold standard method for cancer diagnosis. However, it is prone to 
subjectivity and sampling bias. In response to these limitations, we introduce a quantitative 
bimodal approach that aims to provide non-invasive guidance towards suspicious regions. Light 
backscattering spectroscopy and quantitative ultrasound techniques were combined to characterize 
two different bone tumor types from animal models: chondrosarcomas and osteosarcomas. Two 
different cell lines were used to induce osteosarcoma growth. Histological analyses were conducted 
to serve as references. Three ultrasound parameters and intensities of the light reflectance profiles 
showed significant differences between chondrosarcomas and osteosarcomas at the 5% level. 
Likewise, variations in the same biomarkers were reported for the two types of osteosarcoma, 
despite their similar morphology observed in the histological examinations. These observations 
show the sensitivity of our techniques in probing fine tissue properties. Secondly, the ultrasound 
spectral-based technique identified the mean size of chondrosarcoma cells and nuclei with relative 
errors of about 22% and 9% respectively. The optical equivalent technique correctly extracted 
scatterer size distributions that encompass nuclei and cells for chondrosarcomas and osteosarcomas 
( 9.5± 2.6 and µ respectively). The optical scattering contributions of nuclei were estimated at 52% 
for the chondrosarcomas and 69% for the osteosarcomas, probably indicating the abundant and 
the absent extracellular matrix respectively. Thus, the ultrasound and the optical methods brought 
complementary parameters. They successfully estimated morphological parameters at the cellular 
and the nuclear scales, making our bimodal technique promising for tumor characterization.

In clinical settings, the process of cancer characterization involves the determination of the tumor histological 
subtype and the grade, which reflects the cancer aggressiveness1. Determining these characteristics plays a crucial 
role in establishing the patient’s diagnosis and planning the right treatment options. This histological classification 
relies on cellular morphological measurements and is traditionally determined through microscopic examina-
tion, referred to as histological analyses. Although histo-cytopathology serves as a gold standard for diagnosing 
cancers, this technique is inherently invasive and resource-intensive. Additionally, it is subject to inter-observer 
and intra-observer variabilities2. For instance, the sampled sections may not include the most aggressive can-
cerous regions due to tumor heterogeneities. Thus, the sampling bias could lead to inaccurate diagnostics that 
ultimately worsen the patient’s prognosis. Other applications involved in the cancer patient care workflow suffer 
from subjectivity, such as intra-operative margin assessment3. Indeed, insufficient margins resulting in the pres-
ence of remaining cancerous cells after resection surgery can lead to cancer recurrence. Consequently, guiding 
the clinicians toward the most suspicious regions using a non-invasive quantitative tool would be of great benefit 
for different clinical procedures and could subsequently improve the patient outcomes.
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As a starting point toward this objective, two optical and two ultrasound quantitative techniques have been 
combined on a benchtop to lead to a thorough tissue assessment. The backscatter coefficient (BSC) parametri-
zation and the envelope statistics (ES) are two ultrasound techniques that can extract different tissue scattering 
properties from the same acquisition4,5. Likewise, enhanced backscattering spectroscopy (EBS) and light scatter-
ing spectroscopy (LSS) are two light-based techniques that can be performed using a similar experimental setup 
to characterize biological tissues6,7. By combining light and ultrasound, one can expect that the scattering process 
would arise from cellular structures of varying sizes given the distinct wavelength ranges associated with each 
modality. Thus, this bimodal technique should have the potential to bring complementary information about 
the microstructures in the probed tissue.

Unlike conventional ultrasound imaging, which primarily provides anatomical information through B-mode 
images, quantitative ultrasound techniques aim to provide quantitative measurements that can be used for diag-
nostic purposes. When analyzing the backscattered radiofrequency (RF) signals used to generate ultrasound 
scans, valuable information regarding the microstructures of the underlying tissue can be obtained through 
spectral content analysis (such as the BSC parametrization) or by studying the statistics of its envelope (referred 
to ES for Envelope Statistics). Successful applications of BSC parametrization and ES provided cancer type 
classification8 and cancerous lymph node characterization9,10 for example. BSC inversions can also identify 
nuclear structures as scatterers in diluted biological media5. Similarly, the cell size distribution can also be 
extracted in dense media11.

EBS aims to optically characterize biological tissues. In this method, the tissue characterization is based on 
the measurements of the angular coherent peak observed in the backscattering direction. This two-dimensional 
peak then allows the estimation of the spatial reflectance profile, which is the parameter of interest. Numerous 
studies have investigated the ability of EBS to detect ultrastructural alterations in the field carcinogenesis12–14. 
Radosevich et al.15 showed that alterations in the reflectance profiles occurred at short length scales for colorectal 
and pancreatic cancer field carcinogenesis. EBS can also extract the scattering parameters that shape the phase 
function to determine the tissue optical properties13.

Light scattering spectroscopy (LSS) is another relevant tool that aims to estimate the morphological proper-
ties of tissue16. It can be performed using an experimental setup similar to the one used for EBS. This technique 
relies on the spectral analysis of the single scattering component of light and is somewhat the optical equivalent 
of the BSC parametrization. Backman et al.17 successfully extracted the nucleus size distribution from malignant 
and normal intestinal cells in situ. A few years later, Fang et al.16 introduced an analytical procedure to extract 
the subcellular organelle size distribution without making any inferences about the distribution. Qiu et al.18 
used this method to show that the nuclear size distributions can be accurately estimated in a dysplastic and in 
a non-dysplastic site in a Barrett’s esophagus. More recently, Qiu et al.7 designed a LSS scanning system able to 
detect esophageal dysplastic sites with 96% sensitivity and 97% specificity.

Previously, our experimental setups for EBS and BSC parametrization were validated in vitro  on three tissue-
mimicking phantoms which consisted of suspended microparticles of different sizes19. Complementarities in 
terms of sensitivity to the scatterer sizes were observed with the two techniques. These interesting results led us 
to carry out this ex vivo animal study to further investigate the performances of a bimodal approach.

In this study, BSC parametrization, ES, LSS and EBS were used to characterize two bone cancer histological 
types: chondrosarcoma and osteosarcoma established in rodents. The rat chondrosarcoma model reproduces 
the histological and aggressivity characteristics of grade II human chondrosarcoma. The murine osteosarcoma 
models used (K7M2 and MOS-J) are representative of conventional metastatic osteosarcoma. Optical and ultra-
sound measurements were carried out on the day of sacrifices. Quantitative parameters were then estimated and 
compared between different tumor types. Simultaneously, histological analyses were conducted for all tumors. 
Morphometric measurements of cellular structures, derived from these examinations, were then compared to 
evaluate the performances of the BSC parametrization and LSS in estimating scatterer parameters related to cells 
or nuclei. After analyzing the results, the performances are discussed. Last, the theory and the implementation 
of each method are exposed.

Results
Animal models
Histological analyses are conducted to serve as references. Morphometric measurements of cellular structures 
are carried out using the histological slices of tumors to compare the performances of each technique. Chondro-
sarcoma is characterized by low cell density within an abundant extracellular matrix. One can clearly distinguish 
extracellular membrane, cell cytoplasm and cell nuclei (Fig. 1a). Both osteosarcoma models are characterized 
by high cellular density and the absence of extracellular matrix. Osteosarcoma cells exhibit a different morphol-
ogy in comparison to chondrosarcoma cells. They are smaller in size and have large nuclei (Fig. 1b,c). Hence, 
histological staining reveals specific morphological features in each bone sarcoma model.

The cell and nucleus size distributions are also estimated using the microphotographs of histological slices.
Chondrosarcoma cells exhibit radii with a mean value and a standard deviation of 9.5± 2.6 µ m, while K7M2 

osteosarcoma cells have radii of 4.7± 0.9 µ m and MOS-J osteosarcoma 4.8± 1.0 µ m. Osteosarcoma cells are 
about twice as small as chondrosarcoma cells. The size distributions of osteosarcoma cells appear more uniform 
compared to chondrosarcomas. Chondrosarcoma nuclei exhibit radii with a mean value and a standard devia-
tion of 4.2± 0.5 µ m, while K7M2 osteosarcoma nuclei have radii of 2.4± 0.6 µ m and MOS-J osteosarcomas 
2.7± 0.7 µ m. Osteosarcoma nuclei appear approximatively twice as small as chondrosarcoma nuclei. The size 
distributions of chondrosarcoma nuclei are sharper compared to osteosarcomas. Similar cell sizes can be observed 
between K7M2 and MOS-J osteosarcomas. However, these two osteosarcoma types exhibit slight variations in 
the nucleus radii.
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The chondrosarcoma cell volume fraction is estimated at φCh,cell = 0.23 and φOs,cell = 0.88 for the two osteo-
sarcoma types, indicating that osteosarcoma is a hypercellular histological subtype that contains almost no 
extracellular matrix. The nucleus volume fraction is estimated at φCh,nuc = 0.03 for the chondrosarcoma and 
φOs,nuc = 0.25 for the osteosarcomas.

Tumor characterization
Quantitative ultrasound
Mean BSCs per animal using the low (13–24 MHz) and the high-frequency probes (restricted to 24–38 MHz) 
are presented in Fig. 2a. The corresponding b-spline fits in the whole frequency range are shown in Fig. 2b. The 
BSCs exhibit differences between the tumor types and similar trends among tumors of the same nature. The two 
different osteosarcoma cell lines (MOS-J and K7M2) lead to highly contrasted BSCs.

The differences within the BSCs per ROI are translated into the Lizzi–Feleppa parameters in the scatter 
plots shown in Fig. 3a. A Wilcoxon rank sum test conducted at a significance level of 5% reveals statistically 
significant differences in the intercept values between chondrosarcomas and osteosarcomas. However, there is 
no evidence indicating significant differences in the slope values between the two tumor types (t-test p-value = 
0.73). The ES parameters are shown in Fig. 3b. The scaling parameters � and the Nakagami parameters α under-
went compression using a base-10 logarithm due to their extensive value range. The observed α values indicate 

Figure 1.   Representative histological stainings of chondrosarcoma and osteosarcoma. (a) Chondrosarcoma. 
HPS staining enables to distinguish cell nuclei, membranes and abundant extracellular matrix. (b) and (c) 
Osteosarcomas (K7M2 and MOS-J model respectively). HPS staining shows smaller cells with large nuclei in 
comparison to chondrosarcoma. Osteosarcomas exhibit a higher cellular density. The absence of extracellular 
matrix is also observed.

Figure 2.   (a) Mean estimated backscatter coefficients (BSC) with the MS-250S probe (left of the black dotted 
line) and the LZ-400 probe (right of the black dotted line) per animal. (b) Corresponding BSC b-spline fits. ’Ch’ 
stands for chondrosarcomas and ’Os’ for osteosarcomas.
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Nakagami-gamma distribution ( α < 0.5)8. Wilcoxon rank sum tests report statistically significant differences in 
the compressed α and � coefficients at the 5% significance level between chondrosarcomas and osteosarcomas.

The same observations can be made for K7M2 and MOS-J osteosarcomas. Student’s t-tests reveal significant 
differences between the two osteosarcoma types for the intercept values and the Nakagami parameters but not 
for the slope. The compressed � coefficients also show significant differences in this case. In summary, the three 
ultrasound parameters (the intercept, α and � ) can discriminate the chondrosarcomas from the osteosarcomas, 
and the K7M2 from the MOS-J osteosarcomas. The linear slope appears irrelevant for tumor classification in 
this study.

Light enhanced backscattering spectroscopy
The reflectance profiles measured in the co-polarized channel at 700 nm are plotted in Fig. 4a. The five chondro-
sarcoma signals exhibit fast decay and can be clearly identified from the osteosarcomas. This is highlighted by 
the differences between the mean reflectance profiles of each group, which increases for small exit radius values 
(Fig. 4b. Statistical significances for each exit radius value were observed using a two-tailed student’s t-test at the 
5% level. The location with the most significant changes between chondrosarcomas and osteosarcomas occurred 
at rs,opt = 55 µ m with a p-value reaching 3× 10−6 . The K7M2 osteosarcomas (Os1 and Os2) signals exhibit a 
faster decay compared to the MOS-J osteosarcomas (Os3 and Os4). Similarly, differences in mean reflectance 
profiles between the two types of osteosarcoma increase at small length scales (Fig. 4b) but no significant statisti-
cal differences were found at the 5% level.

Scatterer size distribution
Ultrasound BSC parametrization
The BSC inversions using the Polydisperse II (PII) model in the low-frequency range are shown in Fig. 5. The 
fitting procedure was performed using the average BSCs per animal ( R2 > 0.99 ). The volume fractions were set 
to the cell volume fraction based on histological estimations. The estimated chondrosarcoma mean scatterer 
sizes correspond with the mean cell sizes extracted from the histological analyses with a mean relative error of 
22% (Fig. 5a). However, these similarities are not observed for the osteosarcomas: the PII model identifies larger 
scatterers for each tumor (mean relative error> 100%). The Schulz width factors z were extracted with relative 
errors about 3% for Ch1 and Ch2 and superior to 100% for Ch3 (Fig. 5b). The estimated Schulz width factor 
for other chondrosarcomas reached the upper bound of the inversion constraints. The distribution sharpness 
is systematically underestimated for the osteosarcomas. The same inversions were conducted by setting the 
volume fraction to the nuclei volume fractions to validate the results. A minimum mean relative error of 65% 
was found for all estimates.

Figure 6 shows the scatterer radii extracted by the Fluid-Filled sphere model (FFSM) per tumor type in the 
high-frequency range. The fitting procedure ( R2 > 0.97 ) was performed using the average BSCs per tumor type. 
In this case, the volume fractions were set to the nucleus volume fraction after histology analyses ( φCh,nuc = 0.03 
and φOs,nuc = 0.25 ). The chondrosarcoma scatterer radii estimated by the FFSM correspond to the mean nucleus 
size extracted in histology with a relative error equal to 9% . The osteosarcomas scattering structures identified 
by the BSC theoretical model are larger than the histological measurements (relative errors > 33%). The PII 

Figure 3.   Scatter plots by model. Each point represents an independent region of interest (ROI). (a) Intercept 
versus slope (BSC linear model over the 18–38 MHz frequency range). (b) Nakagami envelope model estimated 
over the 18–38 MHz frequency range. Up and down arrows represent osteosarcomas from MOS-J and K7M2 
cell lines respectively.
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model estimated the nucleus radius with relative errors equal to 70%, 15% and 49% for the chondrosarcomas, 
the K7M2 and the MOS-J osteosarcomas respectively. All the estimations of the Schulz width factor reached 
the lower bound of the inversion constraint using the PII model. Therefore, we did not further consider these 
inversion results.

The BSC inversions with the PII model using the BSC b-spline fits (Fig. 2b) for the osteosarcomas are shown 
in Fig. 7 ( R2 > 0.97 ). Here, the volume fraction was set to the cell volume fraction ( φOs,cell = 0.88 ). No clear 
correspondences were observed between the BSC-based parameters and the cell sizes using the whole frequency 
range (relative errors superior to 50%, Fig. 7a). The Schulz width factors z were poorly extracted (relative errors 
superior to 50%, Fig. 7b). Indeed, the distribution sharpness is underestimated by the PII model. The estimated 

Figure 4.   (a) Mean reflectance profiles per animal in the co-polarized channel at 700 nm. Statistical 
significances between chondrosarcomas and osteosarcomas signals were observed using a two-tailed student’s 
t-test at the 5% level in the whole exit radius range. The location with the most significant changes occurred at 
rs,opt = 55 µ m with a p-value reaching 3× 10−6 . No significant statistical differences were found at the 5% level 
between MOS-J and K7M2 osteosarcomas. (b) Absolute difference of mean reflectance profiles per group. The 
green dotted circle indicates the rs,opt of the difference curve.

Figure 5.   Inversion results using the Polydisperse II model per animal. The cell volume fraction is supposed to 
be known a priori and is set to φCh,cell = 0.28 for chondrosarcomas and φOs,cell = 0.88 for osteosarcomas after 
histological analyses. (a) Mean scatterer radius. (b) Schulz width factor. The estimated Schulz width factor for 
Ch3 and Ch4 reached the upper bound of the inversion constraints.
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z coefficient for Os2 reached the lower bound of the inversion constraint. The same inversions were conducted 
by setting the volume fraction to the nuclei volume fractions to validate the results. The osteosarcoma nuclei 
were estimated with a relative error of 18%. However, all the estimations of the Schulz width factor reached the 
lower bound of the inversion constraint. Therefore, we did not further consider these results.

Figure 6.   Inversion results using the Fluid-filled sphere model (FFSM) per group in the 24–38 MHz 
bandwidth. The nucleus volume fraction is supposed to be known a priori and is set to φCh,nuc = 0.03 for 
chondrosarcomas and φOs,nuc = 0.25 for osteosarcomas. The solid bars show the mean nucleus radii estimated 
by histological analyses.

Figure 7.   Inversion results using the Polydisperse II model for the osteosarcomas using the BSC b-spline fits 
(13–38 MHz bandwidth). The cell volume fraction is supposed to be known a priori and is set to φOs,cell = 0.88 
for osteosarcomas. (a) Mean scatterer radius. (b) Schulz width factor. The estimated Schulz width factor for Os2 
reached the lower bound of the inversion constraint.
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Light scatttering spectroscopy
Figure 8a shows the mean differential polarization signals for each tumor type. The measured LSS spectra exhibit 
significant differences between the two tumor types. The corresponding estimated size distributions F are shown 
in Fig. 8b,c for rmax = 16.75 µ m. The integral of each distribution is normalized (i.e. cells and nuclei from histo-
logical examinations independently analyzed). The shapes of the nucleus size distributions are accurately repli-
cated by LSS. The cell size distributions also appear in the LSS estimations, particularly for the chondrosarcomas.

We hypothesize that cells could be involved in the light scattering process depending on the volume density 
of the extracellular matrix. In the following procedure, we simply assume that cells and nuclei represent two 
independent populations of potential scatterers with linearly additive contributions. To test this hypothesis, 
linear combinations of the nucleus and cell histograms obtained from the histological analyses were computed 
using different nucleus weight values ( wnuc ). These values were defined such that wnuc = 1− wcell , thus merging 
the estimated nucleus and cell sizes such as the integral over the scatterer radius equals unity. The optimized 
nucleus weight was considered as the value that leads to the best fit between the estimated LSS solution F and the 
newly merged histogram. In other words, this procedure redistributes the probabilities obtained with histologi-
cal analyses to quantify the contribution of nucleus and cell scattering in the LSS solution F. Figure 9a,b shows 
the obtained optimized histograms for each tumor type. The histogram optimization procedure resulted in an 
estimated nucleus weight of 69% for osteosarcomas and 52% for chondrosarcomas. The coefficient of determina-
tion between the estimated size distribution FLSS and the optimized histograms R2

Ch(FLSS , Fopt,histo) equals 0.80 
for chondrosarcomas and R2

Os(FLSS , Fopt,histo) equals 0.73 for osteosarcomas.

Discussion
Two quantitative ultrasound and two light backscattering techniques have been combined to characterize ex vivo 
tumors. BSC parametrization, ES, and EBS were performed to discriminate each tumor type based on quantita-
tive estimates. Then, BSC parametrization using other theoretical scattering models and LSS were conducted to 
estimate the scatterer size distribution. Results were compared with histological analyses to study the agreement 
with cell and nucleus size distributions.

Firstly, significant differences were observed between chondrosarcomas and osteosarcomas in the Nakagami 
parameters α , the scaling parameter � , the BSC linear intercept and the light reflectance profile intensity. These 

Figure 8.   (a) Mean differential polarization signals ± standard error for the two tumor types. (b) and (c) 
Estimated scatterer size distribution for the chondrosarcoma and the osteosarcoma respectively. The nuclear and 
cellular size distribution estimated from histological analyses are normalized.

Figure 9.   (a) Chondrosarcoma estimated solution and its optimized linear combination of nucleus and cell 
size distribution. The cell scattering identified in the estimated solution accounts for 52%. (b) Osteosarcoma 
estimated solution and its optimized linear combination of nucleus and cell size distribution. The nucleus 
scattering identified in the estimated solution accounts for 69%.
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results align with the distinct microarchitectures observed in each histological subtype since these scattering 
parameters reflect the underlying tissue microstructure. Surprisingly, the same three ultrasound parameters show 
significant variations within the two osteosarcoma cell lines (K7M2 versus MOS-J cell lines). This result was 
not expected since these cell lines lead to the same tumor model. Indeed, the visual aspects of the histological 
slices in the microphotographs are not sufficient to identify the specific cell line that induced the osteosarcoma. 
Moreover, the K7M2 and the MOS-J osteosarcomas exhibit similar volume fractions and cellular sizes. Thus, 
the observed contrasts between their BSCs could probably be explained by important differences in their rela-
tive impedance contrasts γz . This result illustrates the high sensitivity of the BSC parametrization technique to 
probe fine tissue properties. Likewise, the reflectance profiles showed variations at small exit radii between the 
osteosarcomas types. However, the limited number of EBS measurements does not provide sufficient evidence to 
draw conclusions regarding the statistical significance of the observed difference. However, the striking contrasts 
in EBS signals between chondrosarcomas and osteosarcomas accurately reflect the pronounced differences in 
their respective microarchitectures. These results are in line with the EBS’s philosophy. EBS is applied in biological 
tissues to probe submicron microarchitectures by analyzing the reflectance profiles at small length scales relative 
to the light transport mean free path15. Indeed, EBS is used to detect early cancerous cells located in the epithelial 
layers that are invisible to histological biomarkers. In this study, the extreme sensitivity of this tool is reported 
with the highly contrasted EBS signals between two completely distinct microarchitectures, as well as the finer 
differences observed at small length scales for microarchitectures that share a similar histological appearance 
(K7M2 and MOS-J osteosarcomas).

Secondly, BSC inversions were conducted to investigate the extent to which cellular structures could be 
regarded as ultrasound scatterers in chondrosarcomas. The PII model (Fig. 5a) successfully identified the mean 
chondrosarcoma cell size and two Schulz width factors out of five estimated the sharpness of the cell size dis-
tribution in the low-frequency range. However, poor correspondences between the Schulz parameters and the 
histological analyses were observed in other cases, leading to mainly unstable estimations of this parameter. 
Interestingly, Han et al.11 reported higher relative errors for the estimations of the Schulz width factor compared 
to the mean scatterer radius using the PII model in cell pellet biophantoms. Indeed, simulations revealed that 
the BSC shape is more sensitive regarding the mean radius than the Schulz parameter z in the PII model (data 
not shown). Thus, the estimation of z is more subject to experimental noise, thereby increasing the difficulty of 
its accurate determination. The mean nucleus radii of the chondrosarcomas were correctly estimated by the FFSM 
model in the high-frequency range at the expense of the averaging process of all the independent BSC estima-
tions. Conversely, a limited number of independent LSS measurements were sufficient to accurately extract the 
nucleus size distribution. However, the LSS estimation of the cell size distribution was less precise but allowed 
to quantify the contribution of cell scattering in the observed spectrum. Indeed, approximately half of the chon-
drosarcoma LSS spectrum can be attributed to cell optical scattering, while the remaining half corresponds to 
nucleus scattering. These results are coherent with the histological analyses and the simple microarchitecture 
observed in this tumor type. Indeed, chondrosarcoma tumors are characterized by a low cell density. Moreover, 
chondrosarcoma cells and nuclei exhibit limited size overlapping, thereby facilitating the clear identification of 
each structure. Thus, we make the hypothesis that the cells could be considered as discrete optical scatterers 
surrounded by the abundant extracellular matrix, similar to how nuclei are usually modeled as isolated scatter-
ers surrounded by cytoplasm.

The same protocol was carried out for the osteosarcomas. The BSC parametrization systematically overesti-
mated the osteosarcoma cell radius. To explain this result, we postulated that the center frequency may not be 
sufficiently high to induce scattering from the osteosarcoma cells, which are smaller than the chondrosarcoma 
cells. This led us to carry out another inversion procedure using the b-spline BSCs (Fig. 7b) by setting the volume 
fraction to the cell volume fraction estimated after histology analyses. The PII model did not identify the cells 
as scatterers either. Besides, the BSC parametrization successfully identified the chondrosarcoma nuclei, which 
are approximately as small as the osteosarcoma cells. Thus the insonification frequency was not believed to be 
too low for osteosarcoma cells. These observations brought us to formulate a second hypothesis which is that 
the scattering from osteosarcoma cells may not be predominant. The LSS size distribution estimation led us to 
the same observation and attributed less than 30% to optical cell scattering in the measured spectra. We suggest 
that these results arise from the hypercellular nature of osteosarcoma tumors. Indeed, this tumor type contains 
almost no extracellular matrix (Fig. 1b) and presents contiguous cells. Thus, competing ultrasound and optical 
scattering from other structures may potentially mask the scattering signals from cells. Moreover, the significant 
size overlap among osteosarcoma cells and nuclei further complicates their discrimination, presenting an addi-
tional challenge. One should note that the effects of a high concentration of scatterer per unit volume are taken 
into account in the ultrasound scattering model PII (Eq. 4). Thereby, structural effects are not sufficient either 
to explain the failure of BSC parametrization in estimating the osteosarcoma cell sizes.

LSS and BSC inversions were performed to study the degree to which nuclei could be considered as scatter-
ers in the osteosarcomas. LSS successfully extracted the nucleus size distribution and outperformed the FFSM 
inversion results, which overestimated the nucleus size. This may be explained by the fact that the ultrasound 
frequency was not high enough for the incident wave to interact with the osteosarcoma nuclei. Indeed, the 
histological analyses show that they are smaller than the chondrosarcoma nuclei. As a result, the products of 
wavenumber by scatterer radius are equal to kaOs = 0.39 and kaCh = 0.65 at 38 MHz.

In summary, the BSC parametrization and EBS appear as relevant tools for discriminating tumor types. 
Moreover, these techniques detected signal contrasts even among samples that present similar cellular morpholo-
gies. Thus, they might provide biomarkers that are invisible to conventional histological diagnostic markers. To 
estimate the microstructure sizes, the BSC parametrization was complementary to LSS for the study of chon-
drosarcomas. The first technique was more accurate in the estimation of the mean cell sizes while the second 
method led to a more efficient extraction of the nucleus size distribution. We argue that these results arise from 
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the correspondences between the simple microarchitectural structures of the chondrosarcoma and the basic 
geometries assumed in the scattering models. Conversely, identifying the cell size in highly cellular media such 
as osteosarcoma tumors appears more challenging due to their geometrical cell contiguity and the competing 
scattering from other microstructures. However, in both cases, LSS can provide valuable insights into the cell 
size distributions and can quantify the scattering contributions of each object.

Thirdly, potential limitations associated with the present study can be discussed. Light scattering spectroscopy 
correctly estimated the nucleus size distribution for both tumor types using a certain value of the maximum 
scatterer radius allowed in the inversion procedure. The numerical stability of the previous solution was inves-
tigated by varying the maximum scatterer radius values. The osteosarcoma solutions appeared relatively more 
robust than the chondrosarcoma solutions. Indeed, any rmax values taken within the interval [16.50 µ m , 17 µ m] 
lead to satisfying and reproducible estimations of the osteosarcoma nucleus size distribution. The observed 
amplitude of this interval is ten times smaller for the chondrosarcoma. To understand the observed instability 
of the chondrosarcoma solution, the LSS spectra shape could be analyzed (Fig. 8a). The osteosarcoma spectra 
appear smoother than the chondrosarcoma spectra, which show a brutal variation around 570 nm. To mitigate 
the influence of Rayleigh scattering, the LSS spectra are multiplied by �4 prior to differentiation with respect 
to � . Consequently, the experimental noise in the LSS spectra gets strongly amplified in the signal processing 
required to estimate the scatterer size distribution. This could explain the poor stability observed for the chon-
drosarcomas. In brief, the LSS analytical procedure initially described by Fang et al.16 appears useful to mitigate 
Rayleigh scattering and to justify the rmin value. However, it also introduces a significant increase in experimental 
noise, particularly at high wavelengths. The precise estimation of the nuclear size distribution using LSS is chal-
lenging, and we argue that this tool should be more robust for classification applications. Indeed, the measured 
LSS spectra exhibit significant variations (Fig. 8a). This observation aligns with findings from the latest studies. 
Recent papers investigated the use of a diagnostic parameter based on the differences between LSS spectra from 
normal and dysplastic sites7,20 to detect precancerous lesions. This simple approach led them to outperform the 
specificity and the sensitivity of recently commercialized optical tools7.

Finally, the points discussed above brought us directions for future investigations. The contribution of opti-
cal scattering by cells and nuclei brought by LSS covers a great potential that deserves further consideration. As 
observed in this study, the cell scattering percentage may reflect the volume fraction of the extracellular matrix 
within the tumor. Consequently, LSS has the capacity to not only provide size measurements but also to esti-
mate the cell density. Considering that cellularity is of prime interest to pathologists, this additional capability 
enhances the value of LSS in diagnostic applications. Moreover, an estimation of the cell volume fraction by LSS 
would be of great benefit in BSC fitting procedures. Indeed, ultrasound scattering models are parameterized 
by multiple independent coefficients that can include the volume fractions. In the fitting procedures conducted 
here, the volume fractions were set to a fixed value considered to be known a priori. Using one LSS output as an 
input for the BSC parametrization could avoid this hypothesis. Hence, this optical method can be beneficial for 
the spectral-based ultrasound technique, additionally to providing complementary information. This makes our 
approach a promising bimodal application for tumor characterization. As opposed to discrete scatterers, biologi-
cal samples can be considered as continuous random media to encompass their complexity. Under this assump-
tion, the three-parameter Whittle–Matérn function can describe the refractive index correlation function21. It is 
possible to take the EBS analysis one step further and to extract refractive index-related parameters as described 
in Radosevich et al.13. This approach has the potential to provide robust tumor characterizations without making 
assumptions on the scatterer geometries. For the ultrasound measurements, insonification at higher frequencies 
could induce scattering from small structures such as the osteosarcoma nuclei, making them potentially detect-
able through inversion procedures. Future studies will investigate these points.

In conclusion, the two quantitative ultrasound and the two optical techniques brought complementary param-
eters that reflect the underlying tissue microstructure for different tumor types. The estimated morphological 
parameters were found to be sensitive to the cellular and nuclear scales. These promising findings lead us to 
conduct an ex vivo animal longitudinal study to assess the sensitivity of this bimodal technique for treatment 
monitoring applications.

Materials and methods
Animal models
In this study, the use of chondrosarcoma and osteosarcoma tumors is motivated by their different microstruc-
tures. Characterizing these tumors appears as a way to validate our bimodal method with the aim of establish-
ing a proof-of-concept. Given that the inner mechanisms of our methods probe the tissue microstructure, our 
approach could potentially be applied to other types of tumors and to healthy tissues.

The experiment was approved by the ethical committee CECCAP (Comité d’éthique en expérimentation 
animale de la Région Rhône-Alpes, registration number C2EA15, Lyon, France) and by the the ethical committee 
ACCESS (Comité d’éthique en expérimentation animale commun Centre Léon Bérard - Centre de Recherche 
en cancérologie de Lyon, CE010, MESR number: #35086). All methods were conducted in agreement with the 
established guidelines and with the European and French regulations. This study is reported in accordance 
with ARRIVE guidelines. For all surgical procedures, pre-analgesia was induced by a subcutaneous injection 
of buprenorphine (0.05 mg/kg) (ECUPHAR, Belgique). All tumor implantations were performed on anesthe-
tized animals (isoflurane/oxygen, 2.5%/1.5%, v/v) (Minerve, Esternay, France). Five chondrosarcomas tumors, 
hereafter referred to as Ch1–Ch5, were grafted on 25-d-old Sprague–Dawley rats. Tumor fragments (10 mm3 ) 
were transplanted on the right posterior tibia of the rats after periostal abrasion22. The osteosarcoma models 
were established by injection of 1× 106 MOS-J (Os1 and Os2) or K7M2 (Os3 and Os4) suspended cells23. Tumor 
progression was monitored twice a week by palpation and caliper measurements until it reached a 500–600 
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mm3 volume for all tumors. The animals were then euthanized by CO2 inhalation and the tumors were removed 
for optical and ultrasound imaging, which were performed the same day. Then, the tumors were embedded in 
formalin-fixed paraffin-embedded blocks before undergoing histological analyses. Tumor slices were H &E 
and Ki67 stained through an automated procedure and scanned to obtain microphotographs. The histological 
parameters were analyzed using Qupath (software version 0.3.2) to estimate the size distributions of osteosarcoma 
cells and all nuclei. Osteosarcoma microstructures were measured using H &E images, while chondrosarcoma 
nucleus sizes were evaluated using Ki67 images. Following segmentation with the automatic detection tool, the 
radii of cells and nuclei were extracted by assuming the circularity of the detected objects. For chondrosarcoma 
cells, MATLAB (software version R2020b) and H &E microphotographs were employed to detect cells within 
bounding boxes. The sizes of the bounding boxes were halved to obtain a characteristic size, considered as the 
radius. The cell size distribution for each animal was then fitted to a Ŵ-distribution to extract the mean radius 
a and the Schulz width factor z. As an approximation, the volume fractions of both the cell and nucleus were 
assumed equal to the surface fractions24. The surface fraction represents the ratio of the mean intercepted areas 
of the object of interest to the total surface area analyzed. An average volume fraction was considered for each 
tumor type. Only Ch3 and Ch4 contributed to the estimated volume fraction for chondrosarcomas.

Quantitative ultrasound
Ultrasound backscatter coefficient parametrization
The Backscatter Coefficient BSC represents the tissue’s ability to backscatter the acoustic energy as a function of 
the frequency f. The BSC parametrization entails in extracting scattering parameters (e.g. the scatterer radius a) 
from the BSC measurements. To achieve this, analytical models are fitted to the BSCs through inversion proce-
dures. A first approach involves fitting the BSC expressed in dB as a linear function. This simple procedure leads 
to ultrasound parameters known as the ’Lizzi–Feleppa’ coefficients: the intercept, the slope and the midband 
value. As the midband value is not independent of the other coefficients, only the slope and the intercept were 
analyzed in this study. More sophisticated models are also used for tissue characterization. Indeed, in biological 
media considered as sparse (i.e. relatively few scatterers per unit volume), the theoretical BSC can be expressed 
as the product of the BSC in the Rayleigh limit and the Fluid-Filled Sphere form factor FF as follows:

where k is the wavenumber, n the scatterer number density, x the sphere radius, Vs(x) =
4
3
πx3 the scatterer 

volume, γz = z0−z
z  the relative impedance contrast between scatterers and the surrounding medium, N the 

probability density function. In the case of monodisperse scatterers, the integral in Eq. (1) gets simplified and 
the BSC is then expressed as a function of the following parameters of interest: the volume fraction φ = nVs , 
the scatterer radius a ( x = a in this case) and γz . Hereafter, the Fluid-Filled Sphere model (FFSM) will refer to 
the following analytical expression:

where j1 is the spherical Bessel function of the first kind of order 1. However, the previous BSC expressions do 
not cover the case of dense media. Indeed, it can be assumed that the scatterer position correlation increases 
with their concentration11. When the scatterers are not randomly spatially distributed, structural effects affect 
the ultrasound backscattering and the BSC is no longer the incoherent sum of the contributions of each scatterer. 
To take this concentration effect into account, the incoherent signal BSCin can be modulated by a structure fac-
tor S. The analytical expression of S(k) for polydisperse scatterers (Polydisperse II model) can be found in Han 
et al.11. In the Polydisperse II (PII) model, the scatterer size distribution is assumed to follow a Ŵ-distribution :

where Nz is the probability density function, a the mean scatterer radius, z the Schulz width factor (the higher 
z is, the narrower the distribution). In summary, Han et al.11 provided an expression to model the ultrasound 
backscattering of polydisperse scatterers in concentrated media based on a Fluid-Filled sphere form factor. Under 
these assumptions, the BSC is a function of the following parameters of interest: the scatterer mean radius a, the 
Schulz width factor z, the volume fraction φ and the relative impedance contrast γz . Hereafter, the PII model 
will refer to this BSC model:

Ultrasound envelope statistics
While the BSC parametrization extracts spectral-based parameters, envelope statistics (ES) entails in estimating 
the attributes of the envelope statistical distribution of the backscattered signals. This procedure leads to addi-
tional scattering parameters. The Probability Density Function (PDF) of the measured envelope can be fitted with 
a Nakagami distribution model to extract the scaling factor � and the Nakagami parameter α . The scaling factor 
� is equal to the mean backscattered intensity25 and α can be used to quantify the effective number of scatterers 
per resolution cell9. If A is a random variable that follows a Nakagami distribution, then:

(1)BSCin(k) = n

∫ ∞

0

k4Vs(x)
2γ 2

z

4π2
FF(k, x)N(x)dx

(2)BSCFFSM(k) =
3φak2γ 2

z

4π
j21(2ka)

(3)Nz(x) =
1

z!

(

z + 1

a

)z+1

xze−(z+1) xa

(4)BSCPII (k) = BSCin(k)SPII (k)
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Implementation of QUS techniques
The sample was insonified with focused waves using two linear probes (MS250S, LZ400, Vevo LAZR scanner, 
Fujifilm VisualSonics) centered at 21 MHz and 30 MHz, allowing tissue characterizations over the 13–24 MHz 
and 18–38 MHz frequency ranges respectively. The use of a high-frequency probe makes the successful char-
acterization of small objects (i.e. nuclei) more likely since the Mie scattering region is targeted ( ka ∼ 1 ). A 3D 
scan was performed and consisted of 10 B-mode images spaced out 0.1 mm away from each other with three 
focals located at 6, 8 and 10 mm for osteosarcomas and 10, 12 and 14 mm for chondrosarcomas. Each scan was 
composed of 1536 RF lines and imaged the tumor over 15 mm in the lateral direction. Regions of Interest (ROI) 
were 15� long in both directions and were located at a relatively shallow depth (1–1.5 mm). Our reference phan-
tom was composed of polyamide particles of diameter 5 µ m (Orgasol 2001 UD, Arkema) at the relative mass 
concentration of 0.25% in a gel that contains agarose (2%, Sigma) and water. The number of independent ROIs 
used or averaged for each technique is shown in Table 1. The sample attenuation was estimated using a standard 
substitution method26. The BSC for each ROI was estimated using the reference phantom method27. Then, the 
BSC estimations from each frame were averaged for the MS250S probe and the LZ400 probe (Fig. 2a). A b-spline 
fit was then performed to merge the BSC estimations from the two probes11. When applying a linear model to the 
measured BSCs, linear fits were filtered out based on their resulting Pearson correlation coefficient using a thresh-
old value R2

min = 0.60 . This procedure removed less than 5% of the collected data. The inversion procedure was 
performed using the Matlab function fminsearchbnd by minimizing the squared error between the experimental 
data and the expected model with the following constraints: (a, z) ∈ [0.1 µ m , 100 µm] × [1, 120] . Multiple seed 
values for a and z were tested. The volume fraction φ was either set to the nucleus or the cell volume fractions.

The scaling parameters � from the Nakagami distribution were obtained using a maximum-likelihood esti-
mator. The estimates � can be corrected for attenuation and diffraction effects as suggested in Mamou et al.9 
(Eqs. 9 and 10). The correction then allows the comparisons between the ultrasound-based parameters from ROI 
located at different positions. In this study, envelope parameters have been extracted from the RF data acquired 
in the 18–38 MHz range.

Light enhanced backscattering spectroscopy
Theory
Enhanced backscattering spectroscopy (EBS) entails in extracting the sample spatially resolved diffuse reflectance 
p(rs) , rs being the relative spatial separation between the entrance and exit point of multiply-scattered photons 
in the sample. This quantity is also known as the radial point spread function. This reflectance profile can be 
seen as an optical tissue signature. Indeed, p(rs) is extremely sensitive to the phase function in the subdiffusion 
regime ( r < l∗s  , l∗s  being the transport mean free path)6,13. This can be explained by the fact that the photons that 
correspond to this regime have undergone few scattering events.

Under the approximation of a semi-infinite medium irradiated by light plane waves, the reflectance profile 
and the EBS peak are linked by the Fourier transform. The EBS peak is a 2D angular intensity peak in the exact 
backscattering direction. It results from constructive interferences between all the time-reversed path-pairs pho-
tons. Experimentally, a CCD camera can detect this angular intensity distribution. An inverse Fourier transform 
then gives the effective reflectance profile peff (rs) which represents the modulation of p(rs) by other functions14:

where FT denotes the 2D Fourier transform, xs and ys the Cartesian coordinates associated with rs , pc the phase 
correlation function which represents the ability of forward and reversed photons to interfere, s a modulation 
due to finite illumination spot size, c the spatial coherence function and mtf the imaging system’s modulation 
transfer function.

Implementation
Figure 10 illustrates the experimental setup used for EBS and LSS. The description of the EBS experimental 
setup can be found here28. Briefly, a broadband laser source emits a collimated beam that is directed towards the 
tumor. The visible power (400–850 nm) was set to 25 mW. The beam is shaped into a circular spot with a diam-
eter of 1.8 mm using an iris diaphragm, ensuring compliance with the Nyquist sampling criterion as described 
in Radosevich et al.6. The non-polarizing beamsplitter has a 50:50 ratio. The tissue sample is immersed in an 
aqueous solution of glycerol, which has a refractive index similar to that of the assumed tissue refractive index 
(n = 1.38). To minimize the presence of speckle noise, a motor is used to rotate the sample gently. The analyzer is 
parallel to the polarizer to select the co-polarized channel. A Fourier lens (focal distance of 50 mm) focuses the 
light onto a CCD camera. The camera (Thorlabs 340M, not depicted in the diagram) detects the backscattered 
light filtered at a wavelength of 700 nm (filter FWHM of 10 nm). The camera pixels have dimensions of 7.4× 7.4 
µ m. This configuration allows an angular resolution of 8× 10−3 °. The outlines of the data processing steps 
suggested by Radosevich et al.14 were followed. In a few words, the sample image was background-substracted 
and normalized by the total unpolarized incoherent intensity measured from a reflectance standard (SRT-99-
050, Labsphere). Then, the incoherent baseline was estimated from a plane fit using data from an annular ring 

(5)� =E[A2]

(6)α =
E2[A2]

Var[A2]

(7)IEBS(θx , θy) = FT{peff (xs , ys)} = FT{p(xs , ys) · pc(xs , ys) · s(xs , ys) · c(xs , ys) ·mtf (xs , ys)}
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spanning from 0.9° to 1° away from the maximum peak intensity. Then, the incoherent baseline was subtracted 
from the sample image. To mitigate the effect of unwanted systematic reflection in a half plane, the sample images 
were mirrored with respect to the horizontal axis that passes through the intensity peak. The rotational averages 
of the 2D Fourier transform images led to the effective reflectance profiles. The use of a laser and the co-polarized 
channel enables us to consider pc and c ≈ 1 (Eq. 7). Calibration measurements finally allow the extraction of 
the sample reflectance profiles from the effective reflectance profiles by estimating the product of mtf and s. The 
exit radii were restricted to the range where the reflectance profiles were above the noise level (i.e. p(rs) values 
for rs close to the iris diameter29). Tumor size allowed us to perform five EBS measurements corresponding to 
different positions for the chondrosarcoma tumors and one EBS measurement for the osteosarcomas (Table 1).

Light scattering spectroscopy
Theory
Light Scattering Spectroscopy (LSS) aims to analyze the elastically single scattered photons and can be used to 
extract the scatterer size distribution F. The size distribution is estimated from the sample differential polariza-
tion signals �I , which isolate the single scattering component. This quantity is somewhat the optical equivalent 
of the BSC mentioned above. LSS models the detected spectrum as the incoherent sum of the contributions of 
each scatterer7.

where � is the wavelength, nre the relative refractive index between the scatterer and the surrounding medium, 
Ĩ(�, r, nre) the LSS spectrum of a single scatterer of radius r, rmin the radius threshold below which Rayleigh 
scattering is considered as dominant (typically 100 nm), rmax the maximum scatterer radius, F(r) the scatterer 

(8)�I(�) =

∫ rmax

rmin

Ĩ(�, r, nre)F(r) dr +
CR

�4
+ ǫ(�)

Figure 10.   Experimental setup; P: polarizer, Ir: iris diaphragm, M: mirror, B: beamsplitter, A: analyzer, L: 
Fourier lens, Ab: absorbing material. The detection block was substituted by a filter wheel and a monochrome 
camera for EBS.

Table 1.   Degree of averaging and number of underlying independent measurements per technique. 
Independent measurement refers to ROI for ultrasound techniques* and sample position for optical 
techniques† . Checkmarks refer to the following number of ROIs: 36 (Ch1), 75 (Ch2), 88 (Ch3), 51 (Ch4), 24 
(Ch5), 23 (Os1), 27 (Os2), 61 (Os3), 45 (Os4).

Method Independent Measurements Mean per animal Mean per tumor group

BSC estimations*, Fig. 2 �

Linear model* (18–38 MHz), Fig. 3 a �

ES*, (18–38 MHz), Fig. 3b �

EBS† , Fig. 4a 5 per Ch., 1 per Os.

EBS differences
† , Fig. 4b Ch : 5 ; Os(K7M2) : 2 ; Os(MOS-J) : 2

PII* (13–24 MHz), Fig. 5 �

FFSM* (24–38 MHz), Fig. 6 Ch : 274 ; Os(K7M2) : 50 ; Os(MOS-J) : 106

PII* (13–38 MHz), Fig. 7 � (Os. only)

LSS† , Figs. 8 and  9 Ch : 11 ; Os(MOS-J) : 3
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size distribution, CR an unknown constant proportional to the number of Rayleigh scatterers and ǫ(�) the experi-
mental noise.

Implementation
Fang et al.16 describe the analytic procedure to extract F. The intensity Ĩ(�, r, nre) can be computed using Mie 
theory with the Python module miepython. �I(�) is obtained by subtracting the co-polarized signal (A and 
P ||, Fig. 10 ) with the cross-polarized signal (A and P ⊥ ) after background subtraction and white standard 
normalization30. Experimentally, �I(�) was measured over the range 550–700 nm with 32 spectral points using 
a hyperspectral camera (HERA VIS-NIR, Nireos). However, the relevant information in the LSS spectra is con-
tained within the low frequencies16. We confirmed this observation by injecting the size distributions extracted 
from the histological analyses into the forward LSS model. Similarly to what was done by Fang et al.16, 16 points 
were kept to resolve the differential polarization signals across the 550–700 nm range. The resulting spectral 
resolution was 9.3 nm (Fang et al.16 used 8.9 nm). Multiple acquisitions were realized to measure the LSS spec-
tra from different positions for each tumor (Table 1). The relative refractive index nre was set to 1.06 to target 
the nuclei/cytoplasm refractive index variation16,17. The surrounding medium refractive index was assumed to 
be 1.3813. During the acquisitions, the samples were submerged in an index matching solution with the same 
refractive index as the surrounding medium. To minimize the coherent signal in each spectral image, the angular 
intensity was integrated within a ring spanning from 1.0° to 1.5° for each wavelength. To mitigate the effect of 
multiple scattering, LSS spectra with a mean degree of polarization DOP (DOP = ( |I� − I⊥|/|I� + I⊥| ) above 
0.35 were selected. This threshold lead us to take into account 11 out of 14 measured spectra for the chondro-
sarcomas and 3 out of 7 spectra for osteosarcomas (MOS-J type only). This part of the image corresponds to 
what EBS considers as the incoherent baseline. Eq. (8) was multiplied by �4 prior to differentiation with respect 
to � to mitigate the influence of Rayleigh scattering16. The resulting equation was solved using a linear least 
squares algorithm with a non-negativity constraint applied to F. The minimum radius for the size estimation 
rmin was set to 100 nm. While rationales can be found in the literature to justify the rmin value and the number 
of points to reconstruct F, the choices of rmax values appear to be predominantly arbitrary. Yet, this parameter 
has an important physical meaning since it corresponds to the largest scatterer contribution “allowed” in the 
differential polarization spectrum. Hence, multiple matrices Ĩ(�, r, nre) with different maximum radii rmax were 
computed. The different rmax values were limited to around 17 µ m to include the chondrosarcoma cells and to 
ensure a sufficiently fine radius resolution capable of distinguishing the size distribution of osteosarcoma nuclei 
from that of chondrosarcoma (about one micron).

This study focused on a single rmax values because the estimation of the size distribution F is extracted from 
the precomputed LSS spectrum matrix Ĩ(�, r, nre) . The implementation of this look-up table approach results in 
computational times of only a few seconds, thus enabling real-time inversions. Hence, a unique and common 
Ĩ matrix was used to characterize the two tumor types, leading us to the assumption that the relative refractive 
index between the nuclei and the cytoplasm is equal to the one between cells and the extracellular matrix.

LSS has been initially developed to probe the nucleus size distribution. However, we make the hypothesis 
that cells could be involved in the scattering process, particularly in media with abundant extracellular matrix. 
Indeed, Mie Theory describes the interaction of light of discrete spherical scatterers in a homogeneous sur-
rounding medium. Therefore, cells could be considered as scatterers within the extracellular matrix, analogous 
to how nuclei scatter the electromagnetic incident plane wave within the cytoplasm. Therefore, we took the LSS 
analysis one step further using the estimated size distributions. To account for both the nucleus and the cell 
scattering, linear combinations of the nucleus and the cell histological histograms were computed for different 
nucleus weight values wnuc , defined such as wnuc = 1− wcell . The optimized nucleus weight was then extracted 
by minimizing the root mean squared error (RMSE) between the estimated LSS solution F and the newly com-
puted histogram for each tumor type.

Cell mitochondria can also scatter light31. However, Ghosh et al.32 measured mitochondria sizes in sarcoma 
cells and reported a longest dimension of 161 nm. Given the 700 nm excitation, the ka product can be estimated 
at ka = 0.7 at maximum, indicating scattering at the frontier between the Mie and the Rayleigh scattering regions. 
The Mie scattering of large mitochondria could appear in the estimated scatterer size distribution (minimum 
radius of 100 nm) while smaller mitochondria are considered as Rayleigh scatterers and therefore have their 
influence mitigated through post-processing treatment. Consequently, the scattering of mitochondria is not 
expected to interfere with the nucleus scattering of interest due to their size smaller in comparison.

Data availability
The datasets collected and analyzed during the current study are available from the corresponding author on 
reasonable request.
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