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5CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France.

2023

Abstract

Modelling transient combined heat transfer in complex urban geometry is a key
step to predict human exposure or energy consumption and to quantify the effect of
climate change mitigation and adaptation measures. A difficulty lies in the possibil-
ity for a model to scale up and integrate large and complex urban morphology. We
develop a probabilistic approach to solve heat transfers with the Monte Carlo method
that is insensitive to the complexity of both the urban geometry and the boundary con-
ditions. The integral formulation that includes random walks for each heat transfer
mode is presented and the computation of absorbed solar irradiations at walls with the
double randomization technique is detailed. Numerical validations are given through
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comparisons with deterministic method results for single and two-layer slabs, but also
a three-dimensional thermal bridge geometry. The developed probabilistic heat trans-
fer model is then used in a demonstration heat wave scenario where are computed:
the outdoor mean radiant temperature showing the influence of trees; and the indoor
average wall temperature showing the influence of solar gains through windows.

• Coupled Monte Carlo method for conduction-convection-radiation problems

• Use of ray-tracing, walk-on-sphere and double randomisation techniques

• Introduction of direct and diffuse solar irradiations in the probability method

• Numerical validations in 1D and 3D urban geometries

• Temperature computations in 3D urban morphology with trees for heat wave condi-
tions

Coupled heat transfer; Monte Carlo; Solar irradiation; Indoor and outdoor human thermal
comfort; Building energy consumption; Thermal inertia
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1 Introduction
Human health [6] and energy consumption [19] are affected by the city microclimate,
specifically during heat waves where their impacts are enhanced by the local climate5

change associated to a growing urbanization and population density [4]. Adaptation mea-
sures should be found to avoid vulnerability to extreme heat by limiting urban temperature
rise and improving resilience of the city fabric. Numerical evaluations of such adaptation
measures represent a difficult task requiring to consider the atmospheric boundary layer
and the city complexity where heat and mass transfers are strongly coupled between a10

large diversity of materials and spatio-temporal scales [2, 31].
To tackle this challenge, physical deterministic (mesh-based) models have been de-

veloped that may be classified in three complementary families covering different spatio-
temporal scales: (1) Urban canopy models [14] simulate the urban surface energy bal-
ance assuming a simplified urban geometry (e.g., an infinitely-long street canyon [20])15

in numerical weather prediction, regional and global climate models [23]; (2) Urban mi-
croclimate models associated with building energy models are used to predict building
performances [5] and outdoor pedestrian thermal comfort [28]; (3) Heat transfer models
(e.g., finite volume or finite element methods) are used to evaluate or optimize building
envelopes [13] and component thermal performances [10]. Characteristic space and time20

increments decrease from first to third family and the most refined results are used to de-
velop and validate coarser approximate models. This upscaling methodology is subjected
to approximations or parametrizations hypothesis which may be validated by experimental
measurements presenting increasing uncertainties with the spatio-temporal scales. Thus,
there is a lack of numerical methods that support accurately the scaling up and can be25

applied on this range of scales (i.e., from mm to m and km) to numerically validate the
assumptions and parametrizations.

Although it is well-known that the Monte Carlo method (MCM) [11] can solve linear
integrals whatever the domain size and number of dimensions, it has only recently been
foreseen to solve for the temperature with a single MCM algorithm where conduction-30

radiation-convection [12] are coupled. Early studies at steady-state [7, 16] and transient
[27] regimes have demonstrated the ability of MCM algorithms to solve for conductive,
advective and radiative heat transfers in three-dimensional porous media with opaque
solid surfaces and transparent fluid subdomains. Indeed, the heat transfer equation in a
solid, with Robin’s boundary condition (RBC), has been coupled to the radiative trans-35

fer equation (RTE) trough the double randomization technique (DRT) [21] allowing one
to build conduction-advection-radiation random paths represented as broken lines linking
the sources to a probe calculation point. Although, the physical concepts are well estab-
lished, it is very recently that the theoretical framework was exposed by Tregan et al. [29]
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in case of transient heat transfer in adjacent semi-transparent fluid and solid subdomains.40

Tregan et al. [29] established the probabilistic thermal model in linear situations when
the Green’s functions are known, that includes a recursive coupling of each heat transfer
mode. This approach was also generalized to unknown propagators by translating each
heat transfer mode into stochastic processes and using Feynman-Kac’s formula. The same
recursive structure was found for the probabilistic heat transfer mode couplings. More-45

over, using the same framework in steady-state regime, Ibarrart et al. [17, 16] added the
resolution of advective heat transfer in fluid subdomains enclosed by opaque solids. They
also demonstrated that the MCM approach was insensitive to the geometry size. Indeed,
this new approach has benefited practically from the computer graphics advances in im-
age synthesis with MCM techniques [22] by the public release of efficient free software50

which guaranty independence between the MCM algorithm and the complex data repre-
sentation while insuring fast access to data and the ability to manage large and complex
three-dimensional (3D) geometry [32]. In addition, Penazzi et al. [24] showed that the
MCM algorithms developed to solve coupled heat transfers may be used to estimate and
store propagators when heterogeneous and transient sources are known. This enables re-55

using propagators to evaluate their corresponding probe temperatures when the sources are
different leading to a drastic reduction of computation time. However, in the specific ap-
plication of urban physics, the outdoor and indoor absorbed solar irradiations are unknown
sources that originate from direct and diffuse solar irradiations but also from multiple re-
flections within the complex geometry. Thus, to solve coupled heat transfers in urban60

environments with a single MCM algorithm that is insensitive to geometrical refinements,
the existing theoretical framework [29, 17, 24] should be enriched with a model for solar
sources and their coupling to thermal heat transfers.

The purpose of this article is to present a new probabilistic model based on the theo-
retical framework of Tregan et al. [29] to solve linearized transient conduction-radiation65

problems with RBC in complex 3D urban geometry including Lambertian and specular
surfaces where solar irradiations are unknown and need to be calculated with MCM. Only
sensible heat transfer through solids is considered and not the one originating from mois-
ture heat and mass transfer [18]. Nevertheless, the proposed model will allow one to
consider new scientific questions by unlocking the feasibility of new simulations in com-70

plex and large urban geometry. To illustrate the model capabilities, a heat wave scenario is
chosen as a demonstration case where key variables of the outdoor human thermal comfort
and building energy consumptions are computed accounting for detailed tree geometry or
indoor solar gains.

In Sect. 2, the MCM algorithm involving the mixed random walks is presented with a75

detailed description of the solar flux density management at urban geometry walls. Section
3 gathers the 1D and 3D numerical validations and Sect. 4 demonstrates the ability of the
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proposed model to compute temperatures involved in the evaluation of outdoor comfort
and energy consumption during a heat wave scenario.

2 Probabilizing coupled heat-transfer and solving with a80

Monte Carlo algorithm
The goal of the present heat transfer model (HTM) is to compute:

• either a probe temperature for a solid material in an urban environment, where the
probe temperature may be defined as the solid temperature at a specific location or
as a surface or volume average temperature;85

• or an infrared radiance temperature, i.e. the intensity of radiation at a given location
in a given direction, spectrally integrated over the whole infrared.

In this model, transient conductive heat transfer (HTE, Eq. 1a) is considered inside each of
the solid parts of the system (e.g., walls, windows, ground). They are divided into subparts
where the solid properties are uniform and isotropic. As far as radiation is concerned, solid
media are either transparent or opaque (no semi-transparent media). Each solid sub-part S
is defined as occupying a domain DS . At the initial time τI the solid is isothermal within
each sub-part at a temperature noted TI (Eq. 1b). The boundary ofDS is noted ∂DS and is
potentially split into three parts: solid-solid (∂DS ,S ) or solid-fluid (∂DS ,F) interfaces, and
parts with a Dirichlet boundary condition (∂DS ,D). For the Dirichlet boundary conditions,
the boundary temperature is known and is noted TD (Eq. 1c). On ∂DS ,S , the model for the
interface is flux continuity, i.e. equalling the conductive fluxes in the two adjacent solids
(Eq. 1d). On ∂DS ,F , the model for the interface is also a flux continuity, this time equalling
the conductive flux inside the solid with the sum of the convective and radiative fluxes on
the fluid part, leading to a Robin boundary condition (RBC, Eq. 1e).

∂

∂t
Ts(x⃗, t) = α∆Ts(x⃗, t), x⃗ ∈ DS , t > τI , (1a)

Ts(x⃗, t) = TI , x⃗ ∈ DS ∪ ∂DS , t ⩽ τI , (1b)
Ts(⃗y, t) = TD(⃗y, t), y⃗ ∈ ∂DS ,D, t > τI , (1c)
ks,1 ∇Ts(⃗y, t) · n⃗1 = ks,2 ∇Ts(⃗y, t) · n⃗2, y⃗ ∈ ∂DS ,S , t > τI , (1d)
ks ∇Ts(⃗y, t) · n⃗ = q̇F (⃗y, t) + q̇R(⃗y, t) + q̇o(⃗y, t), y⃗ ∈ ∂DS ,F , t > τI , (1e)

where α =
ks

ρsCp,s
is the solid thermal diffusivity; ks, the thermal conductivity; ρs, the

density; Cp,s, the specific heat capacity; n⃗, the local outward normal (subscripts 1 and 2
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stand for two adjacent solids in perfect contact). The RBC (Eq. 1e) includes q̇F , the rate of90

heat transfer by convection, q̇R, the net exchange rate of heat transfer by thermal radiation
(linearized), and q̇o, the absorbed solar irradiation that is the sum of the direct (q̇o,d) and
diffuse (q̇o,r) solar irradiations.

q̇F (⃗y, t) = hF (⃗y, t)
[
TF (⃗y, t) − Ts(⃗y, t)

]
, (2)

q̇R(⃗y, t) = hR(⃗y)
[
θR(⃗y, t) − Ts(⃗y, t)

]
, (3)

q̇o(⃗y, t) =
∫ +∞

0
dλ
∫

2π
dΩ(ω⃗)

∣∣∣ω⃗ · n⃗∣∣∣ ε(⃗y, λ) Io(⃗y, t,−ω⃗, λ). (4)

The expression of q̇F (Eq. 2) is given by the Newton’s Law of Cooling involving the heat
transfer coefficient by convection hF and a homogeneous fluid (air) temperature TF . Two
types of fluid temperature will be considered. The first one corresponds to the atmospheric
air temperature surrounding the buildings and provided by meteorological data, TF ≡ TF,e.
The second one is the temperature of the fluid inside an enclosure (closed habitation room)
assumed perfectly stirred, TF ≡ TF,i. Although an additional model may be formulated to
compute TF,i, such as a function of a given heating system inside each room, these room air
temperatures are assumed known in this study. q̇R (Eq. 3) is formulated with an expression
similar to Eq. 2 but the radiative temperature, θR, is unknown. Indeed, after a linearization
of the net exchange rate of thermal radiation between the surface and its environment,
Eq. 3 is obtained that includes the radiative temperature, θR, which is the integral of the
radiance temperature over the hemisphere solid angles. For conciseness, the derivation of
Eq. 3 and the integral formulation of θR is not replicated but may be found in the work of
Penazzi et al. [24] and Bati et al. [3] (and also in Tregan et al. [29] for semi-transparent
media). The absorbed solar irradiation is also unknown and its expression is given in Eq. 4
involving the unknown incident solar radiative intensity Io. To compute q̇R and q̇o the RTE,
Eq. 5a, and its boundary condition, Eq. 5b, should be solved in transparent media (DF)
between opaque surfaces:

ω⃗i · ∇I(x⃗, ω⃗i, λ) = 0 , x⃗ ∈ DF , (5a)
I (⃗yi,−ω⃗i, λ) = ε(⃗yi+1,−ω⃗i, λ) Ib(⃗yi+1, λ) +∫

2π
dΩ(ω⃗i+1) ρ′′(⃗yi+1,−ω⃗i| − ω⃗i+1, λ)×

|ω⃗i+1 · n⃗i+1| I (⃗yi+1,−ω⃗i+1, λ) , y⃗ ∈ ∂DS ,F . (5b)

with ρ′′ the reciprocal bidirectional reflection distribution function (BRDF), ε the mate-
rial directional emissivity, and Ib the Planck’s law of blackbody radiative intensity. The95

numbering of the positions and directions follows a reverse radiative path as depicted in
Fig. 1b. Most of the surfaces are considered Lambertian (DL

S ,F , Eq. 7) and some are as-
sumed specular (DF

S ,F , Eq. 8) to represent window glasses. In addition, the BRDF may be
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expressed as the product of an angular function ( fρ) and a reflection probability (Pρ):

ρ′′(⃗yi+1,−ω⃗i| − ω⃗i+1, λ) = fρ(⃗yi+1,−ω⃗i| − ω⃗i+1, λ) Pρ(⃗yi+1,−ω⃗i+1, λ), (6)

ρ′′L (⃗yi+1, λ) =
1
π
ρ∩∩(⃗yi+1, λ), (7)

ρ′′F (⃗yi+1,−ω⃗i| − ω⃗i+1, λ) =
δ
(
ω⃗i + R⃗

(
−ω⃗i+1, n⃗i+1

) )∣∣∣ω⃗i+1 · n⃗i+1

∣∣∣ F (⃗yi+1,−ω⃗i+1, λ), (8)

Pρ(⃗yi+1,−ω⃗i+1, λ) =

 ρ∩∩(⃗yi+1, λ), for Lambertian surfaces,
F (⃗yi+1,−ω⃗i+1, λ), for specular surfaces,

(9)

where ρ∩∩ is the hemispherical-hemispherical reflectivity, δ is the Kronecker delta, R⃗ is the100

specular direction, and F is the Fresnel reflectivity dependent on the incident direction.
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(a) Representation of random paths starting at an outdoor wall with RBC to compute
Ts(⃗yi)

(b) Examples of solar direct and diffuse sub-
paths

Figure 1: Schematic representation of conductive, thermal and solar radiative sub-paths:
(a) Sub-path realizations for direct and diffuse solar irradiations, absorbed at y⃗i, are drawn.
A path starting at y⃗i is chosen randomly among conductive, convective and radiative heat
transfer modes (Eq. 10). A floating WOS is depicted. When crossing the interface between
solid 1 and 2, a position in the solid 2 is randomly chosen and the path terminates at an
indoor RBC where the room air temperature is retained (TF,i); (b) The sky (Dsky) and the
urban geometry (DS ,F) form an enclosure filled with a transparent medium where radiation
is multiply reflected. The Sun’s surface (Dd), Lambertian and specular reflecting materials
are also represented. A realization of q̇o,d (⃗y0) is drawn with a realization of q̇o,r (⃗y0) that
includes a shadowed direct contribution at y⃗1, a specular reflection at y⃗2 and a path ending
in the sky
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The resolution of the presented HTM requires to solve for the HTE (Eqs. 1a-1e) cou-
pled to resolutions of RTE (Eqs. 5a-5b) for thermal and solar radiative heat transfer. Tregan
et al [29] have shown that a probe computation of the solid temperature by MCM may be
done through the sampling of heat paths that explores the domain backward in time until105

reaching a known source. If Ts(⃗y0, t0) is the quantity to estimate (with y⃗0 ∈ ∂DS ,F and
t0 > τI), the MCM algorithm will draw N realizations of the MCM weight Wk to build an
estimate T̃s of Ts and its associated standard error:

Ts(⃗y0, t0) ≈ T̃s(⃗y0, t0) =
1
N

N∑
k=1

Wk,

σ̃T̃s
=

1
√

N

√√
1
N

N∑
k=1

W2
k − T̃ 2

s (⃗y0, t0).

The approach adopted by Tregan et al [29] and Penazzi et al [24] leads to follow mixed
random walks including conductive and radiative sub-paths until a known temperature
is reached and accounting for known surface or volume flux densities along the paths.
Indeed, conductive sub-paths were followed with a δ-sphere technique and the radiative
sub-paths were tracked with standard ray-tracing. An important step of the approach is the
probabilization of RBC, Eq. 1e, that makes possible the connection of sub-paths:

Ts(⃗y, t) = PC Ts(⃗y − δbn⃗, t) + PF TF (⃗y, t)

+ PR θR(⃗y, t) +
q̇o(⃗y, t)

hT
,

y⃗ ∈ ∂DS ,F , t > τI , (10)

where δb is the reinjection length ([29, 24]), PC, PF and PR are probabilities associated
respectively to the contribution of conduction, convection and radiation:

PC (⃗yi, t) =
ks(⃗yi, t)
δb hT (⃗yi, t)

, PF (⃗yi, t) =
hF (⃗yi, t)
hT (⃗yi, t)

, PR(⃗yi, t) =
hR(⃗yi, t)
hT (⃗yi, t)

,

hT (⃗y, t) =
ks(⃗y, t)
δb

+ hF (⃗y, t) + hR(⃗y, t).

The last term of Eq. 10 is unknown and involves the absorption of solar radiation by the
solid surface. For a known local flux density on solid surfaces, Penazzi et al [24] accounted110

for it by increasing the MCM weight with its values, each time the interface is visited
by the random walk. In this study, we use DRT to account for the unknown solar flux
absorption at RBC surfaces. Thus, each time a RBC is visited by the random walk, only

one realization of
q̇o(⃗y, t)

hT
is accounted for and increases the MCM weight by a quantity
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Wo,k. Thus, the MCM weight may be formulated as:115

Wk (⃗y0, t0) = H(tn ⩽ τI) TI + H(tn > τI)
{
H(⃗yn ∈ ∂DS ,D) TD(⃗yn, tn) +

H(⃗yn ∈ ∂DS ,F) TF (⃗yn, tn) + H(⃗yn ∈ ∂Dsky) Tsky(⃗yn, ω⃗n, tn)
}
+Wo,k,

(11)

with n the index at path end after n jumps of the random walk (conductive and radiative),
and H(·) is a test function. Its value is unity if the condition is fulfilled and zero otherwise.
In Eq. 11, the first test is used to manage the initial condition. Indeed, at the end of the
kth path, a known temperature has been reached. If the conductive path, that goes back in
time, reaches τI , the first test function is unity, and zero otherwise. If the initial time is not120

reached, then additional tests are involved in Eq. 11 to identify where the path ends: at a
solid boundary (Eq. 1c), in the fluid or in the sky.
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~y ∈ ∂DS,F

R 6 PR

~y ∈ ∂DS,F

PR<R6PR+PC

TF

Radiative path
sampling ~y ∈ ∂Dsky

Tsky

Start from
camera
~x0 ∈ DF

Conductive
path

sampling
(WOS)

t 6 τI

TI

Start from
solid

~x0 ∈ DS

Interface
identification
(PC , PF , PR)

Start from
interface
~y0∈∂DS,F

~y ∈ ∂DS,D

TD

Absorbed
solar

irradiation
(q̇o,d, q̇o,r)

Yes

Yes

No

Yes

Yes
No

Yes

No

No

No

Figure 2: Flowchart of the backward MCM algorithm used to compute one realization of
a MCM temperature estimate in an urban geometry. Three starting locations are given in
blue rounded squares: inside the solid, or inside the fluid (camera), or at an interface. Four
temperatures at path ends are given in red rounded squares: initial, sky, fluid or Dirichlet’s
boundary temperatures. Green diamonds specify a condition with two outcomes (Yes/No).
Orange rectangles stand for specific algorithms, which generate radiative or conductive
paths, or identify the reached interfaces where the double randomization may occur. The
red rectangle represents the evaluation of solar contributions
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The full algorithm flowchart associated with each MCM realization is depicted in Fig. 2
and includes possible starting points (inside the solid, at an interface, or from a camera),
the conditional steps with the recorded solar flux densities along the conduction-radiation125

random path and the temperatures at path ends. At an interface having a RBC (∂DS ,F), the
MCM algorithm will sample a realization of the interface temperature (Eq. 10) based on
the probabilities, i.e., TC, TF , or θR. If TF is sampled, the MCM algorithm stops because
the fluid temperature is assumed known. In the other cases, DRT allows us to evaluate
the unknown temperature by starting a conductive or radiative path. If Ts(⃗yi − δbn⃗i, t)130

is sampled, a conductive sub-path is started at y⃗i − δbn⃗i (see Fig. 1a). In the developed
model, the floating random walk-on-sphere (WOS) technique is used for the conductive
random walk with an absorbing thickness parameter ϵb [15, 26]. Alternatively, if θR(⃗yi, t)
is required, the random walk is followed with a multiple reflection path (ray-tracing) in
the urban geometry. As previously stated, the absorbed solar flux is evaluated with DRT135

leading to start a sub-path for q̇o,d and another one for q̇o,r. Figure 1a presents the paths
belonging to different heat transfer modes and starting at a wall boundary with a RBC.
The next paragraphs present the integral formulation for the solar fluxes leading to the
expression of Wo,k.

2.1 Absorbed solar irradiation140

The integral formulation of q̇o is best solved with a MCM algorithm [11] that accounts
for multiple reflections as well as spectral and directional optical properties [30, 8]. In
the presence of Lambertian surfaces, an improvement of the MCM algorithm convergence
may be reached by adopting a splitting of the solar radiative intensity:

Io(⃗y0,−ω⃗0, λ) = Io,d (⃗y0,−ω⃗0, λ) + Io,r (⃗y0,−ω⃗0, λ), (12)

with Io,d the radiative intensity coming directly from the Sun without any change of direc-145

tion and Io,r the radiative intensity of the solar radiation being scattered or reflected at least
once. The solar irradiation absorbed is then split into two components, direct (q̇o,d) and
diffuse (q̇o,r):

q̇o,d (⃗y0, t) =
∫

dλ
∫
∆Ωd

dΩ(ω⃗d)
∣∣∣ω⃗d · n⃗0

∣∣∣ ε(⃗y0, λ) H(⃗yd ∈ ∂Dd) Io,d (⃗y0,−ω⃗d, λ), (13)

q̇o,r (⃗y0, t) =
∫

dλ
∫

2π
dΩ(ω⃗0)

∣∣∣ω⃗0 · n⃗0

∣∣∣ ε(⃗y0, λ)
(
H(⃗y1 ∈ ∂Dsky) Io,sky(⃗y1,−ω⃗0, λ)

+ H(⃗y1 ∈ ∂DS ,F) Io,r (⃗y1,−ω⃗0, λ)
)
,

(14)

where ∆Ωd is the Sun’s solid angle. Figure 1b shows, at point y⃗0, a direct contribution
from the Sun (∂Dd) in direction ω⃗d inside the Sun’s solid angle ∆Ωd. The expression of150
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q̇o,r includes the solar radiation resulting from multiple scatterings in the atmosphere and
from multiple reflections by the urban opaque surfaces (see Fig. 1b).

2.2 Absorbed direct solar irradiation
The direct normal irradiation (DNI), Do, is the direct solar radiative flux density incident
on a surface oriented perpendicularly to the Sun’s centre direction (n⃗ ≡ ω⃗S un):

Do(⃗y) =
∫

dλ
∫
∆Ωd

dΩ(ω⃗d)
∣∣∣ω⃗d · n⃗

∣∣∣ Io,d (⃗y,−ω⃗d, λ).

The Sun’s solid angle being small, Io,d is assumed constant in ∆Ωd. Thus, an integral
formulation of q̇o,d, that can be solved with a reverse MCM algorithm, may be given by:155

q̇o,d (⃗y0, t) =
∫

pNo(λ) dλ
∫
∆Ωd

pΩd (ω⃗d) dΩ(ω⃗d) Wo,d (⃗y0), (15)

Wo,d (⃗y0) = H(⃗yd ∈ ∂Dd) ε(⃗y0)
∣∣∣ω⃗d · n⃗0

∣∣∣ Do(⃗y0). (16)

The MCM weight Wo,d (Eq. 16) includes a test that determines the shadowing from direct
solar radiation. Equation 15 is formulated with probability density functions (PDF) that
are used for the spectral and directional samplings:

pΩd (ω⃗d) =
1
∆Ωd
, pNo(λ) =

ε(⃗y0, λ)
ε(⃗y0)

pΛo(λ), pΛo(λ) =
Io,d (⃗y0, λ)
Io,d (⃗y0)

.

2.3 Absorbed diffuse solar irradiation
The diffuse solar irradiation includes the multiple reflections of the direct Sun’s radiation
and the sky solar radiation (see Fig. 1b). The multiple scattered solar radiation in the
atmosphere is assumed known and given by a solar sky model (e.g., the all-weather sky
model from Perez et al. [25]) defining spectral and directional solar intensities Io,sky coming160

from the sky (∂Dsky). To simplify the formulation, the sky diffuse solar radiative intensity
is assumed to have the same spectral behaviour as the solar direct radiative intensity. This
leads to separate its spectral and directional dependency: Io,sky(ω⃗, λ)≡ fsky(ω⃗) Io,d(λ). Then,
Eq. 14 may be reformulated,

q̇o,r (⃗y0, t) =
∫

pNo(λ) dλ
∫

2π
pΩ(ω⃗0) dΩ(ω⃗0)

(
Wo,sky +

H(⃗y1 ∈ ∂DS ,F) Io,r (⃗y1,−ω⃗0, λ)
) (17)
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with the following expression of the diffuse solar intensity,165

Io,r (⃗yi+1,−ω⃗i, λ) =
∫

2π
dΩ(ω⃗i+1)

∣∣∣ω⃗i+1 · n⃗i+1

∣∣∣ ρ′′(⃗yi+1,−ω⃗i| − ω⃗i+1, λ) Io(⃗yi+1,−ω⃗i+1). (18)

Expressing the BRDF with Eq. 6 and using the solar intensity splitting (Eq. 12) for Lam-
bertian surfaces only, Eq. 18 may be reformulated as:

Io,r (⃗yi+1,−ω⃗i, λ) = Pρ
[

H(⃗yi+1 ∈ ∂D
L
S ,F)
∫
∆Ωd

pΩd dΩ(ω⃗d) WL
o,r,d (⃗yi+1) +∫

2π
p f dΩ(ω⃗i+1)

(
Wo,sky(⃗yi+1) + WF

o,r,d (⃗yi+1) +

+ H(⃗yi+2 ∈ ∂DS ,F) Io,r (⃗yi+2,−ω⃗i+1, λ)
) ]
,

(19)

with the following quantities corresponding to specific contributions of the diffuse solar
irradiation:

WL
o,r,d (⃗yi) = ε(⃗y0) H(⃗yd ∈ ∂Dd)

∣∣∣ω⃗d · n⃗i

∣∣∣ Do(⃗yi), (20)
Wo,sky(⃗yi) = ε(⃗y0) π H(⃗yi+1 ∈ ∂Dsky) fsky(−ω⃗i) Io,d (⃗yi), (21)
WF

o,r,d (⃗yi) = ε(⃗y0) π H(⃗yi ∈ ∂D
F
S ,F) H(⃗yi+1 ∈ ∂Dd) Io,d (⃗yi), (22)

and directional PDFs:

p f (⃗yi+1,−ω⃗i,−ω⃗i+1, λ) = fρ(⃗yi+1,−ω⃗i| − ω⃗i+1, λ) |ω⃗i+1 · n⃗i+1|, pΩ(ω⃗0) =
|ω⃗0 · n⃗0|

π
.

The diffuse solar intensity (Eq. 18) includes a recursivity through Io,r, which highlights170

the reversed multiple reflection path. The other terms represent the sources of diffuse
solar radiation that occur at each reflection and at the end of the sub-path. WL

o,r,d stands
for the additive contribution of direct solar radiation reflection on Lambertian surfaces
along the diffuse solar radiative sub-path. At path end, Wo,sky represents the diffuse sky
solar radiation. When the last reflection occurs on a specular surface and the ray ends in175

∆Ωd, the term WF
o,r,d represents the Sun’s specular reflection. It is worth mentioning that

the numerical value of WF
o,r,d (Eq. 22) may be several orders of magnitude higher than the

other quantities (i.e., Eqs. 16, 20 and 21). This can lead to convergence issues of the MCM
algorithm in the presence of specular reflections of direct solar irradiation ([8]).

2.4 Monte Carlo weight for the absorbed solar irradiation180

The previous paragraphs have detailed the integral formulations for the direct and diffuse
solar irradiations that can be computed with a reverse MCM ray-tracing algorithm. The
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expression of Wo,k (Eq. 11) that is used to estimate the absorbed solar irradiations along
the conductive-radiative random walk, can now be obtained:

Wo,k =
1
hT

no∑
j=1

{
Wo,d (⃗y j) +

( nr, j∑
m=1

H(⃗ym ∈ ∂D
L
S ,F) WL

o,r,d (⃗ym)
)
+

Wo,sky(⃗ynr, j+1) +WF
o,r,d (⃗ynr, j+1)

}
.

(23)

no is the number of RBC reached where a realization of the absorbed solar irradiation185

should be computed. nr, j is the number of reflections along a diffuse solar radiation sub-
path. Thus, the MCM algorithm for the kth realization consists in recording the no direct
and diffuse solar contributions. The diffuse contribution is obtained by adding nr, j poten-
tial reflections of the direct solar radiation, and if the sub-path ends either in the sky or
as a specular reflection of the Sun, their contributions are added. After the HTM model190

presentation and the description of the probability method and MCM algorithms, the next
sections are devoted to numerical validation of the developed model and its implementa-
tion for a heat wave scenario in a complex urban geometry.

3 Numerical validation
The conductive and radiative parts of the probabilistic model will be numerically validated195

in this section. Conduction is solved with the backward MCM algorithm in three cases of
increasing geometrical complexity: 1) Case 1 considers a one-dimensional slab with a
single homogeneous layer; 2) Case 2 considers a one-dimensional slab with two homoge-
neous layers in thermal contact; 3) Case 3 considers a three-dimensional thermal-bridge
imitating a thermal bridge at a building edge. In all cases, the physical properties of each200

material are assumed constant, homogeneous and isotropic. To validate numerically the
model, materials close to the urban context are chosen. Concrete represents the building
structure and the expanded polystyrene (EPS) is chosen as a representative material for
thermal insulation (Tab. 1). In addition, the solar and thermal radiation heat transfers are
not accounted for in these first three cases. To quantify the MCM accuracy, deterministic205

methods are used to compute temperatures (Ts,re f ) considered as reference results. Thus,
a scaled difference, ∆EMC (%), between the temperatures computed with the deterministic
methods and MCM are defined:

∆EMCM = 100
Ts,re f − T̃s

Tmax − Tmin
, (24)
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Table 1: Thermal properties of materials with their thickness (d) and their reflectivity
(solar and thermal) or their refractive index (with real and imaginary parts) used in the
numerical validation cases (1-3) and for the heat wave scenario

Material
λs ρs Cp,s d Pρo PρR

(W m−1 K−1) (kg m−3) (J kg−1 K−1) (m) or (n, k) or (n, k)

concrete 1.8 2400 1000 0.4 0.8 0.2
EPS 0.035 20 1300 − − −

ground 1 1300 1900 10 0.5 0.2
glass 1 2500 900 0.005 (1.52, 0) (1.7, 0.636)
body − − − − 0 0
tree − − − − 0.2 0

where the scaling of the temperature difference is made with the maximum temperature
difference occurring in the thermal problem (Tmax is the maximum temperature and Tmin is210

the minimum temperature).
In Case 1, the thermal quenching of the slab is studied numerically by confronting the

results of a finite-difference method (FDM) and the presented backward MCM algorithm
based on the probabilized heat transfer model. The transient thermal problem of Case 1 in-
cludes Eqs. 1a, 1b and 1e. Table 2 gathers the initial, boundary and simulation parameters.215

Both slab boundaries have the same fluid temperature: TF(x = 0) = TF,i = TF(x = L) = TF,e

(with L the thickness of the slab). The temperature profiles at several times are plotted for
a concrete slab of thickness 0.2 m in Fig. 3a and for an EPS slab of thickness 0.1 m in
Fig. 3b. A uniform discretization of space and time was adopted in the FDM computation
with a spatial step ∆x and a time step ∆t given in Tab. 2. The number of MCM realizations220

N with the boundary reinjection length δb and the absorbing thickness ϵb are also given in
Tab. 2.
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Table 2: Temperatures and numerical parameters for the four validation cases and the heat
wave scenario

TI TF,i TF,e hF ∆x ∆t N δb ϵb
(K) (W m−2 K−1) (K) (K) (mm) (s) (-) (mm) (mm)

Case 1 293.15 273.15 273.15 10 1 0.72 105 ∆x δb/4
Case 2 283.15 273.15 293.15 10 1 0.72 105 ∆x δb/4
Case 3 293.15 293.15 313.15 10 10 2 105 ∆x/7 δb/4

T (K) Pρ (n, k)

Case 4

ground 300 0.5 −

walls 300 0.5 −

windows 300 − (1.7, 0.636)
sky 273.15 0 −

TI Tr TF,i Tg Tb TF,e Tsky

heat 305.211 298.15 298.15 283.15 300.15 Eq. 25 TF,e − 20

wave S i S b hF θd N δb ϵb
scenario (m2) (m2) (W m−2 K−1) (rd) (-) (mm) (mm)

33168 1.77 10 4.65 × 10−3 105 2 0.5
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(a) Temperature profiles in concrete slab (Case
1) (b) Temperature profiles in EPS slab (Case 1)

(c) Scaled differences with MCM confidence
intervals

for concrete (Case 1)

(d) Scaled differences with MCM confidence
intervals

for EPS (Case 1)

(e) Temperature profiles for Case 2

(f) Scaled differences with MCM confidence
intervals

for Case 2

Figure 3: Comparison of temperature profiles at several times (with units s) for single-
layer slabs of Case 1 (a)-(d) and the two-layer slab of Case 2 (e)-(f) obtained with the
deterministic FDM (lines) and the probabilistic MCM (markers). The scaled numerical
error (Eq. 24) and the MCM confidence intervals (3 σ̃T̃s

) are also given
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Figures 3a and 3d show very good agreement between the FDM and MCM results
for all locations and times considered. The FDM results are within the MCM confidence
interval of ± 3 σ̃T̃s

(corresponding to a confidence interval of 99.73 %). As expected, EPS225

is cooling faster than the concrete due to its lower thermal inertia (see Tab. 1).
In Case 2, a slab with two layers is considered: The first layer is constituted of EPS

with thickness 0.1 m, and the second layer is constituted of concrete with thickness 0.2 m.
At τI , both layers are at TI (see Tab. 2) and then they are considered to exchange heat
with two fluids at different temperatures: TF(x = 0) = TF,i and TF(x = L) = TF,e (with230

L the overall thickness of the slab, i.e., 0.3 m). Both sides have identical convective heat
transfer coefficients. The thermal problem of Case 2 includes Eqs. 1a, 1b, 1e and 1d.
Resulting temperature profiles inside the two-layer slab are shown at four different times in
Figs. 3e-3f and the simulation parameters for the FDM and MCM simulations are gathered
in Tab. 2. Figures 3e-3f show very good agreement between the FDM and MCM results.235

In addition, the FDM results are within the MCM confidence interval. Soon after the initial
time, EPS exhibits the largest temperature difference due to its low conductivity and low
thermal inertia. Concrete is heating up slowly but more uniformly than EPS due to its
higher thermal inertia and conductivity. The thermal problem of Case 3 is identical to case
2 but its geometry and temperature field are more complex. Geometry of Case 3 is depicted240

in Fig. 4 with two views, along +Y and −Z axis, showing the location of concrete and
EPS in a typical building thermal bridge configuration. Considering the symmetry of this
domain, Case 3 represents stacked cubic rooms with an edge of 2.4 m where the floors and
the lateral envelope are in concrete (0.2 m thickness). In each room, an internal insulation
is considered with a vertical EPS layer of 0.1 m thickness. The thermal simulation consists245

in heating the solids by convection from the external concrete envelope, while the room
internal fluid is set at the initial temperature. To produce the reference solution, a finite-
volume method (FVM) was chosen. The application chtMultiRegionFoam of OpenFoam
v9 was used to solve Case 3 with a preconditioned bi-conjugate gradient solver and a
Gauss linear corrected scheme (second order) for the Laplacian discretization.250
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(a) View in +Y axis direction (b) View in −Z axis direction

(c) Temperature field computed with OpenFoam
(−X axis view)

Figure 4: Geometry and computation results for Case 3: (a) View of the geometry and its
mesh in the +Y axis direction, while in (b) the view is in the −Z direction. The geometry
is composed of internal insulation (EPS, in black) and a structure (concrete, in blue) repre-
senting a thermal bridge in a building. The internal surfaces are the boundaries at Z = 0.1
m, X = 0.3 m, and Y = 0.3 m. The external surfaces are at X = 0.6 m, and Y = 0.6 m,
while the symmetry boundaries are at X = −0.6 m, Y = −0.6 m, Z = 0 and 1.2 m. (c)
The temperature field, in the plane X = 0.25, computed at t = 8 × 104 s with OpenFoam
is given. The external vertical boundary is located on the right while the internal vertical
boundary is located on the left. The mesh is superimposed showing the refined zone inside
the thermal bridge corner
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The unstructured three-dimensional hexahedra mesh was generated with the snappy-
HexMesh utility from triangulated surface geometry. A characteristic spatial step of the
mesh is given in Tab. 2 but a refined zone was set to halve this characteristic step that is
defined as a box with two points: [0.2; 0.2; 0] and [0.6; 0.6; 0.3]. This refined zone is best
seen in Fig. 4c where the temperature field is drawn in plane X = 0.25 at time t = 8 × 104

255

in the thermal bridge zone. The exterior fluid temperature being higher than the interior
one, heat is conducted preferentially in the concrete floor. A numerical comparison is
plotted in Fig. 5a where the whole transient temperature field is computed with Open-
Foam (e.g., Fig. 4c) whereas the MCM was used to compute solid temperatures at three
locations and several times: Two computation points are located inside the solids in the260

thermal bridge corner, one in EPS with coordinates [0.35; 0.35; 0.15] and one in concrete
with coordinates [0.5; 0.5; 0.05]; A third point is located on the external concrete wall with
coordinates [0.6; 0.5; 0.05]. The lower transient temperatures are computed at the point in-
side the insulation, while the higher transient temperatures in Fig. 5a are computed for the
point on the external wall. The plot of the scaled differences between FVM and MCM in265

Fig. 5b highlights a weak trend associated to the temperatures computed by MCM to be
slightly higher than the one computed by FVM. The values of ∆EMCM being lower than 1.5
% of the observed discrepancies may be considered acceptable and potentially attributed to
the numerical diffusion associated to FVM and/or the numerical implementation of WOS
with the parameters δb and ϵb.270
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(a) Transient temperatures for three locations
in Case 3

(b) Scaled differences with MCM confidence
intervals

for three locations in Case 3

(c) HTRDR-Urban
rendering (Case 4)

(d) Reference radiance
temperature computed with

HTRDR-Urban (Case 4)

(e) Scaled differences between
our code and HTRDR-Urban

software (Case 4)

Figure 5: Numerical validation results of cases 3 and 4: Comparison of transient tem-
peratures (a) for the thermal bridge Case 3 for three locations: Point [0.35; 0.35; 0.15] is
located in the lower part of the insulation (EPS) corner; Point [0.5; 0.5; 0.05] is located
inside the concrete part of the thermal bridge; Point [0.6; 0.5; 0.05] is located on the ex-
ternal (concrete) surface. Temperatures computed with OpenFoam are plotted with lines
and the results of MCM are given with markers. The scaled numerical error (Eq. 24)
with the MCM confidence intervals are given in (b); Rendering (c) in the visible spectrum
(0.38-0.78 µm, CIE XYZ [33]) with HTRDR-Urban [9, 8] of the complex geometry: two
parallel rows of five aligned buildings; The walls are Lambertian and the windows are
specular; Solar elevation is 45◦ and azimuth is 120◦ from north (clockwise). An infrared
geometry rendering is shown in (d) with reference radiance temperatures computed with
HTRDR-Urban. In (e) the pixel-based scaled differences between the present model and
the reference are given (each image has a resolution of 300x300 pixels)
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The three cases have demonstrated the ability of the proposed probabilistic model and
algorithm to solve conductive heat transfer with probabilized RBC in complex geometry.
Thus, the accuracy of the radiative part of the proposed model will be studied numerically
in the following Case 4. This will be done through a comparison with reference results
obtained by a MCM model validated in [8] and implemented in the HTRDR-Urban code275

[9]. A urban scene is selected for the validation and the objective is to compare the (instan-
taneous) infrared thermal renderings that involve only the radiative exchanges because all
the temperatures are set. A CIE tristimulus [33] rendering of the urban geometry is shown
in Fig. 5c. The geometry includes a flat ground and two parallel rows, separated by 15
m, of five buildings with 5 m spacings. The building heights are set to 16.7 m (5 floors),280

their lengths to 11.5 m and their widths to 7 m. All surfaces are assumed opaque. The
ground and the building walls are Lambertian, but the windows are specular. Their tem-
peratures and gray optical properties are gathered in Tab. 2. The 300x300 pixels image
of the infrared rendering computed by HTRDR-Urban is plotted in Fig. 5d. The temper-
ature of each pixel is a radiance temperature (or equivalent black body temperature) with285

N = 103 sample per pixel. Its value takes into account the multiple reflections driven by
the surface optical properties (Tab. 2) that are all at the same temperature, except the sky.
The low radiance temperatures of the ground are due to its low emissivity and the low
temperature of the sky. Between the buildings, pixel radiance temperatures present high
values due to the multiple reflections. In addition, specular surfaces present high radiance290

temperatures because their normal emissivity is high. The proposed model gives similar
results which are not shown for the sake of conciseness. Instead, the pixel-based scaled
differences are plotted in Fig. 5e. Absolute values of ∆EMCM are lower than 3%, and their
repartition in the image (Fig. 5e) highlights its origin comes from the statistical noise as-
sociated with each MCM computation (HTRDR-Urban and the present model). In this295

section, the random walks used to solve radiative and conductive heat transfers along with
the probabilization at the interfaces (Robin’s and solid-solid boundary conditions) were
validated. In the next section, the proposed model is applied to a complex urban geometry
for heat wave meteorological conditions.

4 Results for a heat wave conditions300

The ability of the probabilistic model to solve for coupled conduction and radiation (lin-
earized thermal and solar) in complex geometry will be used to obtain key quantities
needed to study urban environments.
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4.1 Geometry and simulation settings
Heat wave meteorological conditions are investigated with a geometry of aligned buildings305

(mimicking a street oriented East-West, Fig. 6) and trees. This choice is purely arbitrary
and more advanced city geometry or higher frequency weather data could be considered.
The aligned buildings are identical to those used for the validation of the radiative model
(i.e., Figs. 5c-5d), but their number is doubled to reach two rows of ten aligned buildings
(Fig. 6a). The concrete building walls, the glass windows and the ground have homoge-310

neous and isotropic thermal properties gathered in Tab. 1. The buildings and a surface
body (Fig. 6a) were created for the scenario. The tree geometry was obtained from a study
conducted with DART (Discrete Anisotropic Radiative Transfer model) in project RAMI-
V (RAdiation transfer Model Intercomparison V) [1]. Trees are aligned along the street
centre, and the trunks are separated by 8.5 m. Each 12 m high tree is made of a trunk (4 m315

high) topped with a spherical foliage of 8 m in diameter, centred at 8 m above the ground.
The foliage is made of numerous small triangular surfaces representing an average specific
surface of 0.021 m−1.
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(a) Building lines with trees and centred body
surface (S b)

(b) Temporal evolution of air temperature and
solar irradiations

(c) Thermal environment accounting for trees (d) Thermal environment without trees

Figure 6: Heat wave scenario geometry, five days weather data and radiative temperature
mappings: (a) Representation of the building rows and of the centred body geometry; (b)
Time evolution of the external air temperatures (TF,e, Eq. 25) and solar direct (Do) and
diffuse (Ho,sky) irradiations; Mollweide projection of θR onto a disc computed with MCM
giving the thermal environment around the body surface with (c) or without (d) trees for
the heat wave scenario at 1 pm the first day (corresponding to t ≈ 0.54 days). For each
pixel N = 103 leading to σT̃ R

⩽ 0.4 K for the buildings and σT̃ R
⩽ 0.8 K for the ground
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The time evolution of solar irradiations (direct and diffuse) are plotted in Fig. 6b for
the five days heat wave scenario with the external air temperatures given by the formula:320

TF,e(t) = 308.15 + 5 sin(2 π [t − 0.4]), (25)

where the units of time t is days. Each MCM simulation is computed at an observation
time relatively to the initial time τI = 0 (see Fig. 6b) which is considered to be the 21st of
June 2016 at midnight. This date, the latitude (43.479) and longitude (−1.509) are used to
compute the Sun’s direction. The transient sky model for solar radiation assumes a clear
sky with an isotropic diffuse irradiation. Ho,sky (Fig. 6b) is the diffuse solar irradiation on325

an horizontal surface. The direct solar radiation (Do in Fig. 6b) is emitted by the Sun’s disk
with half angle θd. Its value and MCM simulation parameters are gathered in Tab. 2. The
transient sky model for thermal radiation considers the sky as a black body with uniform
temperature Tsky (see Tab. 2). In this scenario, at the initial time, all the solids are at
TI . During the transient simulation, two Dirichlet’s boundary conditions (Eq. 1c) are set:330

Tg, for the ground at its thickness depth; and Tb, the body surface (Fig. 6a) temperature.
RBC are applied to the surfaces adjacent to external or internal air such as the ground, the
building walls and the window glasses. The room air temperatures in each building are set
identical and equal to TF,i. Temperatures involved in the heat wave scenario simulations
are gathered in Tab. 2.335

4.2 Mean radiant temperature and energy consumption
The key quantities to compute are the mean radiant temperature (MRT) and energy con-
sumption. MRT is related to the outdoor comfort by various indicators. It defines an
equivalent temperature for the environment of a body surface (S b), and its expression is:

T R,b(t) =
[ 1
σS B S b

∫
S b

dA(⃗y0) Hb(⃗y0, t)
] 1

4

, (26)

where the body surface considered is depicted in Fig. 6a and the total irradiation (from340

thermal and solar radiation) is given by:

Hb(⃗y0, t) =
∫ +∞

0
dλ
∫

2π
dΩ(ω⃗0) |ω⃗0 · n⃗0| I (⃗y0, t,−ω⃗0, λ).

Figure 6 shows Mollweide projections onto a disc of the thermal environment around the
body surface with and without the trees. This rendering is obtained by computing θR with
MCM for each pixel (image with resolution 300x300) with N = 103, at 1 pm the first day
of the heat wave scenario. This small number of realizations leads to σT̃ R

⩽ 0.4 K for345
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the pixels of buildings, and σT̃ R
⩽ 0.8 K for the pixels of the ground. The south being

in the middle of the right part of the disc, one can observe the effects of solar shading on
the ground temperatures caused by the buildings and the trees (Fig. 6c). In addition, south
facing building facades present higher radiance temperatures than north facing walls due
to solar irradiation. It is worth recalling the computed temperatures (θR) are not the actual350

material temperatures but the radiance temperatures. Figure 7a presents the time evolution
of MRT averaged on the body surface, i.e. T̃ R,b, in the street configuration during the heat
wave scenario and computed by MCM for each hour. The results are given with their error
bars (± 3σT̃ R,b

) corresponding to confidence intervals greater than 99.7 %. It is shown that
the trees produce a reduction of the MRT maximum values during the hottest hours, but355

also limit nighttime radiative cooling. Indeed, the trees lead to a lower rate of daytime
ground temperature increase by blocking solar radiation, but also reduce radiative cooling
towards the sky at night.
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(a) Temporal MRT on the body surface during the heat wave scenario

(b) Temporal average internal wall temperature during the heat wave scenario

Figure 7: Temporal evolutions obtained with MCM during the heat wave scenario: (a) for
the body surface MRT (Eq. 26) when trees are considered or not (N = 105, error bars are
computed with ± 3σT̃ R,b

); (b) for the surface average internal wall temperature (Eq. 27)
with or without the solar gains coming through the window glasses, (N = 105; error bars
are computed with ± 3σT̃ s,i

, and the constant room air temperature, TF,i, is also plotted)
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To obtain the energy consumption in this heat wave scenario, the air conditioning sys-
tem should be simulated. But, in this demonstration study, only the average internal wall360

temperature (T s,i) is computed. Indeed, considering an air conditioning system that main-
tains constant the internal air temperature (TF,i, see Tab. 2), the energy consumption may
be computed by an expression similar to Eq. 2 that requires,

T s,i(t) =
1
S i

∫
S i

dA(⃗y0) Ts(⃗y0, t), (27)

and the convective heat transfer coefficient (Tab. 2) which is set constant. The compu-
tation of T s,i accounts for the solar irradiation coming through the windows. It is worth365

mentioning this quantity could also be of interest for indoor thermal comfort studies. Fig-
ure 7b presents hourly MCM computations of T̃ s,i accounting for the solar gains through
the windows or neglecting them (as if the shades were shut). When the solar gains are
computed, some error bars are very large. This is due to some realizations of the MCM
weight (Eq. 11) that are several orders of magnitude greater than the expected result. This370

could be avoided by increasing the number of realizations ([8]). Indeed, in this case, it is
due to rare events corresponding to a reflection of the direct Sun’s radiation by a specular
material (glass) during the computation of the diffuse solar irradiation (Eq. 22). Thus, it in-
volves a MCM weight proportional to the direct radiative solar intensity which is about five
orders of magnitude greater than Do. During the first day, the buildings are cooling down375

because the initial temperature was set to a high value (Tab. 2). After this period driven by
the thermal inertia of the buildings, a periodic behaviour of T̃ s,i may be recognized. When
the solar gains are considered, the temporal variations of internal wall temperature are
driven by the temporal variations of the solar heat gains. Without the internal solar gains,
a small periodicity is observed corresponding to the daily weather variation smoothed and380

shifted by the building thermal inertia.

5 Conclusion and future work
A probabilistic thermal model is presented that solves with MCM linear and transient heat
transfers by conduction and thermal radiation with RBC accounting for convection and
absorption of solar radiation in urban geometry. DRT is demonstrated suitable to compute385

unknown direct and diffuse solar irradiations in complex urban geometry with Lambertian
and specular walls. Indeed, the methodology is validated for conduction and radiation heat
transfers separately in three-dimensional urban morphologies. In addition, the developed
probabilistic method is applied to compute the influence of trees on MRT in a street lined
by buildings for heat wave meteorological conditions. The impact of solar gains on the390
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indoor wall temperatures is also quantified. Trees decrease MRT during daytime with solar
shadowing, but increase MRT during nighttime with their leaves limiting the radiative
cooling with the clear sky. Indoor solar gains increase the average wall temperatures and
the cooling effort during daytime. The influence of rare specular reflections of direct solar
radiation on MCM results has been documented.395

Future work includes improvements of the present model and applications to real cities.
Some improvements of this model could include the development of a model for the air
temperatures inside the building and to consider non-linear radiative exchanges between
surfaces. The application to real cities may also concern sensitivity studies to parameters
and the development of fast and accurate methodologies to efficiently couple this proba-400

bilistic heat transfer model to urban micro-climate fluid flow simulations.
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Blanco, Laurent Brunel, Cyril Caliot, Julien Charon, Jean-François Cornet,
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