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ABSTRACT

Spectral unmixing decomposes an hyperspectral image into a collection of reflectance spectra of the macroscopic
materials present in the scene, called endmembers, and the corresponding abundance fractions of these constituents. The
purpose of this paper is to compare the performance of several algorithms that process unsupervised endmember
extraction from hyperspectral imagesin the visible and NIR spectral ranges. After giving an analytical formulation of the
observations, two significantly different approaches have been described. The first one exploits convex geometry the
problem answers to. The second one is based on statistical principles of Independent Component Analysis, which is a
classical resolution of the Blind Source Separation issue. First, the performance of the algorithms are compared on
synthetic images and sensibility to noiseis studied. Then the best methods are applied on part of a HyMap image.

Keywords. Hyperspectral imagery, spectral unmixing, unsupervised endmember extraction, Independent Component
Analysis.
1. INTRODUCTION

Hyperspectral sensors provide images which are usually acquired in a few hundred wavelengths simultaneously. After
atmospheric correction, the visible and near infrared spectral radiances are converted into pixel reflectance spectra.
Consequently, each pixel is characterised by a reflectance measurement vector. Generally, several macroscopic
components, called endmembers, are present in the scene: soil, vegetation, water, human buildings, etc. Their spectral
signatures contribute to the observed spectra of the pixels. Spectral unmixing is the procedure by which the spectrum of
each pixel is decomposed into a series of pure spectra and their respective abundances. The analytical model which is
chosen to describe the observations intrinsically determines the techniques that can be implemented to perform spectral
unmixing. The most commonly used model is linear [5]. It constitutes a good approximation in this context, that isto say

the reflective spectral domain ranging from 0.4 um to 2.5 um. It assumes that the spectrum Xp of apixel pin L

bandsis alinear combination of the spectra S of the M pure materials that appear in the scene. It can be written:

M
M=;%S
i=
where
= X, =[%,(Ds-, X, (L)] isa1X L vector which denotes apixel with L spectral bands,
« S =[s®,..,s(L)] isthe 1x L spectrumof thei" material (i =1..M ),
api
With obvious matricial notations, it follows:

isthe fraction of the i™ material in the p™ pixel.

X =AS (2)
Since coefficients a,, represent proportions, the model has two following additional constraints:
a; =0, i=1.M
v =1..N
z a, =1 P=4
i=1
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To solve equation (1) where both A and S are unknown, two kinds of approaches have been already suggested. The
first one calls upon convex geometry principles the problem answers to and is going to be described in the second
paragraph. The second one, dealt in the third paragraph, is funded on blind source separation, a technique that proved
reliablein the fields of acoustics, biomedical, etc.

2. THE SPECTRAL UNMIXING, A CONVEX GEOMETRY ISSUE

The spectra of observed pixels can be represented in an L -dimensional scatterplot, the hyperspectral space, as points
whose coordinates are L -tuples of reflectance values. If the previously defined mixing model is correct, it can be shown
that the dataset of the observations does not occupy all this hyperspectral space. More precisely, there is a link between
the number of endmembers which appears in the image and the dimension of the subset really occupied by the data: the
pixels of an image where M materials are present form a M -simplex, that is to say the simplest geometric shape that
encloses a space of dimension M —1. For instance, a 2-simplex is a segment, a 3-simplex is a triangle (Fig. 1), a 4-
simplex is atetrahedron, etc. Moreover, the vertices of this simplex are the sought endmember spectra.

A

Band j

v

Band i
Figure 1 : A simplex in 2-dimension space
According to the considerations of the last paragraph, to determine the number of constituents present in the image,
unknown a priori, it is sufficient to find the dimension of the space really occupied by the dataset.

A dimension reduction via Principal Components Analysis (PCA), which consists in looking for the high variance axes,
allows decreasing the number of bands in an image to be one less than the number of endmembers. This classical pre-

processing step allows projecting the data vectors onto the Principal Component Space. Let X bethe L X N matrix
which collects the spectraof the N pixels of theimagein L spectral bands. The data are centered:

Y =X, _Yi
. L
where X; =—Z X, isthe empirical average of each observation.

k=1
The variance/covariance matrix of the centered dataisdefined by : C, =YY",

A 0

Let A be the diagonal matrix formed by the eigenvaluesof C, : A = with 4, 2...2 4,

and V the Lx L matrix of the eigenvectors V, (1x L vector): V =

The spherised dataare: Z = AVY .
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Several approaches can be used to determine the number of bands to be retained after the PCA. We chose the following
one. Since the eigenvectors are sorted according to the magnitudes of the eigenvalues, most of the information is
contained in the first components which are thoses with largest variance. Taking bands in decreasing order of their
eigenvalues until their sum be higher than a predefined threshold 77, for instance 99%, the number of bands are reduced

significantlyto M —1:

=L+/1M‘1><100.
A+t A

2.1 N-FINDR algorithm

The vertices of the simplex defined by the dataset are the sought spectra. Two algorithms have been tested to estimate
them. The first algorithm, called N-FINDR [9], looks for the “largest” simplex that could be inscribed inside the data. It

assumes that the endmembers are present among the mixed pixels. Let S’ be the augmented matrix of the pure
components:
T 1

A

A S,
\
1

S'=

R« O
. A

where §=5"=[8,..8,]"=[s(®)....5(L)]" is the column-vector that contains the spectrum of the i
component inthe M —1 bands retained by the PCA. It can be noticed that é+ isasguared matrix.
The volume of the simplex formed by these pure constituents isafunction of the determinant of S* :

v(§)= o 1)I‘detS*

Therefore, the procedure consists in searching the set of M pixels with the largest possible volume. The agorithm has a
finite complexity since the number of iterations is the combinatory number Ch’;f if N isthe number of pixelsin the
image.

2.2 ICE algorithm
The second algorithm, “Iterative Constrained Endmembers’ [2], has a more statistical nature. It is based on estimations

Sand api of the parameters§ and ay; - A natural ideaisto minimize a quadratic error criteria defined by :
N~ 2
- ZHXp %y
where X, Zapls and 3% =[X, - X H - x ()= X, ()2
It deals with aleast square minimisation issue. The sol ut|ons of this problem are all the M -simplex which encloses the
dataset formed by the observations. It is necessary to introduce a regularisation term to take into account the size of the
simplex. Instead of using the volume of the simplex, which would require too much computation time due to the

computation of the determinant, another measure of the size is used : it is the sum of the squared distances between the
vertices of the simplex. Then, the quantity to be minimised is:

= > {(X() - AxS())T (X (1) - Ax (1)) + 2S(1) x DX S())]
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3. THE SPECTRAL UNMIXING, A BLIND SOURCE SEPARATION ISSUE

For a decade, alot of publications have focused on Independent Component Analysis, and more generally Blind Source
Separation, because it represents a efficient means to resolve problem of mixing/unmixing. The issue can be formulated
in the following way [3] :

N stochastic processes or observations, noted ()(i )izl..N , result from a linear mixing of M stochastic processes or

sources, noted (3) . Thelinear transformation isnoted A. It can be written :

x@ - x(L) a, - ay |s@ - s(b)

i=0..M

Xy (1) XN(L) Ay o Aww A Su (1) SM(L)
X(@t)=AS(t) o X=AS,
where X (t) = [%,(t),..., X, (1)]" and S(t) =[s,(1),...,s, (1)]" .

The aim of the blind source separétion is, starting from the known observations ()(i )izl..N , to determine M random

variables (ui )i:O..M which are estimations of the unknown sources (s )i:O..M .

Under three additional assumptions — the sources are mutually independent, there are more observations than sources, at

the most one source has Gaussian distribution —, the problem consists in finding a linear transformation W' to be applied
on the observations in order to obtain the most statistically independent estimated sources.

A
S

-

w

Asit deals with exploiting the independent feature of the sources, a criterion that measures this independence has to be
introduced. In the information theory framework, the mutual information I(ul,...,uM) between several random

variables is a positive quantity that becomes null when the processes are mutually independent. If fi are the probability

density functions of the estimations (ui ) the derivative of the information is:

ol (ulu,...,uM)_ a [ W) o
oW - +( fi(ui)JiX .

Hence, the learning rule with the natural gradient is:

AW o< [I —(p(u)) U T W

whereU =y, -+ u, [ and ((u.)), isthe column-vector such as:
_ f'(u)
o )= ()
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Of course, fi are unknown functions. Bayliss proposes a parametric model to estimate them [1,8]. A Matlab

implementation of this approach was tested with sources different from those presented. However, the algorithm too
often diverges.

Finally, we chose to implement the “extended infomax” algorithm asit is described by Lee et a. [7]. It allows to separate
mixed sources with subgaussian and supergaussian distributions, that is to say respectively with negative and positive
kurtosis values. Thelearning ruleis:

AW o< I = (K tanh(U) +U)U T | W
where K = (k;) isa M XM diagonal matrix that offers the choice between subgaussian and supergaussian estimated
Sources::

_|+1 if the j"" source issupergaussian
’ -1 if the j" source issubgaussian

At this point, it isimperative to make a parallelism between ICA and spectral unmixing. Precisely, we have to answer the
following questions. What are observations called? What are sources called? In the literature, it can be found two ways
of answering these questions.

The first intuitive approach (ICA1) consists in considering pixel spectra as observations. Therefore, the sources are the
endmember spectral signatures. The mixing equation introduced by spectral mixing isidentically the ICA one.

x@ - %(L) a; oAy |(s@ - s(b)

XN(l) XN(L) Ay ot A SM(l) SM(L)

The second approach (ICA2) appears when the last equation is transposed:
@ o x@) (8@ - osy@)ay - ay

(L) - oxO) (s - siOlan - aw

Now, one observation is the reflectance values in one band for al the pixels. Consequently, one source is the abundances
of one material in all the pixels. However, in this configuration, the sources are not statically independent as the linear
mixing model imposes that, for each pixel, the sum of al the material abundancesis equal to 1. In this constrained case,
it can be demonstrated that ICA will generate estimated sources that will be variations with an average abundances [6].
The minimum and the maximum of these sources indicate pure pixels. By picking these extreme values in the estimated
source matrix, the origina endmember spectra can be found. Therefore, with this approach, only two sources can be
recovered.

4. TEST ON SYNTHETIC IMAGES

To test the two algorithms on synthetic images, two aspects have to be chosen: firstly, the pure components involved in
the mixture and, secondly, their spatial repartitions and respective abundances in the image. The chosen endmembers are
representative of urban or suburban environment. The spectra of the components are shown Fig. 2.

The spatial repartitions are displayed Fig. 3. On these simulated images, several areas are defined where one or several
components are distributed randomly with different averages.
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Figure 2 : Spectra of the endmembers involved in the mixture
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Figure 3 : Spatia repartition of the original materias

To evaluate the robustness of the algorithms, an additive uniform noise is added to the observations in all the bands and
for each pixel. The mixing equation becomes:

X=AS+B
where B isa N XL matrix if N pixels compose the image and if the reflectances are acquired in L spectral bands
with b”- uniformly distributed in [-f ;+ B] . The tests are done with values of  equal to 0, 0.15 and 0.40.
To measure the quality of the estimation, a quantity which gauges the likelihood between the real spectrum X and its

estimation X hasto be introduced. In the field of hyperspectral imagery, the comparison of signals resorts to the variable
called spectral angle which measures the angle between two spectrain the hyperspectral space [4]:

oxH)= ar‘:‘:‘){nxn K,

where <,> isthe usual scalar product and |||| ) the corresponding norm. Afterwards, the cosine of thisangleisused :

i)
S R)= o8 Ly T

When X=X, SA(X,X)=1. SA(X,X)>0.99 meansthat X and X have very similar shapes.
The four algorithms are applied on mixtures of two, three and four constituents. For ICA algorithms, results are based on
200 Monte Carlo runs. SA are averaged for each mixture and plotted as a function of the noise magnitude (Fig. 4 to 6).
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Figure 4 : Cosines of the Spectral Angles between real endmembers spectra and endmembers spectra estimated
by the four agorithms for three different mixtures of two components

The ICA 2 algorithm appears to be very sensitive to the level of noise (Fig. 4). For a mixture of two components, N-
FINDR performs an accurate endmember extraction. The two other algorithms provide approximately the same results,
less accurate than those obtained with N-FINDR and they seem to be sensitive to the sources nature.
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Figure 5 : Cosines of the Spectral Angles between real endmembers spectra and endmembers spectra estimated
by the four agorithms for five different mixtures of three components
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As previoudly, for a mixture of three components, N-FINDR is the most accurate. The two agorithms based on
Independent Component Analysis are not able to estimate the spectra of the endmembers reliably (Fig. 5). At this stage
of the simulations, it was decided to carry on with the two most performing algorithms based on geometric
considerations, that is to say the N-FINDR and the ICE algorithms.

Estimations by N-FINDR Estimations by ICE
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0,95 -
M 2

09 09
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Figure 6 : Cosines of the Spectral Angles between real endmembers spectra and endmembers spectra estimated
by N-FINDR and ICE algorithms for two different mixtures of four components

When four components are present in the image (Fig. 6), N-FINDR till gives an accurate estimation of the endmembers,
even with moderately noisy spectra (f=0.15). For higher (3=0.4), the quality of the retrievals begins to decrease, but is
still acceptable.

At the issue of these tests on synthetic images, N-FINDR seems to provide the most accurate endmember estimates. |ICE
results are less satisfying, as the SA(X, )?) values are less than 0.99 in most cases. The ICA 1 agorithm fails for more

than two sources; the ICA 2 algorithm is very sensitive to the noise.

5. TEST ONHYMAPIMAGE

The two “geometric” algorithms are tested on a hyperspectral image acquired by the HyMap instrument over the
Hartheim conifer forest. On Fig. 7, the 66x66 pixels of the studied image are represented at the wavelength A=0.701 um
(spectral band 19). The forest is crossed by grass tracks. Two water points appear in black on the image. We defined
regions of interest (ROIS), characteristic of each congtituent, where the spectra of the pixels are averaged.
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Figure 7 : Image of Harheim and mean spectra of ROIs
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On Fig. 8, the estimated endmembers spectra (red curve) are superposed with the ground measurements over conifer
(blue curve) taken from a 10 meters pylon, and with the extreme airborne spectra in the corresponding ROIs. Spectral
angles between endmembers and ROIs mean spectra are computed.

water : SAM = 0.907799 water. SAM = 0.917823
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Figure 8 : Estimated endmember spectrain Hartheim image by N-FINDR (left) and ICE (right) - Endmembers spectra (red), field
measurements, when available (blue), and ROIs airborne spectra (mimimum and maximum in black) - (SAM : cosine of spectral
angles).

The extraction of the water is difficult because of its low reflectance. The conifer spectrum is well estimated by the two
algorithms and the third endmember is quite representative of spectra collected on the track composed of a mixture of
more or less dry and green grass.

6. CONCLUSION AND FINAL REMARKS

This paper consisted in comparing performances of four algorithms dedicated to resolving the problem of endmembers
extraction in hyperspectral images. A description of the observations by alinear model allowed introducing two different
approaches. The first one, based on stochastic notion of Independent Component Analysis, does not seem to provide an
efficient mean to estimate the sought spectra reliably as soon as more than two components are present in the image or as
soon as the observations are very noisy. The second approach exploits geometric characteristics the problem answers to.
At the issue of tests on synthetic images, N-FINDR seems to provide the most accurate endmember estimates. |CE
results are less satisfying, as the values of the spectral angles cosine between real and estimated endmembers spectra are
less than 0.99 in most cases. On the other hand, when applied to a part of HyMap image, the “geometric” algorithms, are
able to provide good estimates of endmembers spectra, with dlightly better results for the ICE agorithm.
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