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Abstract

We present a deep learning framework that leverages computational homogenization expertise to 

predict the local stress field and homogenized moduli of heterogeneous materials with two- and 

three-dimensional periodicity, which is named physics-informed Deep Homogenization Networks 

(DHN). To this end, the displacement field of a repeating unit cell is expressed as two-scale 

expansion in terms of averaging and fluctuating contributions dependent on the global and local 

coordinates, respectively, under arbitrary multi-axial loading conditions. The latter is regarded as 

a mesh-free periodic domain estimated using fully connected neural network layers by minimizing 

residuals of Navier's displacement equations of anisotropic microstructured materials for specified 

macroscopic strains with the help of automatic differentiation. Enabled by the novel use of a 

periodic layer, the boundary conditions are encoded directly in the DHN architecture which 

ensures exact satisfaction of the periodicity conditions of displacements and tractions without 

introducing additional penalty terms. To verify the proposed model, the local field variables and 

homogenized moduli were examined for various composites against the finite-element technique. 

We also demonstrate the feasibility of the proposed framework for simulating unit cells with 
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locally irregular fibers via transfer learning and find a significant enhancement in the accuracy of 

stress field recovery during neural network retraining. 

Keywords: Physically informed deep neural network; Computational homogenization; 

Micromechanics; Composite Materials; Transfer learning

1. Introduction

The development of micromechanical methodologies for heterogeneous materials has gained 

tremendous attention in the computational mechanics community. Most works concerning 

micromechanics techniques have been proposed during the past five decades, starting from the 

early classical micromechanics models such as the self-consistent method (Hill, 1965), the 

composite cylinders/spheres assemblage (Hashin and Rosen, 1964), the three-phase model 

(Christensen and Lo, 1979), the Mori-Tanaka scheme (Mori and Tanaka, 1973) and progressing 

to sophisticated models involving more computationally demanding analytical and numerical 

treatment such as the fast Fourier transformation approach (Gehrig et al., 2022), asymptotic 

homogenization method (Cruz-González et al., 2020; He and Pindera, 2021), equivalent 

inhomogeneity technique (Mogilevskaya et al., 2010), the locally-exact homogenization theory 

(He and Pindera, 2020), the finite-element/volume based micromechanics schemes (Cavalcante et 

al., 2011; Chen and Pindera, 2020), and the more recent neural network based techniques (Gajek 

et al., 2020, 2021; Henkes et al., 2022; Jiang et al., 2023; Kalina et al., 2023; Liu et al., 2019).

The micromechanics approaches may be grouped into two broad categories according to 

the different geometric representations of the material microstructures and boundary condition 

implementations based on the concept of representative volume element (RVE) or the repeating 

unit cell (RUC) (Pindera et al., 2009). Specifically, the former approaches are developed for 

statistically homogeneous microstructures (nonperiodic assumption) which most often ignore the 
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microstructural details. They consider that, under either homogeneous displacement or 

homogeneous traction boundary conditions, the response of an RVE is identical to that of the 

material-at-large. Alternatively, the RUC-based approaches are based on the periodic material 

assumption which necessitates the imposition of appropriate periodic boundary conditions. For 

these approaches, the RUC is viewed as the smallest element of periodic arrays that explicitly take 

into account the underlying microstructures and their interactions. Hence, they serve as the basic 

building block for the entire arrays through duplication in relevant directions. The advantages of 

RUC models relative to the RVE approaches, as well as the advancements in computing power, 

have sparked greater emphasis on the development of solution techniques for the former, albeit at 

the cost of greater complexity associated with the solution of the related unit cell boundary value 

problem. The readers are referred to the recent review articles (Chen et al., 2018; Firooz et al., 

2021; Saeb et al., 2016) for additional references in this area.

Despite the rapid advances in micromechanics methodologies, continuous efforts are being 

made for the exploration of novel micromechanics models with utmost accuracy and efficiency. 

The deep neural network as a universal function approximator may act as a viable alternative to 

the conventional analytical or numerical methods for solving the micromechanics problem for 

composite materials (Dey et al., 2022; Gajek et al., 2020, 2021; Henkes et al., 2022; Jiang et al., 

2023; Liu et al., 2019). It has been widely recognized that adopting the blackbox machine learning 

algorithm to predict the response of microstructural materials without imposing the physics 

constraints may lack interpretability and generalizability, not to mention the issues of significant 

demand for training data and the positive definite elastic stiffness tensor of the homogenized 

materials which cannot be guaranteed (Brodnik et al., 2023). The recent development of physics-

informed deep neural networks has unlocked new potential for solving nonlinear partial 
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differential equations (PDEs) with specified boundary conditions due to its ease of implementation 

by circumventing directly solving the PDEs (Gu et al., 2023; Haghighat et al., 2021; McClenny 

and Braga-Neto, 2023; Niu et al., 2023; Raissi et al., 2019; Vahab et al., 2023). The principal idea 

is to use the neural network layers as a global ansatz function for the PDE with the help of 

automatic differentiation. Minimization of the cost function constructed in terms of the PDE 

residuals and the boundary loss evaluated on a set of collocation points in the domain of interest 

is accomplished using gradient descent optimization, which yields the strong-form solution to the 

partial differential equations. In the theory of elasticity, the cost function can be also formulated 

using the total potential energy (Jiang et al., 2022; Nguyen-Thanh et al., 2021; Samaniego et al., 

2020), which is given in terms of the sum of the stored strain energy density and the work done by 

the external force, leading to the weak-form solution to the boundary value problems.

While there is an opportunity to contribute to the computational mechanics research, the 

application of the physics-informed deep neural networks to the micromechanics analysis of 

complicated unit cell microstructures remains nontrivial. This is due to the intrinsic difficulty of 

simultaneously satisfying the displacement and traction periodicity conditions along the unit cell 

edges. In response to this limitation, in our recent work, we developed a deep homogenization 

neural network model that solves the strong form of heat-conduction differential equations for 

thermoelastic periodic materials by introducing a periodic neural network layer (Jiang et al., 2023). 

This periodic layer, first proposed by Dong and Ni (2021), permits an exact representation of  C

periodic conditions of displacement and traction to the machine's precision by utilizing a set of 

independent sinusoidal functions with adjustable (namely training) parameters. 

Herein, the deep homogenization neural network recently developed by the present authors 

(Jiang et al., 2023) has been further extended for elastic heterogeneous materials of periodic 
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microstructures. The principal idea is to adopt a two-scale expansion of the displacement field of 

a repeating unit cell in terms of averaging and fluctuating/periodic contributions dependent on the 

global and local coordinates, respectively. Fully connected neural network layers are then utilized 

to estimate the fluctuating/periodic displacement fields by minimizing residuals of Navier's 

displacement equations of anisotropic microstructured materials for specified macroscopic strains 

with the help of automatic differentiation. The present work provides a more general framework 

for elastic composites and demonstrates the applicability of the DHN framework even in the 

context of three-dimensional microstructures. This extension is valuable for establishing the 

versatility and robustness of our recently development DHN approach. It also holds promise for 

further development to account for inelastic mechanisms, such as plasticity, finite deformation, 

and damage effects, in our future work.  

It should be mentioned that the periodicity boundary conditions can be also enforced by a 

penalty method, wherein the cost function is represented by the sum of PDE residuals, evaluated 

at the interior of the domain, and the mean square differences of the displacements and tractions 

on the mirrored unit cell faces, evaluated at the exterior boundaries. Clearly, the penalty method 

enforces the periodicity boundary conditions only in an approximate manner, which adversely 

affects the accuracy of the obtained solutions (Cuomo et al., 2022). Meanwhile, there are 

competing effects between PDE residuals and boundary loss components, which are detrimental 

to the training of the neural network model and the ensuing neural network predictions.

 An additional challenge with the neural network methods is that they suffer from stability 

and accuracy issues wherein the solutions are highly inhomogeneous and exhibit sharp spatial 

transitions, owing to the global optimization nature of the cost function in the gradient-based 

optimization algorithm (Faroughi et al., 2022; Henkes et al., 2022). This is particularly true in the 
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case of unit cells with locally irregular multiple inclusions, if not with a single inclusion, wherein 

significant modulus mismatch and jump are encountered, producing marked deformation/stress 

gradients at the phase interface. For this, we introduce the transfer learning framework (Weiss et 

al., 2016) in order to obtain the desired network solution.

2. Preliminary 

In this section, we present an overview of the basic equations in the homogenization theory of 

periodic materials and introduce the relevant notations adopted throughout this work. This sets the 

stage for the development of the physically informed neural network homogenization theory in the 

next section.

Following the zeroth-order homogenization theory (Bensoussan et al., 1978; Chen et al., 

2023; He et al., 2023; Suquet, 1987), the displacement field in the periodic microstructure can be 

partitioned into averaging and fluctuating contributions dependent on the global and local 

coordinates  and  as follows, 1 2 3, ,x x xx  1 2 3, ,y y yy

Figure 1 A multiphase periodic array characterized by the smallest building block or the unit cell 

 (2)   i ij j iu x u  x y
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with the fluctuations induced by material heterogeneity and uniform loading defined by the 

specified average strain . The unit cell problem is then solved subjected to the periodicity ij

displacement and traction conditions (Pindera et al., 2009):

 (3)       o o o o,     0i i ij j i iu u d t t     x d x x d x

where , ,  is the unit cell boundary,  denotes a 1,2,3i   o o, S x x d S  1 2 3, ,d d dd

characteristic distance that defines the unit cell array microstructure. Tractions  are related to it

stresses from Cauchy's relations , with  representing the unit normal vector i ji jt n   1 2 3, ,n n n

to the boundary. The stresses are related to strains through Hooke’s law of elastic materials 

 and strains are related to displacements through the strain-displacement      ij ijkl klC y y y

equations:

 (4)    1
2

ji
ij ij ij ij

j i

uu
y y

   
         

y y

where  denotes fluctuating strain induced by the heterogeneity.  ij  y

For linearly elastic periodic materials comprised of distinct phases, the governing 

differential equations, or the so-called Navier's displacement equations, in the absence of body 

force and inertia effect read:

 (5)

3 31 2 1 2 1
11 11 12 22 13 33 66 12 55 13

1 1 2 3 2 2 1 3 3 1

1 2
21 11 22 22 23 33

2 1 2

2 2 0u uu u u u uC C C C C
y y y y y y y y y y

uu uC C C
y y y

    

  

                     
                                       

      
            

3 31 2 2
66 12 44 23

3 1 2 1 3 3 2

3 31 2 1
31 11 32 22 33 33 55 13

3 1 2 3 1 3 1

2 2 0

2

uu u uC C
y y y y y y y

u uu u uC C C C
y y y y y y y y

 

   

           
                       

               
                               

3 2
44 23

2 3 2

2 0u uC
y y


   

     

Finally, following the classical homogenization theory, the homogenized constitutive 

equations of the unit cell with a volume , under small deformation assumption, can be 1 2 3V d d d
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expressed in terms of effective constants , designated by an asterisk, Eq. (6). This equation ijklC 

relates the macroscopic stresses  to the macroscopic strains  evaluated as volume-averaging ij ij

of their corresponding local quantities as follows:

 (6)ij ijkl ijklC 

where 

 (7)1 1d ,     dij ij ij ijV V
V V

V V
     

The homogenized stiffness tensor  of the unit cell is obtained by sequentially applying one ijklC 

unit macroscopic strain at a time to solve iteratively the corresponding fluctuating displacements, 

hence the local stress and strain fields are obtained. The values of  in each column correspond ijklC 

to the macroscopic stresses for the unit cell under a given unit applied strain.

3. Deep homogenization neural network

The principle idea of the physically informed deep homogenization network is to use the neural 

network as a function approximator (Hornik et al., 1989; Raissi et al., 2019), namely to estimate a 

continuous function that maps the spatial coordinates  in the unit cell domain to the  1 2 3, ,y y y V

corresponding fluctuating displacements  with specified applied average strain  and  1 2 3, ,u u u   ε

the fourth-order stiffness tensors  as follows: C y
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Figure 2 Physically informed deep residual neural network acting as micromechanics model of periodic 
microstructured materials

 (8) 
 

   1 2 3 1 2 3 1 2 3, 
, , DHN , , ,     , ,u u u y y y y y y V     

ε C y

i.e., a mapping from .  In the above equation,  are periodic functions in the 3 3   1 2 3, ,u u u  

three-dimensional space , , . 1 1 2y d 2 2 2y d 3 3 2y d

Towards this end, a feedforward network with residual learning is constructed, in which 

the network is fed directly with coordinates of a set of random collocation points sampled over the 

unit cell domain, as illustrated in Figure 2. The output associated with the  neuron in the  thj thi

layer is formulated as: 

 (9)1 1

1

n
l l l l l
j ij j j j

i
q f W q B q 



    
 


where  indicates nonlinear activation function.  is associated with the output of the  f 1l
jq  jth

neuron of the layer.  and  are the weights and biases acting in the layer. The  1 thl  l
ijW l

jB thl

parameters of the neural network  are determined by minimizing a loss function . θ  1 2 3, ,u u u  

This loss function can be expressed as the sum of the residuals of Navier's displacement equations 

evaluated at a set of collocation points  : sN
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 (10) 
1 2 31 2 3ArgMin  , , PDE PDE PDEu u u      

θ
θ    

where 

 (11)
1

31 2
11 11 12 22 13 33

1 1 1 2 3

2

31 2 1
66 12 55 13

2 2 1 3 3 1

1

2 2

sN

PDE
is

uu uC C C
N y y y y

uu u uC C
y y y y y y

  

 



                               

                          



 (12)
2

31 2
21 11 22 22 23 33

1 2 1 2 3

2

31 2 2
66 12 44 23

1 2 1 3 3 2

1

2 2

sN

PDE
is

uu uC C C
N y y y y

uu u uC C
y y y y y y

  

 



                               

                          



 (13)
3

31 2
31 11 32 22 33 33

1 3 1 2 3

2

3 31 2
55 13 44 23

1 3 1 2 3 2

1

2 2

sN

PDE
is

uu uC C C
N y y y y

u uu uC C
y y y y y y

  

 



                               

                           



In the above equations, the displacement partial derivatives in the loss components are computed 

directly using automatic differentiation (Baydin et al., 2018). The optimization process requires 

the use of a backpropagation algorithm, in which the loss function is minimized iteratively with 

respect to the weights  and biases   in each layer. One of the most common and the most W B

straightforward optimizers utilized in machine learning is gradient descent:

 (14)

1

1

k k
ij ij k

ij

k k
i i k

i

W W
W

B B
B










 




 







where  denotes the learning rate which is a crucial parameter affecting the neural network 

training process. The superscripts  and  indicate the  and  iterations k  1k  kth  1k th
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respectively. The gradients of the loss function are obtained using the chain rule. The weights W

and biases  are updated during the backpropagation and converge toward a minimized loss value B

after a number of iterations. 

It is widely admitted that periodicity boundary conditions in this specific application play 

an essential role in yielding an accurate neural network solution. The implementation of the 

periodicity boundary conditions, however, is far from trivial. Following Dong and Ni (2021), the 

imposition of the periodicity boundary conditions is accomplished by introducing a periodic neural 

network layer. This layer permits an exact representation of  periodic conditions of C

displacement and traction by utilizing a set of independent sinusoidal functions with adjustable 

(namely training) parameters. For a cubic unit cell in the three-dimensional  space with  1 2 3, ,y y y

periods of ,  and  in ,  and  directions, respectively, the periodic layer is defined as 1d 2d 3d 1y 2y 3y

(Dong and Ni, 2021):

 (15)

   
   
   

             

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

1 2 3
1 2 3 1 1 2 2 3 3

1 1 1

cos ,

cos ,

cos ,

, ,

i i i

i i i

i i i

m m m

j i ij i ij i ij j
i i i

v y f A y c

v y f A y c

v y f A y c

q y y y f v y W v y W v y W B

 

 

 

  

    
    
    

      
  

where  and .  1 i m  1 j n 

 (16)1 2 3
1 2 3

2 2 2,     ,     
d d d
      

are constants with prescribed periods of ,  and , respectively. The periodic layer defined in 1d 2d 3d

Eq. (15) ensures the predicted fluctuating displacements and their partial derivatives (namely, 

strains) inherently adhere to the periodicity conditions, hence the periodicity boundary conditions 

of tractions are automatically imposed considering the periodic distribution of constituent phases. 
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The nonlinear activation function  ensures that ,  and  contain not only the f  1 1iv y  2 2iv y  3 3iv y

frequency ,   and , but also the higher frequencies with common periods in the pertinent 1 2 3

direction.  and  are hyper-parameters of the periodic layer and  denotes the output of this m n jq

layer. In summary, the adjustable (or training) parameters in the periodic layer include:

 (17)     1 2 3
1 2 3 1 2 3 1 2 3, , , , , , , , , , , ,i i i i i i i i i ij ij ij jA A A c c c W W W B  

In the case of unidirectional composites reinforced by continuous fibers in the  (namely 1y

) direction, the null displacement partial derivatives in the pertinent direction, i.e., , 1x 1 0iu y  

hold for any combination of macroscopic strains. The response of such composites can be 

characterized by periodically repeating material microstructures with two-dimensional periodicity 

in the   plane. For this, the remaining Navier's displacement equations are uncoupled for 2 3y y

inplane (loaded by ) and antiplane (loaded by ) shear  T
11 22 33 23, , ,2in    ε  T

12 132 ,2out  ε

loadings. The corresponding unit cell problems can be solved independently under the generalized 

plane strain constraint  as follows:11 11 

 (18) 
 

   
 

   2 3 2 3 1 2 3 2 3in out, , 
, DHN , ,     DHN ,      ,

in out

u u y y u y y y y V     
ε C y ε C y

i.e., mapping from  for in-plane loading and  for out-of-plane loading. This 2 2  2 1 

significantly reduces the computational effort for computing the whole set of homogenized moduli 

and local stress fields under arbitrary multi-axial loading conditions without resorting to three-

dimensional unit cell simulations. It should be pointed out that the collocation points in 

heterogeneous microstructures can be generated randomly simply using Monte-Carlo simulation 

or obtained from real-world -scans (Henkes et al., 2022).  CT
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4. Unidirectional composites

The unit cells of the investigated unidirectional boron/aluminum (B/Al) composites with two-

dimensional periodicity in a state of generalized plane strain are shown in Figure 3. The Lamé’s 

constants of the fiber and matrix phases (Pindera and Bansal, 2007) are , 111.11GPaf 

,  and , , respectively. Since the neural network 166.67GPaf  52.84GPam  27.22GPam 

functions are infinitely differentiable, approximating displacement functions for the unit cell 

problem with stiff stiffness transition is very demanding, and it typically requires a significantly 

large number of training iterations to obtain a desirable solution. Therefore, as suggested by 

(Henkes et al., 2022),  in an attempt to resolve this issue, the stiffness distributions in the DHN 

approach are artificially smoothened across the fiber/matrix interface. For an -fiber composites N

with elliptical cross-sectional shapes, if the fiber and matrix phases are both isotropic, the 

distributions of material properties are expressed in terms of Lamé functions  and  in   y   y

the form:

 (19) 

       2 2

2 2 3 3 2 2 3 3

2 3

1 2 3
1

cos sin sin cos
1

tanh

   

   


              
          
 
 
  

y

i i i i i i i i

i i
N

i

y o y o y o y o

b b

 (20) 

       2 2

2 2 3 3 2 2 3 3

2 3

1 2 3
1

cos sin sin cos
1

tanh

   

   


              
          
 
 
  

y

i i i i i i i i

i i
N

i

y o y o y o y o

b b

where ,  and  denote the origins, major and minor axes of the fiber, respectively.   
2 3, io o 2

ib 3
ib thi

 denotes the angle inclination between the major axis of the fiber and the horizontal axis. i thi
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 denotes the hyperbolic tangent function.   and  are materials constants tanh  ( ) 1 2 3, ,   1 2 3, ,  

that are related directly to the fiber and matrix Lamé parameters. If  and  are both set to 1 2 2

GPa, we have

 (21)   3 1 3 1,     2,     ,     2,m f m m f m              

where ,  and ,  the matrix and fiber Lamé’s constants, respectively.  denotes the m m f f 

smoothness of the material transition and it is set to be in this manuscript unless 0.05  

otherwise stated.

The accuracy of the DHN relies on the network depth, the number of neurons per layer, and 

collocation points entering the loss function, which are equivalent to the mesh density in the finite-element 

method. Thereafter, in order to gain a deeper insight into the effect of these hyperparameters, we perform a 

number of numerical experiments to understand how they affect neural network performance.

4.1 Effect of network parameters 

       

        

(a) (b)

Figure 3 (a) Collocation point distributions generated using Monte-Carlo simulation for evaluating PDE residuals; (b) 
finite-element unit cell discretization for comparison with DHN approach
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As shown in Figure 3, the first example is characterized by a simple square unit cell   2 3d d

reinforced by an elliptical cross-sectional fiber with an aspect ratio of . The major axis 2 3: 2 :1b b 

of the fiber is rotated by  w.r.t. the horizontal axis. The overall volume fraction of the 4 

boron fiber is 20%. Figure 3a shows training collocation point distributions generated randomly 

using Monte-Carlo simulations. The training dataset contains 10k collocation points which were 

utilized for evaluating the loss function in the network model. A separate and hold-out validation 

dataset with  collocation points was used for plotting PDE residuals, displacement, and 280 280

stress distributions when the network was trained. Figure 3b shows the finite-element mesh 

refinement which is discretized into 941 Q4 or Q8 elements for comparison with the DHN 

predictions. For all the numerical experiments presented in this work, the network solutions were 

obtained with the PyTorch package on Google’s Collaboratory cloud platform with Adam 

Optimizer. The initial learning rate is 0.01 and decreases progressively as a function of the training 

epoch to avoid the training loss fluctuation. The hyperbolic tangent function was utilized as the 

activation function. The finite-element computations were performed with an in-house MATLAB 

code (Cavalcante et al., 2011; Chen et al., 2022).

As the first example, a unit transverse normal strain  is prescribed, with the 22 0.1% 

remaining strain components set to zero, since this loading mode is the most demanding. The 

employed fiber shape and orientation, as well as its dimension relative to the overall unit cell size, 

give rise to significant fiber-fiber interactions, wherein the effect of periodic boundary conditions 

on the local displacement and stress field distributions is more important. Hence this system is a 

good candidate to validate the predictive capability of the network-based homogenization theory 

relative to the finite-element benchmark solutions.
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Nine neural network architectures (Table 1) that cover a wide range of network parameters 

were used to run the simulations, enabling direct assessment of neural network architecture (i.e., 

layer and neuron number) on the network performance. Three training runs were performed for 

each network architecture to illustrate the effect of variations in the seed values of the weights and 

biases on the neural network convergence. 

Table 1 Network parameters for identifying the best network model

Network Neurons in the 
periodic layer Hidden layers Hidden neurons Training parameters

1 10 3 30 3542
2 30 3 30 4862
3 20 2 30 3272
4 20 3 40 6762
5 20 3 20 2242
6 20 3 30 4202
7 20 5  40 10042
8 20 5 20 3082
9 20 5 30 6062

Network 1 Network 2 Network 3

Network 4 Network 5 Network 6
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Network 7 Network 8 Network 9

Figure 4 Effect of network depth and hidden neurons on the network performance

Network 1 Network 2 Network 3

Network 4 Network 5 Network 6

Network 7 Network 8 Network 9

Figure 5 Comparison of pointwise loss distribution (PDE residuals) for the best run of the nine neural network models
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Figure 4 presents comparison of the total loss value (Eq. (10)) as a function of the training 

epoch predicted by the nine neural network architectures. Figure 5 illustrates the pointwise loss 

distributions after 15k training epochs of the best run for each network architecture evaluated on 

the separate validation dataset. A cursory look at the loss evolutions for multiple restarts reveals 

that networks 2, 3, 7, and 8 are more sensitive to the variations in the seeds values for the weights 

and biases, indicating poorer robustness than that of networks 1, 4, 5, 6, and 9. In addition, the 

pointwise loss distributions of networks 2, 3, 5, and 8 are markedly higher and more widespread 

than those of networks 1, 4, 7, 6, and 9. Since the overall minimal loss value for network 6 is an 

order of magnitude higher than those of networks 1, 4, and 9, the latter networks retain the most 

promising candidates for the micromechanical analysis of the composites. Network 4 has a higher 

number of training parameters than networks 1 and 9, hence a better generalization ability may 

also be expected. In what follows, we chose network 4 for all the numerical experiments in the 

sequel. 

4.2 Effect of dataset size 

In this section, we proceed to demonstrate the number of collocation points on the network's 

accuracy. We re-examine the numerical experiment performed in Section 4.1 but with increasing 

collocation points, namely 2.5k, 5k, 7.5k, and 10k generated via the Monte Carlo simulations. As 

before, three training runs were conducted to test the influence of seed values on the network 

training performance. The corresponding loss functions are shown in Figure 6 and the plots of 

local stress field  distributions for the best runs are shown in Figure 7. It is observed that 22

approximately the same low training loss values are attained after 15k epochs (for the best run), 

regardless of the size of the collocation points. However, the neural network trained on 2.5k 

collocation points failed to predict the accurate stress distributions even though the training loss 
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value is small enough. Moreover, the neural network robustness is strongly affected by the size of 

collocation points, namely, the training loss functions are generally less sensitive to the variations 

in the seed values of weights and biases with increasing size of collocation points. Based on the 

good performance of the 10k dataset, it will be employed in generating the results in the sequel 

unless otherwise stated.

(a) 2.5k (b) 5k

(c) 7.5k (d) 10k

Figure 6 Effect of training dataset size on the network performance

(a) 2.5k (b) 5k
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(c) 7.5k (d) 10k

Figure 7 Effect of training dataset size on the predicted local stress  distribution22

4.3 Verifications

 2u  3u

(a) FEM Q4

(b) FEM Q8

(c) DHN

Figure 8 Comparison of  and   displacement field distributions ( ) predicted by Q4 and Q8 FEM and 2u 3u 10 ―3𝜇𝑚

DHN approaches with the imposition of only one nonzero macroscopic strain component 22 0.1% 
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This section presents verification of the DHN theory’s predictive capability to accurately capture 

both the homogenized moduli and local displacement and stress field distributions. First of all, a 

comparison of the displacement and stress fields is illustrated, predicted by the DHN with in-house 

finite-element results which serve as the gold standard. It should be highlighted that the solution 

methods employed in the network theory (strong-form solution) and the finite-element approach 

(weak-form solution) are totally different, leading credence to the network theory’s rigorous 

validation and the ensuing conclusions.

 22  33 23

(a) FEM Q4

(b) FEM Q8

(c) DHN

Figure 9 Comparison of local stress field distributions generated by Q4 and Q8 FEM and DHN approaches with the 
imposition of only one nonzero macroscopic strain component 22 0.1% 
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Under transverse normal strain loading by  with all other strain components 22 0.1% 

remaining null, the fluctuating displacement   field generated by network 4 trained on 10k 2u

collocation points is virtually identical to the Q4 and Q8 finite-element predictions. A close look 

at the displacement   field indicates that the magnitude of  predicted by the DHN scheme is 3u 3u

slightly higher than those of Q4 and Q8 finite-element results. Yet, the main characteristics of the 

displacement distribution are well-captured. We note that the displacement fields for all the 

approaches are smoothly varying even in the vicinity of or at the fiber/matrix interface.

Figure 9 compares the differences in concomitant ,  and  stress field 22 33 23

distributions predicted by the DHN and Q4 and Q8 finite-element simulations. A cursory 

examination of the three stress components reveals an excellent correlation between the network 

and finite-element predictions. However, the stress fields computed by the FEM Q4 exhibit 

apparent nonsmooth spatial variations. These stress discontinuities are even more remarkable in 

the vicinity of the fiber/matrix interface wherein the highest deformation and stress gradients 

typically appear. These stress discontinuities arise because the classical finite element method 

satisfies only the continuity of the displacements, while the calculated displacement derivatives 0C

are not necessarily continuous from one element to another, even with finer meshes. FEM Q8 

predicts smoother stress fields relative to the Q4 element predictions due to a higher order of 

displacement field representation. Nevertheless, the stress discontinuities associated with the 

finite-element method do not vanish even with higher-order displacement representation. In 

contrast, the displacements predicted by the neural network model are indefinitely differentiable. 

Therefore, the obtained stress and stress gradients in the network approach smoothly vary in the 

entire unit cell domain, without apparent discontinuities observed in the non-traction stress 

components associated with the pertinent directions.
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It should be noted that small differences are observed between the network and finite-

element approaches which occur near the vicinity of the fiber/matrix interface. They are attributed 

to the fact that the DHN utilized smoothed stiffness coefficient distributions across the fiber/matrix 

interface, Eqs. (19) and (20), leading to the less abrupt stress transition in the interfacial area. The 

network approach captures the small effect in stiffness distributions with sufficient fidelity. 

Figure 10 presents comparison of DHN’s absolute residual body forces for the in-plane 

Navier’s equations with Q4 and Q8 finite-element approaches subject to transverse macroscopic 

strain . As anticipated, the Q4 element exhibits significantly high residual body forces 22 0.1% 

due to its low degree of freedom. The DHN and Q8 elements exhibit comparable accuracy, 

resulting in reduced residual body forces thanks to their enhanced precision when representing the 

unit cell solution.

FEM Q4 FEM Q8 DHN

(a)  12 3
2 10 N mf

(b)  12 3
3 10 N mf

Figure 10 Comparison of DHN’s residual body forces with Q4 and Q8 finite-element predictions
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Figures 11 and 12 present comparison of the out-of-plane fluctuating displacement  and 1u

axial shear stresses   and  distributions under axial shear loading by ,  generated 12 13 122 0.1% 

by the network and finite-element approaches. As before, the DHN and finite-element techniques 

predict virtually the same displacement distributions, which are smoothly varying in the entire unit 

cell domain. The stress fields predicted by the two approaches also show a good level of correlation. 

As demonstrated in the previous example, while the stress fields predicted by the DHN exhibit 

smooth spatial variation even in the vicinity of the fiber/matrix interface, notable stress 

discontinuities can be observed in the finite-element approaches under this loading configuration.

(a) FEM Q4 (b) FEM Q8 (c) DHN
Figure 11 Comparison of  displacement field distributions ( ) predicted by Q4 and Q8 FEM and DHN 1u 10 ―3𝜇𝑚

under uniaxial shear loading by 122 0.1% 

The full set of homogenized properties can be obtained by sequentially applying only one 

nonzero unit macroscopic strain component at a time and solving the corresponding boundary 

value problems six times. The values in each column of the homogenized stiffness tensor 

correspond to the homogenized stresses for each loading case. The DHN- and FEM-computed 

homogenized properties for the microstructure shown in Figure 3 are given in Eq. (22). It is 

observed a good agreement between the network and finite-element approaches, with relative 

differences of less than 1%. The small differences are due to the interfacial stiffness distributions 

in the DHN technique, further indicating the network method is sufficiently sensitive to correctly 

capture these small effects. 
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 12 13

(a) FEM Q4

(b) FEM Q8

(c) DHN
Figure 12 Comparison of axial shear stress distributions predicted by Q4 and Q8 FEM and DHN under uniaxial shear 
loading by 122 0.1% 

 (22)
* *

172.1 57.8 57.9 0.5 0 0 172.7 57.7 57.7 0.5 0 0
57.8 132.7 61.3 1.8 0 0 57.7 131.8 61.0 1.7 0 0
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5. Multi-inclusion composites 

In this section, the modelling and predictive capabilities of the DHN theory are further studied for 

simulating unidirectional composites with locally-irregular fibers. As shown in Figure 13, while 
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the overall fiber volume fractions have been kept constant at 18.85%, four random microstructural 

realizations with different cross-sectional fiber shapes were generated using Eqs. (19) and (20). In 

order to qualify as an RUC, the fibers near the unit cell boundary are cropped and moved apart, as 

shown in Figure 13b and Figure 13c. They are precisely added on the opposite side of the unit cell 

edge such that the periodic positioning of fibers is formed. For the unit cells labeled as 

microstructure #1~ #4, the finite-element unit cells were constructed with periodic meshes with 

1970, 2004, 2084, and 2012 four and eight-noded elements, respectively. For each microstructural 

realization, we employed 20k randomly sampled collocation points (not shown) for training the 

neural network model. 

(a) Microstructure #1 (b) Microstructure #2

(c) Microstructure #3 (d) Microstructure #4

Figure 13 Finite-element mesh discretizations of unit cells with locally irregular fiber distributions and different fiber 
shapes
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We note that the neural network methods as function approximators are known to suffer 

from stability and accuracy issues where the solution has sharp spatial transitions. The fiber-fiber 

interactions in random fiber realizations are more important than in the single fiber case, which 

leads to pronounced deformation and stress gradients inside the unit cell. These interactions pose 

a marked challenge to the convergence of the neural network loss function, leading to inaccurate 

neural network predictions. Therefore, the random fiber unit cells provide a more demanding test 

of the DHN’s accuracy and efficiency. Trials with different network architectures have been 

extensively conducted but have not yielded a satisfactory improvement on this issue. 

In response to this challenge, a transfer-learning enhanced DHN strategy for simulating the 

unit cells reinforced with locally irregular fibers is proposed. This is motivated by the observation 

that when increasing the material transition parameter  from  to  (namely,  0.05  0.1 

decreasing the stiffness of material transition in different phases), the spatial transition of the stress 

in the vicinity of fiber/matrix becomes less abrupt. The overall displacement and stress field 

distributions, however, are not fundamentally altered. 

(a) Microstructure #1 (b) Microstructure #2
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(c) Microstructure #3 (d) Microstructure #4

Figure 14 Finite-element mesh discretizations of unit cells with locally irregular fiber distributions

Therefore, instead of directly building the neural network model for a specific random fiber 

realization with the more demanding parameter  (denoted as target model) from scratch, 0.05 

we first train an identical neural network model with smoother stiffness transition  0.1 

(denoted as source model). When the loss value of the source model is minimized, the target model 

copies all the pre-trained weights and biases from the source model. Then we assume that the latter 

has learned sufficiently the common knowledge of displacement and stress fields which are useful 

for training the target model. In the second step, these weights and biases are fine-tuned during the 

re-training of the target model.  It should be noted that a smaller learning rate should be utilized in 

the transfer learning procedure to avoid significant updating of the parameters copied from the 

trained source model.

To provide a direct assessment of the effectiveness of the transfer learning technique, 

Figure 14 presents the evolution of the loss value as a function of the training epoch for both the 

source and the target models. For comparison purpose, direct training of the target model from 

scratch (indicated as direct training in the figures) has also been included in the figure. For all four 

microstructural realizations, it is clear that the training of the source models always attains the 

lowest loss values since they are the least demanding because of the smaller stress concentrations 

around the fiber/matrix interface relative to the target model. On the contrary, the direct training 
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of the target models from scratch yields the highest ones. Another observation is that the rate of 

convergence for the neural network loss values with transfer learning is the most rapid at the first 

three thousand training epochs as their weights are more effective. The loss values of the target 

models enhanced with transfer learning at every training epoch are remarkably lower than those 

trained from scratch, indicating that the transfer learning is capable of attaining a better network 

solution for the multi-inclusion unit cell albeit at the cost of a pre-training process.

Figure 15 presents comparison between the  and  displacement distributions predicted 2u 3u

by the various network models and the eight-noded finite-element solution under macroscopic 

strain  for the selected microstructure #1. As observed, both the source model and the 22 1% 

target model with transfer learning provide very good estimates of the displacement fields against 

the finite-element solutions. Direct training of the target model from scratch fails to provide 

accurate displacement estimations relative to the baseline solutions.

Source Model Direct Training Target Model FEM Q8

(a)  2u

(b)  3u

Figure 15 Comparison of   and  fluctuating displacements ( ) in microstructure #1 predicted by the 2u 3u 10 ―3𝜇𝑚

source model, direct training, target model, and FEM simulations with the imposition of only one nonzero macroscopic 
strain component  22 0.1% 
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Figures 16 and 17 show the differences between the  and  stress components 22 23

produced by the four-noded and eight-noded finite-element models and the target model 

simulations for the four microstructural realizations. As demonstrated earlier, the DHN predictions 

show a good level of accordance with the finite-element benchmark solutions. However, the stress 

distributions of the former approach are smoother than the latter ones.

Microstructure #1 Microstructure #2 Microstructure #3 Microstructure #4

(a) FEM Q4

(b) FEM Q8

(c) DHN
Figure 16 Comparison of  stress predicted by the target model and Q4 and Q8 FEM simulations the 22  [MPa]
imposition of only one nonzero macroscopic strain component  with other strain components kept as 22 0.1% 
zero

Microstructure #1 Microstructure #2 Microstructure #3 Microstructure #4
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(a) FEM Q4

 (b) FEM Q8

(a) DHN
Figure 17 Comparison of   stress predicted by the target model and Q4 and Q8 FEM simulations with 23  [MPa]
the imposition of only one nonzero macroscopic strain component  with other strain components kept 22 0.1% 
as zero

6. Three-dimensional composites

In this section, we present numerical experiments to further demonstrate the DHN’s performance 

on composites reinforced by ellipsoidal inclusions (boron/aluminum system) or weakened by 

porosity (pore/aluminum) with periodicity in the space vis-à-vis the finite-element benchmark 

solutions. We limit the comparison to the single ellipsoidal inclusion/porosity since the generation 

of the three-dimensional periodic mesh for random composites is particularly cumbersome and 

computationally expensive in the finite-element method. In the case of network simulation, the 
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distributions of material properties are expressed in terms of Lamé functions  and  in   y   y

the form:
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where  are the coordinates of the collocation points and ,  and  are the length of  1 2 3, ,y y y 1b 2b 3b

semi-axes of an ellipsoid in the ,  and  direction, respectively.1y 2y 3y

 

Figure 18 Finite element mesh refinement of the unit cell with ellipsoidal inclusion  

Figure 18 shows the finite-element mesh refinement for composites reinforced with an 

ellipsoidal inclusion, which is discretized into 2952 C3D8 or C3D20 brick elements (ABAQUS 

notations). The volume fraction of the inclusion over the unit cell is  and the length of the 0.3pV 

semi-axes is . We randomly generate 20k collocation points in the space (not 1 2 32 2 1b b b mm  
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shown) for evaluating the PDE residuals. During the training of the neural network model, the 

learning rate is prescribed as 0.01 and decays by a factor of 0.5 per 3k epochs. 

Figure 19 presents comparison of the ,  and  fluctuating displacement field 1u 2u 3u

distributions at one-eighth of the unit cell predicted by the C3D8 and C3D20 finite-element and 

neural network theories trained with 20k collocation points after 30k training epochs. Overall, the 

DHN-predicted fluctuating displacements agree well with the finite-element results and the 

differences are within the acceptance range. Figure 20 summarizes the comparison of concomitant 

,  and  stresses predicted by the network and finite-element approaches. As expected, 11 22 23

the DHN and C3D20 finite elements predict similar local stress distributions, providing additional 

evidence for the developed approach in the three-dimensional domain. However, the C3D8 finite 

elements capture the essential characteristics of the stress distributions but the stresses in the soft 

matrix exhibit remarkable discontinuities despite that the associated displacements are smoothly 

varying. 

FEM-C3D8 FEM-C3D20 DHN

(a)  1u
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(b) 2u

(c) 3u
Figure 19 Comparison of displacement field distributions ( )  predicted by FEM and DHM with the imposition 10 ―3𝜇𝑚
of only one macroscopic strain of . 0.1%

FEM-C3D8 FEM-C3D20 DHN

(a)  11

(b) 22

(c) 23
Figure 20 Comparison of local field distributions (MPa) predicted by FEM and DHM with the imposition of only one 
macroscopic strain of . 11 0.1% 



35

 

Figure 21 Finite element mesh refinement of the unit cell with spherical porosity

Similar simulations can be easily conducted for porous microstructured materials by 

removing the hard inclusion phase from the unit cell microstructure. For this, we consider a 

spherical porosity with a radius of  embedded in a cubic unit cell. The porosity volume 1mm

fraction is 30%. Figure 21 shows the finite-element mesh refinement for the unit cell that is 

discretized into 1382 C3D8 and C3D20  solid elements. Correspondingly, the neural network 

approach employs 14k collocation points to evaluate the PDE residuals. 

Figure 22 presents comparison of the ,  and  fluctuating displacement predicted by 1u 2u 3u

the DHN trained with 14k collocation points after 20k training epochs and finite-element 

benchmark predictions. The differences between ,  and  distributions predicted by the 11 22 23

two theories are shown in Figure 23.  It is remarkable how well the neural network approach is 

capable of mimicking the finite-element predictions of displacement and stress distributions in 

bulk materials.

FEM-C3D8 FEM-C3D20 DHN
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(a)  1u

(b) 2u

(c) 3u
Figure 22 Comparison of displacement field distributions ( )  predicted by FEM and DHM with the imposition 10 ―3𝜇𝑚
of only one macroscopic strain of . 11 0.1% 

FEM-C3D8 FEM-C3D20 DHN

(a)  11
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(b) 22

(c) 23
Figure 23 Comparison of local field distributions (MPa) predicted by FEM and DHM with the imposition of only one 
macroscopic strain of . 11 0.1% 

7 Discussion

The present contribution provides a general physically informed deep neural network framework 

for predicting the local displacement and stress fields, as well as homogenized moduli for elastic 

composites. The applicability of the DHN framework has been demonstrated in the context of both 

two- and three-dimensional microstructures. Thus, the DHN model has its place in the area of 

micromechanics of heterogeneous materials and holds promise for further development, such as 

incorporating plasticity and damage mechanisms. The advantages of the proposed techniques over 

the conventional finite-element techniques are several-fold. First of all, the periodicity boundary 

conditions of both displacements and tractions are automatically and exactly satisfied along the 

unit cell edges, while only the displacement periodicity boundary condition is fulfilled in the 

conventional finite-element method. Secondly, the network-based micromechanics theory is a 

mesh-free technique. The preparation of the input data (namely, the collocation points) for 
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complicated microstructures is much simpler than the finite-element method whose solution 

requires extensive mesh refinements. Thirdly, both the network-predicted stress and displacement 

fields are continuous and vary smoothly within the fiber/matrix domains without the 

discontinuities observed in the conventional finite-element technique. 

While it offers certain benefits, the DHN framework also comes with inherent limitations. 

The infinitely differentiable nature of the neural network indicates that the predicted displacements 

fulfill continuity. However, in heterogeneous materials, the continuity of derivatives of C

displacements (namely the strains) does not hold at the fiber/matrix interface. Therefore, to obtain 

a desirable neural network solution, the DHN necessitates the incorporation of an empirical 

smoothing parameter in the vicinity of the fiber/matrix interface to allow a gradual transition of 

material stiffness. Secondly, the neural network approaches encounter significant challenges 

involving multiple random inclusions where the displacements exhibit sharp spatial transitions 

within the composite microstructures. While the transfer learning strategy is capable of yielding a 

better neural network solution, it requires an additional pre-training process. Thirdly, the DHN 

transforms a linear unit cell problem into a nonlinear optimization problem. Hence the 

computational efficiency of the DHN cannot compete with the conventional numerical methods. 

Nevertheless, the advances in computational power with parallel computing have truly unlocked 

the potential for employing neural networks to tackle these challenges within a feasible timeframe 

(Jiang et al., 2022).

8 Conclusions

A novel deep learning framework has been proposed for continuum micromechanical analysis of 

elastic composites with two- or three-dimensional periodicity by seamlessly combing the elements 

of zeroth-order homogenization and physics-informed neural networks. To this end, we adopt a 
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two-scale expansion of the displacement field in terms of macroscopic and microscopic 

contributions dependent on the global and the local coordinate systems, respectively. The latter 

(microscopic displacement) is obtained from neural networks by minimizing the residual of 

Navier's displacement equations of anisotropic microstructured materials for specified 

macroscopic strains with the help of automatic differentiation over a set of randomly generated 

collocation points. The successful application of the proposed technique relies on the simultaneous 

and exact satisfaction of the periodicity boundary conditions of displacements and tractions, 

required by the unit cell solutions, through the novel use of a periodic layer involving a set of 

sinusoidal functions and nonlinear activation functions. This circumvents the need for 

incorporating additional penalty terms representing the boundary conditions. In addition, the 

transfer learning technique plays a crucial role in obtaining accurate neural network solutions when 

dealing with multiple random inclusions. The effectiveness of this technique is highlighted by the 

improved accuracy achieved, which, in most cases, is challenging to attain through direct network 

training alone. The predictive capabilities of the DHN theory were assessed extensively against 

the finite-element benchmark solutions reinforced by unidirectional fiber/ellipsoidal inclusions or 

weakened by spherical porosity and good agreement was obtained for all configurations. 
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Highlights

 
• A physically informed deep homogenization network was developed for elastic 
heterogeneous composites 
• The neural network outputs exactly satisfy both periodic displacement and traction 
boundary conditions 
• The proposed framework is verified by comparison with finite-element predictions for both 
unidirectional composites and particulate-reinforced composites 


