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ABSTRACT Data generated from sources such as wearable sensors, medical imaging, personal health
records, and public health organizations have resulted in a massive information increase in the medical
sciences over the last decade. Advances in computational hardware, such as cloud computing, graphical pro-
cessing units (GPUs), Field-programmable gate arrays (FPGAs) and tensor processing units (TPUs), provide
the means to utilize these data. Consequently, an array of sophisticated Artificial Intelligence (AI) techniques
have been devised to extract valuable insights from the extensive datasets in the healthcare industry. Here,
we present an overview of recent progress in AI and biosensors in medical and life sciences. We discuss the
role of machine learning in medical imaging, precision medicine, and biosensors for the Internet of Things
(IoT). We review the latest advancements in wearable biosensing technologies. These innovative solutions
employ AI to assist in monitoring of bodily electro-physiological and electro-chemical signals, as well as
in disease diagnosis. These advancements exemplify the trend towards personalized medicine, delivering
highly effective, cost-efficient, and precise point-of-care treatment.Furthermore, an overview of the advances
in computing technologies, such as accelerated AI, edge computing, and federated learning for medical data,
are also documented. Finally, we investigate challenges in data-driven AI approaches, the potential issues
generated by biosensors and IoT-based healthcare, and the distribution shifts that occur among different data
modalities, concluding with an overview of future prospects.

INDEX TERMS Artificial intelligence, explainable AI, medical imaging, domain adaptation, biosensors,
federated learning, big data analytics, large language models.

The associate editor coordinating the review of this manuscript and

approving it for publication was Norbert Herencsar .

I. INTRODUCTION
About 10% of global gross domestic product (GDP) (10
trillion USD) is spent on healthcare annually [1]. The
recent advancements in technology, especially data-driven
methods and computational processing power can benefit,
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both the patients and the medical industry, as well as
reduce the huge expenditures. Moreover, massive healthcare
data is available from sources such as; electronic health
records (EHRs), genomics profiles, medical imaging, chemi-
cal, and drug databases. Analytical methods, especially deep
learning-based Artificial Intelligence (AI) methods, can pro-
vide the tools to design useful clinical and medical appli-
cations to process these large datasets. Data-driven methods
could offer benefits in medical record digitization, clinical tri-
als, diagnosis assistance, prognosis evaluation, and the design
of optimal prevention and treatment strategies, as well as
precision medicine, drug discovery, and health policy.

Advances in computational infrastructure have provided
the capacity to generate, store, analyze and visualize large,
complex, and dynamic datasets typical of modern biomedical
studies [2]. New treatment options are being developed and
tested in clinical trials [3]. In the last decade, artificial intelli-
gence has moved from theoretical studies to real-time appli-
cations thanks to the rise in the computational capacity of
GPUs and TPUs. Methods like AutoML [4] and explainable
artificial intelligence (XAI) [5] are advancing, which have the
potential to transform the current medical practice. However,
there are still many bottlenecks to realizing the full potential
of analytical methods in the healthcare industry. Important
challenges for data science in medicine include data collec-
tion, standardization of data formats, missing data values,
developing large and efficient computational infrastructure,
data privacy and security, and others.

For example, to deal with the small sample size issue in
medical images, generative models can be used to generate
synthetic medical images of high quality. Generative Adver-
sarial Network (GAN), a type of neural network that can gen-
erate synthetic data, can be used to generate synthetic mag-
netic resonance imaging (MRI) scans or positron emission
tomography (PET)-scan images using computed tomography
(CT) scans. A subset of images, regardless of size, is a subset
of the universal set. Using that small subset, generative mod-
els learn the probability distribution of the universal training
set. After extracting the representative features, the model
can generate high-quality synthetic images by sampling from
the probability distribution. These synthetic images can be
used to build generalized medical image analysis models for
various clinical applications.

The interrelated nature of biomedical data is one of its
most important properties. Such data can be represented in the
form of graphs. Graph machine learning allows for the mod-
eling of unstructured multimodal datasets. Graph machine
learning can model more complex relationships between
disease and patients, understand tumor micro-environment,
predict drug response, and re-purposing. Additionally, graph
machine learning coupled with attention mechanism may
provide more interpretable machine learning models than
typical traditional black-box models.

The recent breakthrough of the artificial intelligence (AI)
system Alphafold2 [6] in predicting the three-dimensional
structure of proteins solely from the amino acid sequence is

a huge success. AlphaFold2 won the Critical Assessment of
Structure Prediction (CASP) [7], the worldwide event for pro-
tein structure prediction, since 1994. Meta AI also joined the
race and developed anAI system to predict structures of about
600 million proteins [8]. However, how to translate this into
the in vivo situation is still an open question. AlphaFold2 can
predict unbound protein structures; however, most practical
applications require protein-drug complex predictions.

There have also been significant advancements in process-
ing power and biosensor technologies. For example, with
the help of parallel processing methods and powerful GPU
clusters, such as NVIDIA-DGX, we can now process massive
complex multi-dimensional biomedical datasets [9]. More-
over, wearable electronics, such as electronic tattoos (E-
tattoos), epidermal electronics systems (EES), and flexible
electrochemical bioelectronics, coupled with machine learn-
ing algorithms can be used to monitor various biomarkers in
real time [10].

As the use of AI in healthcare has been a very active
research area, several surveys were found covering this
topic [11], [12], [13]. In [11], a discussion about the use
of medical sensors with artificial intelligence is presented.
In this respect, various sensing systems and the use of AI in
medical decision-making are studied. The study in [12] pro-
vides coverage of the different wearable sensors for health-
care delivery, primarily from a hardware perspective, and
briefly highlights the benefits and challenges of AI. More
recent work [13] covers the use of AI in the internet of
medical things and its different applications concerning var-
ious algorithms. AI methods for combating various medical
diseases were also discussed. A survey about AutoML was
presented in [14].

Given the enormous progress in recent years for AI
in healthcare, an updated review will benefit the com-
munity. In this article, we present an updated survey of
the recent progress in data-driven methods for healthcare.
We specifically discuss practical applications of artificial
intelligence, biosensors, and computational infrastructure,
concerning clinical relevance. The recent methods which
have the potential to become a part of the healthcare industry,
such as AutoML [15], explainableAI [16], and Federated
learning [17] are evaluated. Moreover, existing clinical tools
and emerging AI-based start-up companies are presented.
We also highlight the existing challenges for AI in health-
care and present some potential solutions. The use of AI
for drug discovery, nano-medicine, and medical robotics is
out of the scope of this review. The survey is organized as
follows; Section II highlights applications of machine learn-
ing in various healthcare sectors. AI-based clinical tools and
start-up companies are presented in Section III. Sections IV
and V discuss applications of big data analytics and biosen-
sors, respectively. Computational advances, federated learn-
ing, and edge computing are discussed in Section VI. The
recent challenges in AI for healthcare with potential solutions
are explored in Section VII, and Section VIII concludes this
review.
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II. MACHINE LEARNING IN HEALTHCARE
Data science and machine learning have been successful in
many areas related to computer vision, such as self-driving
cars, recognizing actions, image classification, and intelligent
robots. These are well-posed tasks where the problem is
known, and the solution is verifiable. However, healthcare-
related tasks involve safety and security risks, leading to
privacy concerns. These problems are neither well-posed nor
well-defined, and their solutions can be hard to verify. Assess-
ing the risk of life-threatening disease in people infected
with the SARS-CoV-2 virus is a recent broad, complex, and
urgent problem where data science has been used to suggest
prognostic indicators from awide variety of genetic and phys-
iological markers and the presentation of symptoms [18]. Fig-
ure 1 shows an ecosystem for machine learning in healthcare
tasks. Machine learning can produce actionable insights for
clinical practice, provide recommendations to governments
for optimal health policy, and help accelerate and optimize
drug discovery and design processes. More established use
cases of different machine learning applications in healthcare
are presented in Table 1.

A. EXPLAINABLE ARTIFICIAL INTELLIGENCE
While machine learning models applied to biomedical data,
have the potential to produce clinically useful judgments, the
models, particularly deep learning, are frequently regarded
as black boxes that are difficult for humans to understand [5].
This lack of transparency leads to a bottleneck in the clinical
implementation of machine learning-based findings, as any
decision will directly affect a patient’s health. One way to
increase the transparency in machine learning predictions is
to highlight the feature importance or to visualize features
at different layers. This way, we can analyze each feature’s
importance in the prediction model and better understand
the predictions. One such method is known as Grad-CAM
visualization [19], based on the target concept’s gradients,
which flow into the final convolutional layer to build a coarse
localization map highlighting significant locations or heat
maps in the image for concept prediction. Explainable mod-
els, or explainable artificial intelligence, are needed to build
the trust of healthcare professionals.

Explainable AI methods are classified based on the com-
plexity and scope of their interpretability [20] and the level
of dependencies in the AI model. Explainability has different
levels of understanding, including interpretability, stability,
robustness, and confidence. A user can not only see but also
learn how inputs are mathematically transferred to outputs
in an interpretable system, whereas a stable system is not
misled by small perturbations or noise in the input data. The
possibility of an event occurring is measured by confidence.
The purpose is to quantify the level of confidence in the
decision [21].

Complex deep learning models are generally less inter-
pretable, and there can be a trade-off between accuracy and
interpretability. Easy-to-interpret models could be designed,

but they may compromise accuracy. Highly complex, un-
interpretable models with high accuracy that require a sep-
arate set of algorithms for interpretation are more commonly
used in XAI. Another way to explainability is to check
whether the model is agnostic or model-specific. Agnos-
tic methods are used for any machine learning algorithm,
such as neural networks and support vector machines, while
model-specific methods are limited to interpreting the spe-
cific model [22].

It is also important to consider human factors when enhanc-
ing the model interpretability, such as a medical expert,
to guarantee the interpretability and explanations of the
model. It is expected that Explainable AI will further advance
research in machine learning for healthcare as it solves the
critical challenges of healthcare, such as fairness, trans-
parency, safety, security, privacy, and trust.

1) HUMAN AND MACHINE INTERPRETABLE VISUALIZATIONS
One important aspect of Explainable AI is the use of human
interpretable visualizations that allow humans to understand
the reasoning behind AI models easily. For example, deci-
sion trees, rule lists, and other interpretable models can
be visualized in a way that is easy for humans to under-
stand. In addition to human-interpretable visualization tech-
niques, machine-interpretable visualization techniques are
also important in Explainable AI. These techniques enable
AI models to explain their predictions or decisions in a
way that is easily understandable by other AI systems. For
example, SHAP (SHapley Additive exPlanations) [23] is
a machine-interpretable visualization technique that can be
used to explain the output of complex machine learning mod-
els, such as deep neural networks.

However, deep learning models work differently than
humans, and it is difficult to interpret a model with billions
of parameters. For example, if we visualize the grad-cam
heatmap for a dog, we can see that most of the heat is
concentrated around the dog’s ears. Humans recognize dogs
by the uniqueness of their shape.

2) CAUSAL INFERENCE
Health science-related tasks demand more explanation than
mere predictions. With the abundance of data, many deep
learning algorithms just only look for correlations among
variables and make predictions or classifications without
explaining the actual cause. To be practical and utilized in
daily clinics, machine learning models must have strong
causal evidence. Severalmethods are developed to convert the
deep learning black box to a white box, for example, feature
visualization [24], gradcam visualization [25], regularization
via causal graph discovery [26], causal-aware imputation
via learning missing data mechanisms [27], domain adap-
tation [28], tools such as Shared Interest [29] and learning
generalized policies [30].

The causality can be defined in three stages. First is the
association, for example, between the training image and
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FIGURE 1. An ecosystem for machine learning in the healthcare industry. Clinical
decision support systems, policy-makers, and pharmaceutical companies can benefit
from machine learning methods.

its label. The second is intervention, which aims to predict
the outcome based on altering the system (treatment plan
or patients). The last one is counterfactual, which predicts
the output in a different condition and environment. Causal
machine learning models can guide us to make informative
and timely interventions and rethink different treatment regi-
mens and outcomes.

B. MACHINE LEARNING FOR PRECISION MEDICINE
Traditional medical models have treated an average patient
with a ‘one size fits all approach’. Precision medicine, which
takes treatment approaches based on an individual patient’s
unique clinical, genetic, epigenetic, and environmental infor-
mation, is a growing field of healthcare, and it is becoming a
viable alternative due to the increase in the amount of medical
data [31]. In Figure 2, we show a conceptual diagram for
precision medicine by utilizing different data modalities.

Data, such as a patient’s age, weight, blood pressure,
medical history, and genomic sequences, can be used by
analysis algorithms to identify hidden patterns and identify
correlations between patient profiles and disease phenotypes.
A personalized drug response model developed for non-small
cell lung cancer patients [32] used the binding free energy of
a drug-mutant complex and personal features of the patient
(age, sex, smoking history, medical history) to build a per-
sonalized drug prediction model. Extreme learning machines
were used to predict the drug response into two classes
with an overall accuracy of 95%, driven by the addition of
personal features. Personalized medicine is used for complex
diseases such as cancer, heart disease, and diabetes [33].
If it is used carefully, this technology could improve per-
formance in healthcare and potentially reduce inequities
https://www.csail.mit.edu/news/seeing-future-personalized-
cancer-screening-ai(MIT-CSAIL).

C. AI IN REMOTE PATIENT MONITORING
The combination of edge artificial intelligence (machine
learning on edge devices) and the IoTs has facilitated the

deployment of remote healthcare systems. Such systems can
monitor a patient’s vitals and other physiological parameters
in real-time while the patient remains at home and push it to
the cloud [34]. AI embedded in smart devices democratizes
healthcare by putting AI-enabled health services (for exam-
ple, AI-based clinical decision support) into patients’ homes
or remote healthcare [35]. The centralized data gathered for
the patients can be used for knowledge discovery to improve
disease prognosis or by doctors to monitor the patient and
make/update prescriptions.

Several commercial wearable devices offer services mea-
suring physiological parameters such as heart rate, ECG,
and other variables through smartwatches and biosensors.
There have been considerable targeted systems proposed as
well for a variety of ailments, including but not limited
to diabetes [36], where devices can also be used for the
management of insulin as well [37], cardiac disease through
ECG [38], sleep apnea monitoring [39] or as generic mon-
itoring platforms such as smart-monitor [40] to provide ‘a
la carte’ system based on the patient health circumstances.
Machine learning methods can then be applied to these phys-
iological signals for predictive health management.

III. CLINICAL AI TOOLS AND EMERGING AI HEALTHCARE
COMPANIES
The primary question is when AI tools will be used in ordi-
nary clinical practice to support real-time health challenges,
such as improved diagnostic and clinical decision support
systems [41]. Despite the promise of AI in solving key health-
care challenges, several issues about the usage of AI must be
addressed. In this Section, we discuss some of the practical AI
tools in the clinics, as well as AI-based emerging healthcare
companies.

A. AutoML
Machine learning models have aided the healthcare industry
by lowering costs and improving outcomes, but only a small
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FIGURE 2. A conceptual diagram for precision medicine, where different data modalities are used to find patient-specific
features and treatment plans.

number of hospitals are currently using them [4]. Healthcare
professionals likely lack the expertise to build, deploy and
integrate these models in clinical workflows. To assist the
deployment of machine learning models in daily work with
reduced input required from a data scientist or machine
learning engineer, AutoML [42], which automates machine
learning processes, has been developed. AutoML automates
fundamental steps like feature selection, model selection, and
hyper-parameter optimization, making it easier for health
professionals to develop machine learning models for clinical
data.

Generally speaking, about 80% of a data scientist’s time
is spent on data preparation and feature engineering, which
also often requires domain knowledge experts [43]. The task
is to find the most discriminative features to provide insights
into the problem and to consider learning situations that
will be difficult for the classifiers. Several machine learning
frameworks have been developed to select, rank, and optimize
feature engineering processes [44].

A popular approach is expand-reduce, which applies trans-
formation functions to obtain optimal features, and has been
implemented in [45]. Genetic programming, based on the
concept of natural evolution and a survival function, has been
used for feature construction and selection.

Hyperparameters can also affect model performance, and
optimizing them is an art that requires practical experi-
ence. Sometimes a brute force search is needed by a grid
search with a manual specification of a subset of the hyper-
parameter space. However, the dimensionality of the search
space may make this impractical. Random searches, which
sample hyper-parameter configurations from a user-defined
subset, can be limited to a specific computational budget.
Another approach is a guided search that iteratively generates
new configurations of the hyper-parameters based on the
prior performance. AutoML automates this feature engineer-
ing and hyper-parameter optimization and model selection

process. Hence, non-technical professionals can use machine
learning models to solve healthcare problems.

Auto-weka [45], another machine learning platform based
on Bayesian optimization methods, can be used to optimize
hyper-parameters and model selection [46]. Other practical
products used are Google’s cloud AutoML system, Amazon’s
Comprehend, and Microsoft’s Azure AutoML. The perfor-
mance of AutoML models largely depends on the quality
of the datasets. Adopting AutoML models in the healthcare
environment will also require overcoming their operation as
a black box.

B. AI TOOLS AND COMPANIES FOR CLINICS
The development and use of computer aided diagnosis or
AI tools in clinical practice confront several hurdles despite
the huge advancement in this new age of machine learning.
For example, medical imaging [47] is an essential diagnostic
tool for various disorders. A variety of imaging modalities
have been developed, with X-ray imaging, whole slide imag-
ing, computed tomography (CT), ultrasound, magnetic res-
onance imaging (MRI), and positron emission tomography
(PET) being some of the most widely utilized techniques.
Moreover, several publicly available imaging and biologi-
cal databases also offer excellent opportunities to build AI
systems.

For example, PathAI [48] uses AI methods to assist pathol-
ogists in clinical diagnostics, clinical trials, and clinical trans-
lational research. Similarly, Viz.ai [49] is an AI-powered
computer application to accelerate care coordination by
reducing the time delays in clinical workflows. It uses AI
to generate alerts and send them to clinicians for timely
intervention. Similarly, Freenome [50] uses AI for cancer
screening, diagnostics, prevention, and better management
of cancer. Table 2 lists the companies that are completely
based on AI tools to equip medical professionals to save
lives.
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TABLE 1. Broad categories and applications of AI in healthcare industry.

1) SaMD: SOFTWARE AS A MEDICAL DEVICE
SaMD [51] is meant to be used for one or more medical
purposes and is not part of physical medical equipment.
Since 1995, more than 500 software packages/applications
have been approved by the FDA to assist doctors in various
healthcare problems [52]. Most of these software packages
are related to analyzing radiology images. In many medical
imaging tasks, AI algorithms have outperformed humans, and
innovative companies have built AI-based systems to analyze
radiology images and digital pathology slides. For example,
Chan et al. [53] created a computer-aided diagnosis system
to identify micro-calcification on mammograms and carried
out the first observer performance research that showed how
well the developed tool improved breast radiologists’ ability
to detect micro-calcifications. Also see Table 1.

AI researchers and developers must comprehend how clin-
icians desire to be assisted with different clinical works, con-
struct efficient AI solutions, and produce interpretable results
by considering the practical concerns in clinical settings.
If properly created, verified, and applied, effective data ana-
lytics from AI technologies complement or support doctors’
intelligence to increase accuracy, workflow, and, ultimately,
patient care.

IV. APPLICATIONS OF BIG DATA ANALYTICS IN
HEALTHCARE
The healthcare system consists of multiple stakeholders;
patients, doctors, hospitals, industry, and policymakers,
which are regulated by strict compliance. Healthcare sys-
tems generate a huge amount of data at a very high speed,
which makes it a perfect avenue for big data analytics. Using
big data analytics in healthcare may enable personalized
medicine, timely interventions, better health policy manage-
ment, and planning [65].

Big data analysis systems aim to collect, clean, extract,
visualize, and analyze very large datasets and are associated
with three key concepts. These are volume (large datasets),
variety (highly dimensional/many attributes), and velocity
(the speed at which the data is generated, made accessible,
and analyzed). Healthcare datasets, usually large, complex,

and arising from various sources, offer valuable opportunities
for big data platforms [66]. For example, on average, a can-
cer patient generates 2GB of data annually in the form of
images and medical records. New experimental techniques,
such as immunotherapy, targeted therapy, omics research,
high throughput screening, and parallel synthesis [67] may
generate even larger amounts of data that require advanced
data analytic methods.

In Figure 3, we show how complex high dimensional
data from wearable sensors (ECG, Electromyograms (EMG),
Electroencephalograms (EEG)), imaging data (X-rays, CT-
Scans, MRI), electronic health records, and multi-omics
(genome, proteome, and microbiome) data are generally col-
lected and stored at a central repository, where pre-processing
and data cleaning are performed. Missing values imputation
methods may be used for further processing using statisti-
cal and machine learning methods. Centralized and mobile
applications for patients, clinicians, hospitals, government
agencies, and global health organizations can be developed.
For example, the FDA has approved Ziopatch [68], which
measures the heart rate and the ECG signal.

Multi-variate statistical methods, such as principal compo-
nent analysis and other clustering methods, can be used to
find patterns in a big dataset that may identify different dis-
ease states, mortality rates, susceptible age groups, forecast
future pandemics, and economic costs [69].

A. MULTI-MODAL DATA FUSION: A TRASH OR A
GOLDMINE
Many quantities in the universe vary co-currently. Biological
data is usually diverse, and a complete understanding of
a complex biological system may require an ensemble of
related data sets to extract hidden data dependencies [70].
However, combining these multi-modal data may result in a
goldmine or trash. It requires domain knowledge and strong
data engineering skills for efficient feature representation
and any downstream analysis. For example, in [71] showed
fusing histopathological, radiological, and clinicogenomics
information improves risk stratification for cancer patients.

1) HETEROGENOUS DATA
The vast amounts of healthcare data generated daily, such as
medical images, sensor data, medical histories, and genomic
data, are heterogeneous. Machine learning is well suited to
analyze multi-modal data and extract valuable insights.

Three major areas where multi-modal data fusion can be
useful:

• Diagnosis: Machine learning applied to health records
and medical images can assist in the diagnosis of disease
states.

• Prognosis: Applyingmachine learning algorithms to the
heterogenous data available on a patient can predict the
expected development of a disease from its early stages.

• Treatment: Optimal treatment plans can be gen-
erated by machine learning algorithms, especially
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TABLE 2. AI-based Tools and companies in the field of Medical Sciences.

reinforcement learning strategies, given the medical his-
tories of patients and the number of treatment options
available.

Medical data often consists of different data modalities
such as images, signals, text, andmolecular structures that are
likely to be related. New machine learning or deep learning
models enable us to integrate these diverse data sources, in a
data-harmonization attituede [72] to produce multi-modal
insights [73]. The extracted multi-modal features can also be
used to form a knowledge graph to provide support for clini-
cal decisions or understanding the mechanism of a specific
disease [74] or visualisation for orthopaedic surgery [75].
In Figure 3, we show how multi-modal data can be used for
different healthcare applications for patients, clinics, govern-
ment and global healthcare organisation.

The integration of multiple data types may also increase
the trust of clinicians. Since different data-modalities provide
complementary information in describing a treatment plan
or a disease process. In Figure 2, we show how different
data-modalities can be used for precision medicine. The main

goal of methods used to combine multimodal data is to com-
bine the data with values from various scales and distributions
into a global feature space, where the data may be represented
more consistently [76].

It is also pertinent tomention that inmany real-world cases,
fusing data from different data modalities may decrease the
performance. The healthcare data are produced by extremely
complex systems and instruments, including biological,
environmental, social, and psychological ones, among oth-
ers [77]. These systems are driven by a variety of underlying
processes that are dependent on a wide range of variables,
that may be not accessible in many cases [78]. In addition,
the diversity among different data types; a number of samples,
scales, and research questions further complicate the learning
process. In small clinical cohorts, it may also suffer from the
curse of dimensionality [79].

B. GENOMICS DATA ANALYSIS
Genomic datasets, facilitated by next-generation sequencing,
often contain vast amounts of raw data [80] and require big
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FIGURE 3. Big data analytics in healthcare. Learning from various data modalities in the big data environment may aid patients, clinicians,
hospitals, governments, and global health organizations. Different machine learning paradigms can be applied to analyze and visualize
biomedical data.

data analysis and computational methods. Examples are the
encyclopedia of DNA elements (ENCODE) [81] gene anno-
tation and expression data, the Cancer Therapeutics Response
Portal (CTRP) [82], which can provide insights into the action
of small molecules leading to personalized drug discovery
based on predictive biomarkers. The Cancer Cell Line Ency-
clopedia (CCLE) [83], and the Genomics of Drug Sensitivity
in Cancer (GDSC) [84] database of large scale molecular
screens on panels of hundreds of characterized cancer cell
lines demonstrates the potential of modern machine learning
algorithms to develop drug response predictors from molec-
ular profiles.

However, current data resources are inadequate for reliable
prediction of drug resistance or response [85]. Analyses of
independent cohorts may reach different conclusions, and
inconsistency between datasets and missing clinical informa-
tion can hinder predictions. Data imputation techniques may
address missing values, and the high dimensionality of the
data could be dealt with by feature filtering techniques or
sparse principal component analysis [86].

C. MEDICAL IMAGING
Deep learning can rapidly construct magnetic resonance
(MRI) images directly from sensor data of partially
observed measurements. Task-oriented reconstruction allows
the reconstruction of a specific part of the image with high
quality and a confidence score. Super-resolution images
(high-quality images or sequences built from low-resolution

images) can be constructed by deep learning, such as single
(no reference information) brain MR images built using con-
volutional neural networks (CNNs) or super-resolution using
GANs [87]. In Figure 4, we show various applications of
deep learning in medical imaging.

For MRI images, image synthesis is a method to generate
new parametric images or tissue contrasts from a collection of
images acquired in the same session. Generative adversarial
networks [88] could serve as a data augmentation tool as
medical datasets tend to have limited numbers of samples,
and they have been used to generate synthetic abnormal MRI
images for a brain tumor based on pix2pix [89], [90].

Image registration, transforming data from multiple pho-
tographs, different sensors, views, or depths to a single coor-
dinate system is used, through deep learning, for medical
image registration to improve accuracy and speed. Examples
are deformable image registration, model-to-image registra-
tion, and unsupervised end-to-end for deformable registration
of 2D CT/MR images [91].

V. WEARABLE BIOSENSORS
Wearable biosensors measure electro-physiological and
electro-chemical signals from the body. Electrical activities
emanating from various biological processes in the body,
such as human heart activity (ECG), muscle activity (EMG),
and sweat gland activity (Electro-Dermal Activity (EDA))
can be extracted from diagnostic machines or wearable sen-
sors and provide vital information about one’s health con-
ditions. Analysis methods for these data, such as princi-
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FIGURE 4. Deep learning can be used to construct medical images at high speed, and facilitate the visualization and analysis of medical images.

pal component analysis, discrete cosine transforms, auto-
regressive methods, and wavelet transforms, can extract time
and frequency domain features from the physiological sig-
nals [92]. Examples are a bidirectional deep long short-term
memory (LSTM) network based onwavelet transform to clas-
sify ECG signals [93], which achieved 99.39% accuracy on
the MIT-BIH arrhythmia database [94] and a Fourier Trans-
form and Wavelet-based feature model to classify patients
with Alzheimer’s Disease, Mild Cognitive Impairment and
Healthy subjects from EEG signals [95].

A. AI-ASSISTED DESIGN OF BIOSENSORS
In the real world, medical signal data can also be passively
gathered utilizing wearable sensors, such as smartphones or
smartwatches [100]. The traditional way of acquiring signals
has been through gel-electrodes that are placed on the body.
In addition to the use of traditional wearables such as smart-
watches and fitness trackers, recent advances in fabrication
and electronics have led to the integration of bio-sensing elec-
trodes in other devices such as eye-glasses [101], VR head-
mounted displays [102], and textiles [97].

1) EPIDERMAL DEVICES
A new stream of computing devices termed epidermal
devices allow for non-invasive capture of physiological sig-
nals through soft interactive tattoos [103], [104] (Figure 5).
These epidermal devices can measure electro-physiological
signals [97], [104] and electro-chemical signals in the
body [105]. Another factor that has contributed to the
widespread development of physiological sensing devices
is the availability of open-source prototyping kits. Proto-
typing kits and platforms such as EMBody [106], Seeed,1

OpenBCI,2 Olimex,3 BITalino4 allow for rapid prototyp-
ing of custom physiological sensing systems. In addition to
all these developments, computational tools and AI-assisted
approaches are being actively explored to automate and cus-
tomize the design of biosensing wearables. For instance,
Nittala et al. [98] developed a computational design tool built
with an integrated predictive model to optimize the design of
multi-modal electro-physiological sensing devices.

Machine Learning and Optimization Techniques for pro-
cessing Physiological Signals.

1https://www.seeedstudio.com/grove-emg-detector-p-1737.html
2https://openbci.com/
3https://www.olimex.com/Products/EEG/
4https://www.pluxbiosignals.com/

2) MACHINE LEARNING TECHNIQUES ON PHYSIOLOGICAL
SIGNALS
Employing machine learning and deep learning techniques
on physiological sensing is a commonly used approach.
In the field of human-computer interaction, machine learn-
ing techniques have been commonly used for sensing ges-
tures from EMG signals [107], identifying mood from EDA,
Electrooculograms (EOG), EMG and ECG signals [102].
Deep learning approaches are also commonly applied on
ECG data for denoising data [108], for simulating signals
and detecting heart-related anomalies [109], [110], emotion
recognition [111] or to assess mental health by analyzing
the EEG signals or to detect psychiatric disorders [112].
Classen et al. [113] detected brain activity using machine
learning on the EEG recordings of brain-injured individuals
who were clinically non-responsive, which is a predictor of
eventual recovery.

VI. COMPUTATIONAL ADVANCES
Advances in computer hardware, and architectures are
required to process highly complex scientific problems.
The growth in fast processors, multicore-chips, accelerators,
memory designs, interconnections, field programmable gate
array (FPGA) based processors, and GPUs with hundreds
of cores have made computationally intensive applications,
such as real-time image and video processing in healthcare,
possible.

A. ACCELERATED ARTIFICIAL INTELLIGENCE
Deep learning systems are often trained on multiple core
graphical processing units, which can optimize the highly
parallel matrix operations that are essential components of
deep neural networks. A recent example is the discovery
of faster matrix multiplication using reinforcement learn-
ing [114]. Google introduced a tensor processing unit (TPU)
as an accelerated artificial intelligence processor, especially
for its TensorFlow software [115].

Training of a deep neural network can be expedited by
either training more examples in parallel or training each
example faster. Operations that cannot be accelerated by
GPUs or TPUs, such as the earlier data processing stages or
input-output between devices or disks, need to be improved
in training. Data echoing [116], which reuses intermediate
outputs from earlier pipeline stages to reclaim idle capacity,
may be useful to ameliorate this.

As the quest to become a leader in AI continues, the model
sizes are increasing from millions of parameters to billions
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FIGURE 5. Wearable Biosensors: (a) biosensors in a tattoo form factor that can sense electro-dermal activity (EDA) [96].
(b) multi-modal physiological sensing tattoo that can sense ECG, EDA, and EMG signals on the forearm [97]. (c) integration of
user-interface controls e.g., touch buttons in bio-sensing tattos [97]. (d) AI-assisted fabrication and optimization of multi-modal
electro-physiological sensing devices [98]. (e) Ultra-thin and skin-conformable strain sensors on a decal transfer substrate,
employed to detect subtle human body movements [99].

of parameters (Openai GPT models). Google reported the
GLaM model with more than 1 trillion parameters (GPT-3
model had 175 billion parameters) [117]. The direct chal-
lenges associated with these models are the training cost and
the porting out to small devices. One potential solution to
enable small models to learn the behavior of bigger mod-
els is to use neural network compression techniques such
as knowledge distillation [118] or structural sparsity [119].
An analogy for this is the teacher-student relationship, where
the smaller model (student) learns from the bigger model
(teacher). A survey in [120] presents efficient hardware archi-
tectures for accelerating deep convolutional neural networks.

B. EDGE COMPUTING
Although most healthcare datasets are complex and large
and require massive computational resources (often in remote
computer clusters), processing data locally at the end nodes of
a cluster in a real-time application is appropriate for privacy
reasons or to reduce processing time and latency. The training
of the model locally on end nodes is known as edge com-
puting. In edge computing, edge (local) devices or servers
can provide data storage and processing, potentially giving
fast, secure, and real-time health analytics that may allow
timelymedical interventions. Thus, an edge computing-based
AI model could provide better healthcare for patients far
from major population centers with limited connectivity and
access. The localized processing power of edge computing
may facilitate access to medical interventions by rapidly ana-
lyzing data from smart medical sensors.

TomakeAImodels portable and compatible with prototyp-
ing, the implementation of AI models on low-power devices
is important. For example, Owais et al., [121] recently showed
the implementation of the U-Net segmentation model on the
Intel Neural Compute Stick. The work demonstrated that

inference could be obtained on the NCS with proper tuning
and suitable modifications of the U-Net model. However,
the implementation was achieved with a trade-off for per-
formance. Nevertheless, experimental results on brain MRI
images and heart MRI images showed promising perfor-
mance in terms of the dice scores for the segmentation tasks.
Hence, such inference-enabled devices can aid in the clin-
ical transformations of AI methods in real-time healthcare
settings.

C. FEDERATED LEARNING
Data privacy and protection are general requirements for
medical data, and new frameworks for training models are
required that do not expose the underlying data. One such
approach is Federated or Collaborative Learning [122], which
is a machine learning technique that trains an algorithm
across multiple edge devices or servers without exchanging
local data samples. Multiple parties, for example, several
hospitals/research centers, actively collaborate to train algo-
rithms without centralizing their datasets. In developing AI
models for medical data from multiple locations, federated
learning has recently been shown to be effective. For example,
with the rapid spread of COVID-19 globally, researchers
needed to come up with quick responses and rapid devel-
opments of mechanisms for the assessment of COVID-19
patients. Multiple institutes around the globe collaborated to
expedite AI model development for disease clinical support
systems. However, sharing COVID-19 patient data from dif-
ferent locations had ethical and legal bottlenecks that compli-
cated the process. Hence, the research community resorted to
federated learning tomake use of data from diverse sites with-
out the need for data sharing. In [123], a federated learning
model was developed to predict future oxygen requirements
for COVID-19 patients making use of clinical and radiology
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FIGURE 6. Common topologies of federated learning. (a) Client-Server. (b) Client-Client. (c) Federation of sub-federation (mix
topology). In client server topology, all the client terminals are connected to a shared servers and the updates are routed via the
server. In client-client topology, the clients can share training updates without depending on a centralised server. In mix topology,
both the aforementioned phenomena are present.

(chest X-rays) data. The model referred to as the EXAM
model facilitated the use of data from 20 different institutes
from various countries.

Federated Learning frameworks are implemented with dif-
ferent topologies (also see Figure 6). To accomplish model
training at multiple sites, the framework may execute model
training at each site independently and then share the weights
with other sites (a peer-peer topology), or the individual
sites may share the weights with a centralized server node
(client-server topology). According to the federated learning
topology, the stochastic gradient descent (SGD) optimization
of the model training is transformed into federated stochastic
gradient descent (FedSGD) [124], [125].

VII. THE RECENT CHALLENGES IN AI FOR HEALTHCARE
WITH POTENTIAL SOLUTIONS
AI has shown great promise to improve the healthcare indus-
try, and it is expanding as technology advances. However,
there are some limitations in this field that prevent AI from
being integrated into current healthcare systems. In this sec-
tion, we discuss some of the key challenges and provide
suggestions to overcome these to improve healthcare.

A. DATA ISSUES
Data availability and access are two critical success factors
for data science in healthcare. Moreover, the data quality,
sample size, labels, disparity among labels, privacy, and eth-
ical concerns, are the most prominent challenges that must
be addressed to fully exploit the potential of AI in health-
care [126]. The first principle to build robust data-driven
healthcare systems is to capture clean, accurate, and properly
formatted data for use in multiple healthcare applications.
A perspective about sharing biomedical data for strengthen-
ing the role of AI is presented in [127].

Machine learning methods can also assist in automated
labeling, anomaly detection, missing value imputation, and
other data cleaning processes [128]. For example, in [129],
deep learning is used to identify bleeding events from elec-
tronic health records. Deep learning models are frequently
used to improve the quality of radiology or pathology
scans [130] or to identify anomalies in biosensors [131].
Some IT vendors also provide automated scrubbing tools
that use logic rules to compare, contrast, and correct large
datasets.

Another issue is the widespread perception in the com-
munity that larger datasets are required to make accurate
predictions. The data quality, proper annotations, and hypoth-
esis in consultation with healthcare experts are necessary to
build robust machine learning models. The data generated by
the push of technology, without appropriate hypothesis and
domain knowledge, will remain difficult to analyze.

Data security is another top priority for healthcare orga-
nizations. Risks include high-profile data breaches, hacking,
and ransomware incidents [132]. Machine learning can be
used to make data and systems more secure. It allows security
systems to analyze and learn from patterns to help prevent
similar attacks and respond to changing behavior.

To deal with imbalanced, complex, unlabeled, and poorly
understood data, the type of learning paradigms and evalua-
tion metrics used is also important. To address these chal-
lenges and generate hypotheses for understanding complex
diseases and signaling pathway patterns, unsupervised or
semi-supervised learning can be used [133].

1) THE CHALLENGES IN DISTRIBUTION SHIFTS AND
DIFFERENT DATA MODALITIES
Many real-world clinical AI systems suffer from the training
and testing distribution shifts in the data. To deal with these
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distribution shifts, domain adaptation techniques are adopted
in machine learning. In domain adaptation, we train a neural
network on a source dataset X and achieve high accuracy
on a target dataset Y, where X and Y have different data
distributions.

Domain adaptation can be sliced down into three cate-
gories: supervised, semi-supervised, and unsupervised learn-
ing, depending on the type of data from the training dataset.
In supervised fast-expanding target dataset is substantially
smaller than the source dataset since the target domain’s data
has been labeled. While unsupervised learning makes use
of unlabelled data from the target domain, semi-supervised
learning uses both labeled and unlabelled target domain
data. As a result, deep domain adaptation was suggested
to improve the model’s performance and overcome the
issue of insufficient labeled data by utilizing deep net-
work features. Discrepancy-based, reconstruction-based, and
adversarial-based adaptation are the three main deep-domain
adaptation strategies that have been established.

In a discrepancy-based approach, the features that can
be transferred come up with drawbacks due to its delicate
co-adaptation and representation specificity. Reference [134]
has illustrated that fine-tuning can improve generalization
ability. When the fine-tuning is conducted on the deep model,
a base network is trained using source data, and the first
‘n’ layers of the target network are then used directly. The
target network’s remaining layers are randomly initialized
and trained using a loss function based on the discrep-
ancy. Finally, considering the size of the target dataset and
how closely it resembles the source dataset, the initial lay-
ers can be fine-tuned or frozen during the training pro-
cedure. Another deep domain adaptation [135] technique,
reconstruction-based domain adaptation, uses an autoencoder
to reduce reconstruction error and learn transferable and
domain-invariant representations to align the discrepancy
between domains.

Stacked Auto Encoders (SDAs) can be used to represent
source and target domain data in a high-level representation
manner [136]. However, because SDAs are computationally
expensive, the marginalized SDA (mSDA), which does not
require the use of stochastic gradient descent, was presented
in [137] to overcome the computational cost. Transfer learn-
ing with deep autoencoders (TLDA) [138] used a softmax
loss to encode the source domain’s label information. In con-
trast, the embedding encoding layer uses the KL divergence
to minimize the distance in distributions between domains.

Generative Adversarial Networks (GANs) obtain transfer-
able and domain-invariant characteristics by minimizing the
distribution discrepancy between domains. GANs are also
used in the adversarial domain adaptation techniques [139].
CoGAN was suggested in [140], which generated synthetic
target data and linked it with synthetic source data.

An approach for simulated-unsupervised learning was
established in [141], in which adversarial and self-
regularisation loss wereminimized, using unlabelled real data
to enhance the realism of synthetic images.

FIGURE 7. Domain adaptation in medical imaging.

2) CHALLENGES IN MEDICAL IMAGING
Perhaps, medical imaging is the most disruptive area where
AI hasmade tremendous progress. However, there are various
challenges in medical imaging as well [142]. Medical images
are often three-dimensional, and the three-dimensional con-
volutional neural networks to process these 3D volumes
require more memory and computational time. Generally,
researchers treat 3D CNNs as stacks of 2D CNNs. However,
adding a newer dimension adds additional constraints. Most
deep learning models are built on anonymized public data,
making privacy-related issues less relevant. However, this
does not offer a permanent solution to handle privacy-related
problems in medical imaging. One conclusion is that when
these datasets are made public, there are always associated
risks of leaking patient privacy [143].

High diversity of clinical scenarios is another challenge
in medical imaging. This is because medical imaging can
be used in various clinical situations, such as disease detec-
tion, including localization and classification and disease
surveillance. On the other hand, deep learning is also being
used for data quantification, such as pediatric bone age pre-
diction [144]. As a result, there are many different clinical
activities from the standpoint of medical imaging, and it is
challenging for one individual or model to manage all of
these operations using present methodologies. Developing
task-aware deep learning solutions is the way forward.

Another significant challenge in medical imaging is the
lack of transparency in algorithms and issues with validation
and testing. AI-based applications differ in terms of data
ingestion to output, and there is currently no established stan-
dard procedure. For example, algorithms with similar perfor-
mance may use different strategies to solve the same prob-
lem, necessitating special pre-processing techniques before
inference. As a result, scalability, which is critical in com-
mercial AI-based products, becomes difficult because each
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application may require its own server or virtual environ-
ment. The transferability of the algorithm presents another
challenge due to the stringent medical regulations in different
nations. However, there is no statistical method available to
evaluate an algorithm’s transferability. One such initiative
is the petabyte ‘medical-imagenet’ project of radiology and
pathology images by Stanford University with genomics and
electronic health record information for rapid creation of
computer vision systems(Stanford-AIMI).

The challenge of a lack of large datasets can be addressed
by image synthesis and data augmentation. Models may be
hard to generalize as the distribution of the training data, usu-
ally high-quality images, may differ from real-world clinical
data, which may cause a deep learning model to produce
unexpected results. Transfer learning, fine-tuning, or pre-
training can address this [145]. Transfer learning leverages
the weights of a network already trained on a similar task.
More emphasis might be placed on unsupervised machine
learning models to overcome sample size issues. In Figure 7,
we show the applications of domain adaptation for image
segmentation tasks.

3) BIOSENSORS AND FLEXIBLE BIOELECTRONICS: A WAY
FORWARD
Despite increasing advancements in the last few years, there
are still numerous significant obstacles to overcome before
AI biosensors for Internet of Things-based applications are
commercially mature. For commercial applications, flexible
bioelectronic materials are a key component. The human
body and its internal organisms are naturally elastic and flex-
ible. In this instance, integrating electronics into platforms
made of flexible material is required. Current soft wearables
on the skin are dominantly reliant on capturing physiolog-
ical signals and transmitting those signals to an external
computing infrastructure (e.g. mobile, laptop, etc.). Flexible
bioelectronics is advantageous to match the human body and
organs (such as skin, eyes, and muscles) with low mechanical
damage to tissues and lessen adverse effects after long-term
integration because of its exceptionally flexible mechanical
qualities. Similarly, Medical AI biosensors will play a piv-
otal role in developing key technologies in the future with
the help of nanotechnology. They will continue to advance
in miniaturization, scalability, low power consumption, low
cost, high sensitivity, multifunction, safety, non-toxicity, and
degradation [146].

4) ADAPTABILITY
Another issue is that the majority of ML-enhanced biosen-
sors currently lack adaptive learning capabilities. Biosen-
sors can learn from their surroundings with adaptive learn-
ing rather than only depending on manually input training
sets. An adaptable model continually improves and optimizes
itself by learning from the environment, unlike a non-adaptive
system. This might lessen the chance of disastrous mistakes
and erroneous results, which a single fixed model can cause.

FIGURE 8. AI- black-box model. Algorithms like Explainable AI, feature
visualization or causal inference can be used to interpret the predictions.
Gradcams visualization can highlight important regions that can build the
trust of healthcare professionals.

On the other hand, while non-adaptive ML models’ excellent
local performance may be sacrificed in the name of gener-
alisability, particularly in clinical practice, adaptive learning
provides a solution to resolve this conflict.

5) BIGDATA IN SMART SENSORS
Establishing a smart sensor system that relies on enormous
datasets and algorithms, is a significant barrier regarding the
platform for data processing and storage. In recent years,
cloud computing has been used to process sensor signals
since it offers superior computational power and data storage.
Cloud and biosensor integration is nothing new, especially
for monitoring applications where the volume of data is
continuously growing over time. The direct connection of
many sensors to the cloud is sometimes too expensive and
sluggish due to the exponential growth in the number of
sensors. Edge computing has so been introduced in recent
years. Instead of a single data centre, edge computing enables
data processing at scattered edge devices. It benefits from
great computational effectiveness, rapid network processing,
low cost, and more. Therefore, biosensors will likely use this
cutting-edge technology.

B. OPENING THE BLACK BOX OF DEEP LEARNING
A big hurdle in AI implementation is the black-box nature
of the deep learning models; in critical healthcare scenarios,
we can not fully rely on model predictions. We need inter-
pretable and transparent models to make critical healthcare
decisions. As the input data propagates through the layers of
the neural network, it gets compressed and generates some
predictors for the target label. Moreover, we do max-pooling
at each layer and drop out certain neurons in the final layers to
avoid over-fitting. Given these compressed representations,
it is difficult to explain the predictions at each level; however,
we can have a high-level idea about the inner-working of
the model. Since complex deep learning models consist of
hundreds of millions of parameters and, in our opinion, are
nearly impossible to interpret at every point.

In Figure 8, we show various methods used to explain
the working of the deep learning model. These methods
can explain the predictions to a certain level without losing
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TABLE 3. ChatGPT Applications in Healthcare.

accuracy. There is a trade-off between accuracy and explain-
able AI, which depends on the problem at hand.

In a very intriguing study [147] proposed information
bottleneck [148] to explain the working of deep neural net-
works. The information bound is the theoretical limit pro-
posed by [148], at which the model can do the best given the
set of features; no further compression is possible. The paper
suggests that most of the training epochs are spent on learning
the efficient representations of the input; the representation
compression begins when training error starts to decrease.
The model starts to converge, layer by layer, and the last layer
keeps only the most relevant features to predict the output
label.

1) MODEL FAIRNESS AND ACCOUNTABILITY
One of the challenges that the deployment of biosensors
with AI will entail is the need to ensure no biases in the
outcomes determined. Studies have shown [149], [150] that
ML algorithms can sometimes provide unequal outcomes
for different population groups, especially with populations
already under-served in society. In this regard, several steps
need to be taken and devised when working on ML applica-
tions using biosensors. These can include actions such as a
conscious inclusion of diversity in the data collection process
and developing robust policies governing post-application
performance audits to quantify the impact on vulnerable com-
munities. From a technical perspective, aspects to look for
would be logging model performance to detect drift of per-
formance in the model. Such processes included in deploying
and monitoring biosensors utilizing AI applications would

ensure healthcare professional and patient confidence in the
services offered.

C. LARGE LANGUAGE MODELS FOR HEALTHCARE
While the development of Large Language Models (LLMs)
has been the focus of researchers [151], [152], [153] for a
while relating to application towardsmachine translation, text
summarizing and paraphrasing and generation of text, the
recent release of ChatGPT [154] from OpenAI has brought
the potential use of chatbots into mainstream consumer use.
LLMs are deep learning models trained on a large amount of
textual data to cater to multiple tasks related to Natural Lan-
guage Processing. LLMs make use of complex transformer
architectures that enable it to capture longer dependencies
than is possible with typical sequential models such as RNNs.
LLMs also have the advantage of being able to be fine-tuned
for specific tasks, thereby performing well in some desired
niche or even work as the backbone for generic chatbots too
with a fine tuned performance. Infact, Open AI’s GPT-3 has
been used as the back-end of several such offerings, including
JasperChat (tailored for business use) and Poe by Quora, both
of which are based on OpenAI’s base models. The multi-
faceted use of LLMs for special domains has also been true
for the case of healthcare, medical data, as part of the used
training data corpus enables chatbots powered by LLMs to
be useful in assisting healthcare practitioners. One such way
this was performed was suggested by Wang et al. [155] who
incorporate LLMs in to a CAD system for medical images
called ChatCAD. They do this by generating prompts based
on the output of different image based classifier/segmentor
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and report generator. These outputs are converted in to a
prompt and are then passed on to the LLM so that its logical
reasoning capabilities could be used to provide better and
interactive care to patients. In order to provide a focused
discussion on the potential use of LLM based chatbots for
use in healthcare, we briefly discuss the current as well as
potential uses of ChatGPT in this section.

1) ChatGPT FOR HEALTHCARE
The OpenAI’s language chatbot ChatGPT [154] is an arti-
ficial intelligence language model that has been pre-trained
on a large corpus of text data and is capable of generating
human-like responses to natural language queries. Having
passed successfully part of the US medical licensing exam,
attesting to its capability to work with medical queries, Chat-
GPT has the potential to revolutionize clinical applications in
many ways [156]. In Table 3, we enlist several applications
of ChatGPT.

VIII. CONCLUSION AND FUTURE WORK
The use of AI and biosensors has been gaining increasing
traction in the healthcare industry for different purposes. AI-
based methods are being embraced in the healthcare industry,
where low-cost, intelligent, and adaptable methods are influ-
encing fields such as clinical decision support, diagnostics,
prevention, remote healthcare, public health policy, and clin-
ical recommendation. More user-friendly machine learning
technologies, such as AutoML, ClinicalAI, patient-centricAI,
and explainable AI, are required to boost the confidence of
healthcare stakeholders and to make machine learning an
integral part of daily clinical practice. Combining biosensors
and imaging data, or other data modalities, may increase the
model performance, as well as the confidence of clinicians.

In this regard, this review provides researchers and health
practitioners with an overview of the state of technology in
this area, both from a technical and clinical perspective. Var-
ious applications of AI towards diagnosis, prognosis, treat-
ment as well as monitoring have been discussed, along with
traits related to explainability and the tools useful in clin-
ical practice. Moreover, technologies that enable the usage
and development of biosensors for healthcare applications
have been presented. Lastly, open research issues and chal-
lenges related to biosensor-based healthcare systems have
been talked about, which require further work.

AI has great potential to transform the healthcare systems
and improve the lives of patients and health professionals.
However, clinical AI implementation is currently on a smaller
scale due to trustworthiness, lack of coordination, data col-
lection and privacy issues, and patient reluctance. We need
to develop patient-centric AI systems and build the trust
of health professionals in this exciting technology. AI can
only assist health professionals and improve lives, and in no
way can it replace them, of-course nobody would like to be
treated with a robot. AI, in any sense, can not replace the
human touch, which is the essence of every field. AI and
clinicians should work in synergy to maximize the benefits

for patients. In this regard, this article will guide further
research and development in AI for healthcare. Given the
enormous amount of data and processing power available
today, we expect an increasing role of AI and biosensors in
the clinics that will augment or help healthcare professionals
and reduce their workload.
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